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A message from the president

Dear EMS members,
Even though hybrid and virtual events

are still ubiquitous, the increasing return
of personal contact in academic life through
lectures, conferences, and workshops
means that the mathematical community
needs to start thinking carefully about the
future, starting now. I am fairly certain that
we will never completely return to the in-

person-only procedures that existed before the pandemic, but
at the same time, having attended numerous virtual and hybrid
meetings and lectures, I have found that the technological facilities
for setting up well-functioning hybrid conferences still often lack
professionalism. There is also the fact that particularly for the
younger generation, but also for established scientists, personal
contact is really essential for the purposes of networking, becom-
ing known in the community, and efficiently learning about new
developments. In fact, if we are honest with ourselves, we must
admit that given the huge number of publications coming out
every day, and despite the fact that almost all of them are freely
available on the arXiv or via subscribe-to-open publishing like that
of EMS Press, reading research papers is becoming less common,
and we rely increasingly on conferences and lectures to find out
about new research.

All in all, this means that in fact we are facing another crisis,
which the pandemic has only brought more clearly into view.

I already addressed these issues in my last editorial, together
with some observations on the 8ECM congress, which was almost
entirely virtual with very few people actually physically present.
I received quite a lot of supportive feedback on that editorial.

Since these issues concern the future of our profession in a fun-
damental way, I believe that we need to begin this discussion here
and now. Please write to me what you think about the following
questions concerning the future:
1. After the pandemic, will we and should we return to the exact

same style of meetings, conferences, lectures, and publications
we had before the pandemic?

2. Does the community still need big international congresses
that cover the broad spectrum of all fields of mathematics?

3. Are there better ways to spread mathematical knowledge than
hundreds of new publications every day?

4. Do we need so many scientific prizes, and if we do, should they
exist for all age groups or mainly for the young?

Any further suggestions of important questions to add to this list
are also welcome. I plan to set up a discussion forum devoted to
these topics, and perhaps even to organise an online meeting.

With best wishes for a healthy fall and winter.

Volker Mehrmann
President of the EMS

Brief words from the editor-in-chief

Dear readers of the EMS Magazine,
With this issue, the first year of public-

ation of the EMS Magazine comes to an
end. Of course, our Magazine is a continu-
ation of the “old” Newsletter (as implied by
the numbering), but it is also in some ways
a brand-new publication, with a new look
and some new content. Even though some
parts are still in the process of fine-tuning,

I believe that the challenge of renewing the journal of the European
Mathematical Society has been largely successfully met.

In this issue, you can read many interesting articles, of which,
and in no way disparaging the other contributions, I would like
to highlight the interview with the 2021 Abel prize winners Avi
Wigderson and László Lovász by Bjorn Dundas and Christian Skau.

A regular feature of the Magazine (and of the Newsletter be-
fore it) that is almost coming to an end is the series of articles about
the history and current activities of EMS full member national so-
cieties. Indeed, with the article about the Bosnian Mathematical
Society in the current issue, almost all of these societies have had
the opportunity to present themselves to readers of the Magazine.
I therefore take advantage of this particular moment to publicly
thank all the national societies for their continuing support of the
European Mathematical Society in general, and of the Newsletter/
Magazine in particular.

Fernando Pestana da Costa
Editor-in-chief
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From Hilbert’s 13th problem to essential dimension and back

Zinovy Reichstein

1 Introduction

The problem of solving polynomial equations in one variable, i.e.,
equations of the form

f(x) = 0, where f(x) = xn + a1xn−1 +⋯+ an, (1)

goes back to ancient times. Here by “solving” I mean finding a pro-
cedure or a formula which produces a solution x for a given set of
coefficients a1,…, an. The terms “procedure” and “formula” are
ambiguous; to get a well-posed problem, we need to specify what
kinds of operations we are allowed to perform to obtain x from
a1,…,an. In the simplest setting, we are only allowed to perform
the four arithmetic operations: addition, subtraction, multiplication
and division. In other words, we are asking if the polynomial (1)
has a root x which is expressible as a rational function of a1,…,an.
For a general polynomial of degree n ⩾ 2, the answer is clearly
“no”; this was already known to the ancient Greeks. The focus then
shifted to the problem of “solving polynomials in radicals”, where
one is allowed to use the four arithmetic operations and radicals
of any degree. Here the mth radical (or root) of t is a solution to

xm − t = 0. (2)

Mathematicians attempted to solve polynomial equations this way
for centuries, but only succeeded for n = 1, 2, 3 and 4. It was
shown by Ruffini, Abel and Galois in the early 19th century that
a general polynomial of degree n ⩾ 5 cannot be solved in radicals.
This was a ground-breaking discovery. However, the story does not
end there.

Suppose we allow one additional operation, namely solving

x5 + tx+ t = 0. (3)

That is, we start with a1,…,an, and at each step, we are allowed
to enlarge this collection by adding one new number, which is
the sum, difference, product or quotient of two numbers in our
collection, or a solution to (2) or (3) for any t in our collection.
In 1786, Bring [16] showed that every polynomial equation of
degree 5 can be solved using these operations.

Note that the coefficients of (2) and (3) only depend on one
parameter t. Thus roots of these equations can be thought of as

”algebraic functions” of one variable. By contrast, the coefficients
of the general polynomial equation (1) depend on n independent
parameters a1,…,an. With this in mind, we define the resolvent
degree rd(f) of a polynomial f(x) in (1) as the smallest positive
integer r such that every root of f(x) can be obtained from a1,…,an
in a finite number of steps, assuming that at each step we are
allowed to perform the four arithmetic operations and evaluate
algebraic functions of r variables. Let us denote the largest possible
value of rd(f) by rd(n), as f(x) ranges over all polynomials of
degree n. The algebraic form of Hilbert’s 13th problem asks for
the value of rd(n).

The actual wording of the 13th problem is a little different:
Hilbert asked for the minimal integer r one needs to solve every
polynomial equation of degree n, assuming that at each step one
is allowed to perform the four arithmetic operations and apply
any continuous (rather than algebraic) function in r variables. Let
us denote the maximal possible resolvent degree in this setting
by crd(n), where “c” stands for “continuous”. Specifically, Hilbert
asked whether or not crd(7) = 3. In this form, Hilbert’s 13th prob-
lem was solved by Kolmogorov [37] and Arnold [1] in 1957.¹ They
showed that, contrary to Hilbert’s expectation, crd(n) = 1 for ev-
ery n. In other words, continuous functions in 1 variable are enough
to solve any polynomial equation of any degree. Moreover, any con-
tinuous function in n variables can be expressed as a composition
of functions of one variable and addition.

In spite of this achievement, Wikipedia lists the 13th problem as
“unresolved”. While this designation is subjective, it reflects the view
of many mathematicians that Hilbert’s true intention was to ask
about rd(n), not crd(n). They point to the body of work on rd(n)
going back centuries before Hilbert (see, e.g., [21]) and to Hilbert’s
own 20th century writings, where only rd(n) was considered (see,
e.g., [31]). Arnold himself was a strong proponent of this point of
view [13, pp. 45–46], [2].

Progress on the algebraic form of Hilbert’s 13th problem has
been slow. From what I said above, rd(n) = 1when n⩽ 5; this was

¹ Arnold was a 19 year old undergraduate student in 1957. He later said
that all of his numerous subsequent contributions to mathematics were,
in one way or another, motivated by Hilbert’s 13th problem; see [2].
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known before Hilbert and even before Galois. The value of rd(n)
remains open for every n ⩾ 6, and the possibility that rd(n) = 1
for every n has not been ruled out. The best known upper bounds
on rd(n) are of the form rd(n) ⩽ n− α(n), where α(n) is an un-
bounded but very slow growing function of n. The list of people
who have proved inequalities of this form includes some of the lead-
ing mathematicians of the past two centuries: Hamilton, Sylvester,
Klein, Hilbert, Chebotarev, Segre, Brauer. Recently, their methods
have been refined and their bounds sharpened by Wolfson [63],
Sutherland [60] and Heberle–Sutherland [30].

There is another reading of the 13th problem, to the effect that
Hilbert meant to allow global multi-valued continuous functions;
see [2, p. 613]. These behave in many ways like algebraic functions.
If we denote the resolvent degree in this sense by Crd(n), where
“C” stands for “global continuous”, then

1 = crd(n) ⩽ Crd(n) ⩽ rd(n) ⩽ n− α(n).

As far as I am aware, nothing else is known about Crd(n) or rd(n)
for n ⩾ 6.

On the other hand, in recent decades, considerable progress
has been made in studying a related but different invariant, the
essential dimension.² Joe Buhler and I [14] introduced this notion
in the late 1990s. In special instances, it came up earlier, e.g., in the
work of Kronecker [38], Klein [35], Chebotarev [15], Procesi [48]³
and Kawamata [34]⁴. Our focus in [14] was on polynomials and
field extensions. It later became clear that the notion of essential
dimension is of interest in other contexts: quadratic forms, central
simple algebras, torsors, moduli stacks, representations of groups
and algebras, etc. In each case, it poses new questions about
the underlying objects and occasionally leads to solutions of pre-
existing open problems.

This paper has two goals. The first is to survey some of the
research on essential dimension in Sections 2–7. This survey is
not comprehensive; it is only intended to convey the flavor of the
subject and sample some of its highlights. My second goal for this
paper is to define the notion of resolvent degree of an algebraic
group in Section 8, building on the work of Farb and Wolfson [25]
but focusing on connected, rather than finite groups. The quantity
rd(n) defined above is recovered in this setting as rd(Sn). For more
comprehensive surveys of essential dimension and resolvent degree,
see [41,51] and [25], respectively.

² The term “essential dimension” was coined by Joe Buhler. The term
“resolvent degree” was introduced by Richard Brauer in [8].
³ Procesi asked about the minimal number of independent parameters
required to define a generic division algebra of degree n. In modern
terminology, this number is the essential dimension of the projective
linear group PGLn.

⁴ Kawamata defined an invariant Var(f) of an algebraic fiber space
f ∶ X → S, which he informally described as “the number of moduli of
fibers of f in the sense of birational geometry”. In modern terminology,
Var(f) is the essential dimension of f.

2 Essential dimension of a polynomial

Let k be a base field, K be a field containing k and L be a finite-
dimensional K-algebra (not necessarily commutative, associative or
unital). We say that L descends to an intermediate field k ⊂ K0 ⊂ K
if there exists a finite-dimensional K0-algebra L0 such that L =
L0 ⊗K0 K. Equivalently, recall that, for any choice of an K-vector
space basis e1,…, en of L, one can encode multiplication in L into
the n3 structure constants chij ∈ K given by eiej =∑n

h=1 c
h
ijeh. Then

L descends to K0 ⊂ K if and only if there exists a basis e1,…,en such
that all of the structure constants ehij with respect to this basis lie
in K0. The essential dimension edk(L/K) is defined as the minimal
value of the transcendence degree trdegk(K0), where L descends
to K0. If the reference to the base field k is clear from the context,
we will write ed in place of edk.

If f(x) = xn + a1xn−1 + ⋯ + an is a polynomial over K, for
some a1,…, an, as in (1), we define edk(f) as edk(L/K), where
L = K[x]/(f(x)). Note that if f(x) (or equivalently, L) is separable
over K, then L descends to K0 if and only if there exists an element
y∈ L which generates L as an K-algebra and such that the minimal
polynomial g(y) = yn + b1yn−1 +⋯+ bn of y lies in K0[y].

In classical language, the passage from f(x) to g(y) is called
a Tschirnhaus transformation. Note that

y = c0 + c1x+⋯+ cn−1xn−1 (4)

for some c0,c1,…,cn−1 ∈ K. Here x∈ L is xmodulo (f(x)). Tschirn-
haus’ strategy for solving polynomial equations in radicals by
induction on degree was to transform f(x) to a simpler polyno-
mial g(y), find a root of g(y) and then recover a root of f(x)
from (4) by solving a polynomial equation of degree⩽ n− 1. In his
1683 paper [62], Tschirnhaus successfully implemented this strat-
egy for n = 3 but made a mistake in implementing it for higher n.
Tschirnhaus did not know that a general polynomial of degree ⩾ 5
cannot be solved in radicals or that his method for solving cubic
polynomials had been discovered by Cardano a century earlier.

Let us denote the maximal value of ed(f) taken over all field ex-
tensions K/k and all separable polynomials f(x) ∈ K[x] of degree n
by edk(n). Kronecker [38] and Klein [35] showed that

edℂ(5) = 2. (5)

This classical result is strengthened in [14] as follows.

Theorem 1. Assume char(k) ≠ 2. Then edk(1) = 0,

edk(2) = edk(3) = 1, edk(4) = edk(5) = 2, edk(6) = 3

and edk(n+ 2) ⩾ edk(n) + 1 for every n ⩾ 1. In particular,

⌊n
2
⌋ ⩽ edk(n) ⩽ n− 3 (6)

for every n ⩾ 5.

EMS MAGAZINE 122 (2021) 5



I recently learned that a variant of the inequality edℂ(n) ⩾ ⌊ n2 ⌋
was known to Chebotarev [15] as far back as 1943.

The problem of finding the exact value of ed(n)may be viewed
as being analogous to Hilbert’s 13th problem with rd(n), crd(n)
or Crd(n) replaced by ed(n). Since Hilbert specifically asked about
rd(7), the case where n = 7 is of particular interest.

Theorem 2 (Duncan [23]). If char(k) = 0, then edk(7) = 4.

The proof of Theorem 2 relies on the same general strategy
as Klein’s proof of (5); I will discuss it further it in Section 6. Com-
bining Theorem 2 with the inequality edk(n + 2) ⩾ edk(n) + 1
from Theorem 1, we can slightly strengthen (6) in characteristic 0
as follows:

⌊n+ 1
2

⌋ ⩽ ed(n) ⩽ n− 3 for every n ⩾ 7. (7)

Beyond (7), nothing is known about edℂ(n) for any n ⩾ 8. I will
explain where I think the difficulty lies in Section 5.

Analogous questions can be asked about polynomials that are
not separable, assuming char(k) = p> 0. In this setting, the role of
the degree is played by the “generalized degree” (n, e). Here n =
[S ∶ K], where S is the separable closure of K in L= K[x]/(f(x)) and
e=(e1,…,er) is the so-called type of the purely inseparable algebra
L/S defined as follows. Given x ∈ L, let us define the exponent
exp(x, S) to be the smallest integer e such that xp

e ∈ S. Then e1 is
the largest value of exp(x, S) as x ranges over L. Choose an x1 ∈ L
of exponent e1, and define e2 as the largest value of exp(x, S[x1]).
Now choose x2 ∈ L of exponent e2, and define e3 as the largest
value of exp(x, S[x1, x2]), etc. We stop when S[x1,…, xr] = L.
By a theorem of Pickert, the resulting integer sequence e1,…, er
satisfies e1 ⩾⋯⩾ er ⩾ 1 and does not depend on the choice of the
elements x1,…, xr. One can now define edk(n, e) by analogy with
edk(n): edk(n, e) is the maximal value of edk(f), as K ranges over
all field extension of k and f(x) ∈ K[x] ranges over all polynomials
of generalized degree (n, e). Surprisingly, the case where e ≠ Ø
(i.e., the polynomials f(x) in question are not separable) turns out
to be easier. We refer the reader to [53], where an exact formula
for ed(n, e) is obtained.

3 Essential dimension of a functor

Following Merkurjev [6], we will now define essential dimension for
a broader class of objects, beyond polynomials or finite-dimensional
algebras. Let k be a base field, which we assume to be fixed
throughout, and ℱ be a covariant functor from the category of
field extensions K/k to the category of sets. Any object α ∈ ℱ(K)
in the image of the natural (“base change”) map ℱ(K0) → ℱ(K)
is said to descend to K0. The essential dimension edk(α) is defined
as the minimal value of trdegk(K0), where the minimum is taken
over all intermediate fields k ⊂ K0 ⊂ K such that α descends to K0.

For example, consider the functor Assn of n-dimensional asso-
ciative algebras given by

Assn(K) = {n-dimensional associative K-algebras,
up to K-isomorphism}.

For A ∈ Assn(K), the new definition of edk(A) is the same as
the definition in the previous section. Recall that, after choosing
a K-basis for A, we can describe A completely in terms of the n3

structure constants chij . In particular, A descends to the subfield
K0 = k(chij) of K, and consequently, edk(A) ⩽ n3.

Another interesting example is the functor of non-degenerate
n-dimensional quadratic forms,

Quadn(K) = {non-degenerate quadratic forms on Kn,
up to K-isomorphism}.

For simplicity, let us assume that the base field k is of characteristic
different from 2. Under this assumption, a quadratic form q on Kn

is the same thing as a symmetric bilinear form b. One passes back
and forth between q and b using the formulas

q(v) = b(v, v) and b(v,w) = q(v+w) − q(v) − q(w)
2

for any v,w ∈ Kn. The form q (or equivalently, b) is called degener-
ate if the linear form b(v,∗) is identically zero for some 0≠ v∈ Kn.
A variant of the Gram–Schmidt process shows that there exists an
orthogonal basis of Kn with respect to b. In other words, in some
basis e1,…, en of Kn, q can be written as

q(x1e1 +⋯+ xnen) = a1x21 +⋯+ anx2n

for some a1,…, an in K. In particular, we have that q descends
to K0 = k(a1,…, an), and thus edk(q) ⩽ n. Note that q is non-
degenerate if and only if a1,…,an ≠ 0.

Yet another interesting example is provided by the functor of
elliptic curves,

Ell(K) = {elliptic curves over K, up to K-isomorphism}.

For simplicity, assume that char(k) ≠ 2 or 3. Then every elliptic
curve X over K is isomorphic to the plane curve cut out by a Weier-
strass equation y2 = x3 + ax + b for some a, b ∈ K. Hence, X
descends to K0 = k(a,b) and ed(X) ⩽ 2.

Informally, we think of ℱ as specifying the type of algebraic
object under consideration (e.g., algebras or quadratic forms or
elliptic curves), ℱ(K) as the set of objects of this type defined
over K, and edk(α) as the minimal number of parameters required
to define α. In most cases, essential dimension varies from object
to object, and it is natural to consider what happens under a “worst
case scenario”, i.e., how many parameters are needed to define
the most general object of a given type. This number is called the
essential dimension of the functor ℱ. That is,

edk(ℱ) = sup
K,α

edk(α),

6 EMS MAGAZINE 122 (2021)



as K varies over all fields containing k and α varies over ℱ(K).
Note that edk(ℱ) can be either a non-negative integer or ∞. In
particular, the arguments above yield

ed(Assn) ⩽ n3, ed(Quadn) ⩽ n and ed(Ell) ⩽ 2.

One can show that the last two of these inequalities are, in fact,
sharp. The exact value of ed(Assn) is unknown for most n; however,
for large n,

ed(Assn) = 4n3/27+ O(n8/3).

Similarly,

ed(Lien) = 2n3/27+ O(n8/3),

ed(Commn) = 2n3/27+ O(n8/3),

where Lien and Commn are the functors of n-dimensional Lie al-
gebras and commutative algebras, respectively. These formulas
are deduced from the formulas for the dimensions of the vari-
eties of structure constants for n-dimensional associative, Lie and
commutative algebras due to Neretin [44].⁵

This brings us to the functor H1(∗,G), where G is an algebraic
group defined over k. The essential dimension of this functor is
a numerical invariant of G. This invariant has been extensively
studied; it will be our main focus in the next section. The functor
H1(∗,G) associates to a field K/k, the set H1(K,G) of isomorphism
classes of G-torsors T over K. Recall that a G-torsor over T over K is
an algebraic variety with a G-action defined over K such that, over
the algebraic closure K, T becomes equivariantly isomorphic to G
acting on itself by left translations. If T has a K-point x, then G → T
taking g to g ⋅ x is, in fact, an isomorphism over K. In this case,
the torsor T is called “trivial” or “split”. The interesting (non-trivial)
torsors over K have no K-points. For example, if G = C2 is a cyclic
group of order 2 and char(k) ≠ 2, then every C2-torsor is of the
form Ta, where Ta is the subvariety of 𝔸1 cut out by the quadratic
equation x2 − a = 0 for some a ∈ K. Informally, Ta is a pair of
points (roots of this equation) permuted by C2; it is split if and only if
these points are defined over K (i.e., a is a complete square in K). In
fact, H1(K,C2) is in bijective correspondence with K∗/(K∗)2 given
by Ta ↦ a mod (K∗)2, where K∗ is the multiplicative group of K.
Note that, in this example, H1(K,G) is, in fact, a group. This is the
case whenever G is abelian. For a non-abelian algebraic group G,
H1(K,G) carries no natural group structure; it is only a set with
a marked element (the trivial torsor).

For many linear algebraic groups G, the functor H1(∗,G) pa-
rametrizes interesting algebraic objects. For example, when G is
the orthogonal group On, H1(∗,On) is the functor Quadn we

⁵ Note the resemblance of these asymptotic formulas to the classical
theorem of Higman and Sims, which assert that the number
of finite p-groups of order pn (up to isomorphism) is asymptotically
p2n

3/27+O(n8/3). This is not an accident; see [45].

considered above. When G is the projective linear group PGLn,
H1(K, PGLn) is the set of isomorphism classes of central simple
algebras of degree n over K. When G is the exceptional group of
type G2, H1(K,G2) is the set of isomorphism classes of octonion
algebras over K.

4 Essential dimension of an algebraic group

The essential dimension of the functor H1(∗,G) is abbreviated as
edk(G). Here G is an algebraic group defined over k. This number
is always finite if G is linear but may be infinite if G is an abelian
variety [12]. If G is the symmetric group Sn, then

edk(Sn) = edk(n), (8)

where edk(n) is the quantity we defined and studied in Section 2.
Indeed, H1(K, Sn) is the set of étale algebras L/K of degree n.
Étale algebras of degree n are precisely the algebras of the form
K[x]/(f(x)), where f(x) is a separable (but not necessarily irre-
ducible) polynomial of degree n over K. Thus (8) is just a restatement
of the definition of edk(n).

Another interesting example is the general linear group G =
GLn. Elements of H1(K,GLn) are the n-dimensional vector spaces
over K. Since there is only one n-dimensional K-vector space up
to K-isomorphism, we see that H1(K,GLn) = {1}. In particular,
every object of H1(K,GLn) descends to k, and we conclude that
edk(GLn) = 0. I will now give a brief summary of three methods
for proving lower bounds on edk(G) for various linear algebraic
groups G.

4.1 Cohomological invariants
Let ℱ be a covariant functor from the category of field extensions
K/k to the category of sets, as in the previous section. A cohomo-
logical invariant of degree d for ℱ is a morphism of functors

ℱ → Hd(∗,M)

for some discrete Gal(k)-module M. In many interesting examples,
M = μm is the module of mth roots of unity with a natural Gal(k)-
action (trivial if k contains a primitive m-th root of unity). The
following observation is due to J.-P. Serre.

Theorem 3. Assume that the base field k is algebraically closed. If
ℱ has a non-trivial cohomological invariant ℱ → Hd(∗,M), then
edk(ℱ) ⩾ d.

The proof is an immediate consequence of the Serre vanishing
theorem. Cohomological invariants of an algebraic group G (or
equivalently, of the functor H1(∗,G)) were introduced by Serre and
Rost in the early 1990s, and have been extensively studied since
then; see [57]. These invariants give rise to a number of interesting
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lower bounds on edk(G) for various groups G; in particular,
(i) ed(On) ⩾ n,
(ii) ed(SOn) ⩾ n− 1 for every n ⩾ 3,
(iii) ed(G2) ⩾ 3,
(iv) ed(F4) ⩾ 5,
(v) ed(Sn) ⩾ ⌊ n2 ⌋.
Inequalities (i), (ii) and (iii) turn out to be exact; (iv) is best known,
and (v) is best known for even n; see (7).

4.2 Finite abelian subgroups
Theorem 4. Let G be a reductive group over k and A be a finite
abelian subgroup of G of rank r.
(a) [55] Assume char(k) = 0. If the centralizer CG(A) is finite, then

ed(G) ⩾ r.
(b) [29] Assume char(k) does not divide |A|. If G is connected

and the dimension of the maximal torus of CG(A) is d, then
ed(G) ⩾ r− d.

Note that both parts are vacuous if A lies in a maximal torus T
of G. Indeed, in this case, the centralizer CG(A) contains T, so
d ⩾ r. In other words, only non-toral finite abelian subgroups A
of linear algebraic groups are of interest here. These have been
much studied and catalogued, starting with the work of Borel
in the 1950s. Theorem 4 yields the best known lower bound on
ed(G) in many cases, such as ed(E7) ⩾ 7 and ed(E8) ⩾ 9, where
E7 denotes the split simply connected exceptional group of type E7
and similarly for E8.

4.3 The Brauer class bound
Consider a linear algebraic group G defined over our base field k.
Suppose G fits into a central exact sequence of algebraic groups
(again, defined over k)

1 → D → G → G → 1,

where D is diagonalizable over k. For every field extension K/k, this
sequence gives rise to the exact sequence of pointed sets

H1(K,G) → H1(K,G)
∂
→ H2(K,D).

Every element α ∈ H2(K,D) has an index, ind(α), defined as fol-
lows. If D≃𝔾m, then α is a Brauer class over K, and ind(α) denotes
the Schur index of α, as usual. In general, we consider the charac-
ter group X(D) whose elements are homomorphisms x ∶ D → 𝔾m.
Note that X(D) is a finitely generated abelian group and each
character x ∈ X(D) induces a homomorphism

x∗ ∶ H2(K,D) → H2(K,𝔾m).

The index of α ∈ H2(K,D) is defined as the minimal value of

ind(x1)∗(α) +⋯+ ind(xr)∗(α)

as {x1,…, xr} ranges over generating sets of X(D). Here each
(xi)∗(α) lies in H1(K,𝔾m), and ind(xi)∗(α) denotes its Schur in-
dex, as above. We now define ind(G,D) as the maximal index of
α ∈ ∂(H1(K,G)) ⊂ H2(K,D), where the maximum is taken over
all field extensions K/k, as α ranges over the image H1(K,G) in
H2(K,D).

Theorem 5.
(a) ind(G,D) is the greatest common divisor of dim(ρ), where ρ

ranges over the linear representations of G over k such that
the restriction ρ|D is faithful.

(b) Let p be a prime different from char(k). Assume that the
exponent of every element of H2(K,D) in the image of

∂∶ H1(K,G) → H2(K,D)

is a power of p for every field extension K/k. (This is automatic
if D is a p-group.) Then edk(G) ⩾ ind(G,D) − dim(G).

Part (a) is known as Merkurjev’s index formula. The inequality of
part (b) is based on Karpenko’s incompressibility theorem. Part (b)
first appeared in [9] in the special case where D = 𝔾m or μpr and
in [26] in an even more special case, where D = μp. It was proved
in full generality in [33].

Theorem 5 is responsible for some of the strongest results in
this theory, including the exact formulas for the essential dimension
of a finite p-group (Theorem 6 below), the essential p-dimension
of an algebraic torus, and the essential dimension of spinor groups
Spinn. The latter turned out to increase exponentially in n:

ed(Spinn) ⩾ 2⌊(n−1)/2⌋ − n(n− 1)
2

. (9)

This inequality was first proved in [9]. The exact value of ed(Spinn)
subsequently got pinned down in [10,18] in characteristic 0, [28]
in characteristic p ≠ 2 and [61] in characteristic 2. When n ⩾ 15,
inequality (9) is sharp for n ≢ 0 modulo 4, and is off by 2ν2(n)

otherwise. Here 2ν2(n) is the largest power of 2 dividing n.
The exponential growth of ed(Spinn) came as a surprise. Prior

to [9], the best known lower bounds on ed(Spinn) were linear
(see [19, Section 7]), on the order of n

2 . Moreover, the exact values
of ed(Spinn) for n ⩽ 14 obtained by Rost and Garibaldi [27] ap-
peared to suggest that these linear bounds should be sharp. The
fact that ed(Spinn) increases exponentially in n has found inter-
esting applications in the theory of quadratic forms. For details,
see [10,18].

5 Essential dimension at p

Once again, fix a base field k, and letℱ be a covariant functor from
the category of field extensions K/k to the category of sets. The
essential dimension edk(α;p) of an object α ∈ ℱ(K) at a prime p
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is defined as the minimal value of edk(α′;p), where the minimum
ranges over all finite field extensions K ′/K of degree prime to p and
α′ denotes the image of α under the natural map ℱ(K) → ℱ(K ′).
Finally, the essential dimension edk(ℱ;p) of ℱ at p is the maximal
value of edk(α), as K ranges over all fields containing k and α ranges
overℱ(K). Whenℱ=H1(∗,G) for an algebraic groupG, we write
edk(G;p) in place of edk(ℱ;p). Once again, if the reference to the
base field is clear from the context, we will abbreviate edk as ed.
By definition, ed(α;p) ⩽ ed(α) and ed(ℱ;p) ⩽ ed(ℱ).

The reason to consider ed(ℱ; p) in place of ed(ℱ) is that
the former is often more accessible. In fact, most of the meth-
ods we have for proving a lower bound on edk(α) (respectively,
edk(ℱ)) turn out to produce a lower bound on edk(α;p) (respec-
tively, edk(ℱ;p)) for some prime p. For example, the lower bound
in Theorem 5 (b) is really edk(G;p) ⩾ ind(G,D) − dim(G). In The-
orem 4, one can usually choose A to be a p-group, in which case
the conclusion can be strengthened to ed(G;p) ⩾ r in part (a) and
ed(G;p) ⩾ r− d in part (b). In Theorem 3, ifM is p-torsion (which
can often be arranged), then ed(G;p) ⩾ d.

This is a special case of a general meta-mathematical phe-
nomenon: many problems concerning algebraic objects (such as
finite-dimensional algebras or polynomials or algebraic varieties)
over fields K can be subdivided into two types. In type 1 problems,
we are allowed to pass from K to a finite extension K ′/K of degree
prime to p, for one prime p, whereas in type 2 problems this is not
allowed. For example, given an algebraic variety X defined over K,
deciding whether or not X has a 0-cycle of degree 1 is a type 1
problem (it is equivalent to showing that there is a 0-cycle of degree
prime to p, for every prime p), whereas deciding whether or not X
has a K-point is a type 2 problem. As I observed in [51, Section 5],
most of the technical tools we have are tailor-made for type 1 prob-
lems, whereas many long-standing open questions across several
areas of algebra and algebraic geometry are of type 2.

In the context of essential dimension, the problem of comput-
ing ed(G;p) for a given algebraic group G and a given prime p is
of type 1, whereas the problem of computing ed(G) is of type 2.
For simplicity, let us assume that G is a finite group. In this case,
edk(G; p) = edk(Gp; p), where Gp is the Sylow p-subgroup of G.
In other words, the problem of computing edk(G; p) reduces to
the case where G is a p-group. In this case, we have the following
remarkable theorem of Karpenko and Merkurjev [32].

Theorem 6. Let p be a prime and k be a field containing a primitive
pth root of unity. Then, for any finite p-group P,

edk(P) = edk(P;p) = rdimk(P),

where rdimk(P) denotes the minimal dimension of a faithful rep-
resentation of P defined over k.

Theorem 6 reduces the computation of edk(G;p) to rdimk(Gp).
For a given finite p-group P, one can often (though not always)

compute rdimk(P) in closed form using the machinery of character
theory; see, e.g., [3,36,42,43].

The situation is quite different when computing edk(G) for an
arbitrary finite group G. Clearly, edk(G) ⩾ maxp edk(G;p), where
p ranges over the prime integers. In those cases, where edk(G)
is strictly larger than maxp edk(G;p), the exact value of edk(G) is
usually difficult to establish. The only approach that has been suc-
cessful to date relies on classification results in algebraic geometry,
which are currently only available in low dimensions. I will return
to this topic in the next section.

To illustrate the distinction between type 1 and type 2 problems,
consider the symmetric group G = Sn. For simplicity, assume that
k = ℂ is the field of complex numbers. Here the type 1 problem
is solved completely: edℂ(Sn; p) = ⌊ np ⌋ for every prime p. Thus
maxp edℂ(Sn;p) = ⌊ n2 ⌋, and (7) tells us that

edℂ(Sn) > max
p

edℂ(G;p) for every odd n ⩾ 7.

The remaining type 2 problem is to bridge the gap between ⌊ n2 ⌋
and the true value of edℂ(Sn). This problem has only been solved
for n ⩽ 7; see Theorems 1, 2 and (8).

Note that the algebraic form of Hilbert’s 13th problem is also
of type 2 in the sense that

rd(f;p) ⩽ 1 (10)

for any prime p, every field K and every separable polynomial
f(x) ∈ K[x].⁶ Indeed, denote the Galois group of f(x) by G. Then,
after passing from K to a finite extension K ′/K whose degree
[K ′ ∶ K] = [G ∶ Gp] is prime to p, we may replace G by its p-Sylow
subgroup Gp. Since every p-group is solvable, this means that f(x)
becomes solvable in radicals over K ′, and hence its resolvent degree
becomes ⩽ 1, as desired.

Inequality (10) accounts, at least in part, for the difficulty of
showing that rd(n)⩾ 2 for any n. The methods used to prove lower
bounds on the essential dimension of algebraic groups in Section 4,
and anything resembling these methods, cannot possibly work
here; otherwise, we would also be able to prove that rd(f;p) ⩾ 2
for some prime p, contradicting (10).

A similar situation arises in computing the essential dimension
of a finite p-group G over a field k of characteristic p. Superfi-
cially this problem looks very different from Hilbert’s 13th problem
(where one usually works over k = ℂ); the common feature is
that both are type 2 problems. Indeed, it is shown in [54] that
edk(G;p) = 1 for every non-trivial p-group G. Using the method
described in the next section, one can often show that edk(G) ⩾ 2,
but we are not able to prove that edk(G) > 2 for any p-group G
and any field k of characteristic p. On the other hand, Ledet [39]

⁶ For the precise definitions of rd(f) and rd(f;p), see Section 8.
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conjectured that

edk(Cpn) = n (11)

for any prime p and any infinite field k of characteristic p. Here
Cpn denotes the cyclic group of order pn. Ledet showed that
edk(Cpn) ⩽ n for every n ⩾ 1 and that equality holds when n ⩽ 2.

My general feeling is that type 2 problems arising in different
contexts are linked in some way, and that solving one of them
(e.g., proving Ledet’s conjecture) can shed light on the others
(e.g., Hilbert’s 13th problem). The only bit of evidence I have in
this direction is the following theorem from [11] linking a priori
unrelated type 2 problems in characteristic p and in characteristic 0.

Theorem 7. Let p be a prime and G be a finite group satisfying
the following conditions:
(i) G does not have a non-trivial normal p-subgroup, and
(ii) G has an element of order pn.
If Ledet’s conjecture (11) holds, then edℂ(G) ⩾ n.

The following family of examples is particularly striking. Let p be
a prime and n a positive integer. Choose a positive integer m such
that q = mpn + 1 is a prime. Note that, by Dirichlet’s theorem on
primes in arithmetic progressions, there are infinitely many such m.
Let Cq be a cyclic group of order q. Then Aut(Cq) is cyclic of order
mpn; let Cpn ⊆ Aut(Cq) denote the unique subgroup of order pn.
Applying Theorem 7 to G = Cq ⋊ Cpn, we obtain the following.

Corollary 8. If Ledet’s conjecture (11) holds, then

edℂ(Cq ⋊ Cpn) ⩾ n.

Note that, since the Sylow subgroups of Cq ⋊ Cpn are all cyclic,

edℂ(Cq ⋊ Cpn; l) ⩽ 1

for every prime l, so the inequality of Corollary 8 is a type 2 result.
An unconditional proof of this inequality or even of the weaker in-
equality edℂ(Cq ⋊ Cpn) > 3 is currently out of reach for any specific
choice of q and pn.

6 Essential dimension and the Jordan property

An alternative (equivalent) definition of essential dimension of
a finite group G is as follows. An action of G on an algebraic variety
X is said to be linearizable if there exists a G-equivariant dominant
rational map V ⇢ X for some linear representation G → GL(V).
Then edk(G) is the minimal value of dim(X), as X ranges over
all linearizable varieties with a faithful G-action defined over k.
In particular, edk(G) ⩽ rdimk(G), where rdimk(G) is the minimal
dimension of a faithful linear representation of G over k, as in
Theorem 6.

This geometric interpretation of edk(G) can sometimes be used
to prove lower bounds on ed(G) by narrowing the possibilities
for X and ruling them out one by one using Theorem 4 (a). For the
remainder of this section, I will assume that G is a finite group and
the base field k is the field of complex numbers and will write ed
in place of edℂ.

Suppose ed(G) = 0. Then X is a single point, and only the trivial
group can act faithfully on a point. Thus ed(G) = 0 if and only if
G is the trivial group.

Now suppose ed(G) = 1. Then X is a curve with a dominant
map V⇢ X. By Lüroth’s theorem, X is birationally isomorphic to ℙ1

and thus G is a subgroup of PGL2. Finite subgroups of PGL2 were
classified by Klein [35]. Here is a complete list: cyclic groups Cn and
dihedral groups Dn for every n, A4, S4 and A5. Theorem 4 (a) rules
out the groups on this list which contain A = C2 × C2. We thus
obtain the following.

Theorem 9 ([14, Theorem 6.2]). Let G be a finite group. Then
ed(G) = 1 if and only if G is either cyclic or odd dihedral.

To classify groups of essential dimension d (or more realistically,
show that ed(G)> d for a particular finite group G) in a similar man-
ner, we need a classification of finite subgroups of Bir(X), extending
Klein’s classification of finite subgroups in Bir(ℙ1). Here X ranges
over the unirational complex varieties of dimension d, and Bir(X)
denotes the groups of birational automorphisms of X. In dimen-
sion 2, every unirational variety is rational, so we are talking about
classifying finite subgroups of the Cremona group Bir(ℙ2). Such
a classification exists, though it is rather complicated; see [22]. Serre
used this approach to show that ed(A6)=3 (see [59, Theorem 3.6]).
Again, this is a type 2 phenomenon since maxp ed(A6; p) = 2.
Duncan [24] subsequently extended Serre’s argument to a full
classification of finite groups of essential dimension 2.

In dimension 3, there is the additional complication that uni-
rational complex varieties do not need to be rational. Here only
a partial analogue of Klein’s classification exists, namely the classi-
fication of rationally connected 3-folds with the action of a finite
simple group G, due to Prokhorov [49]. Duncan used this classi-
fication to prove Theorem 2. More specifically, he showed that
ed(S7) = ed(A7) = 4; see (8). Subsequently, Beauville [4] showed
that the only finite simple groups of essential dimension 3 are A6

and possibly PSL2(𝔽11).⁷
In dimension d ⩾ 4, even a partial analogue of Klein’s classi-

fication of finite subgroups of Bir(ℙ1) is out of reach. However,
a recent break-through in Mori theory gives us a new insight into
the asymptotic behavior of ed(Gn) for certain infinite sequences
G1,G2,… of finite groups. Recall that an abstract group Γ is called
Jordan if there exists an integer j (called a Jordan constant of Γ)
such that every finite subgroup G ⊂ Γ has a normal abelian sub-

⁷ It is not known whether the essential dimension of PSL2(𝔽11) is 3 or 4.
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group A of index [G ∶ A] ⩽ j. This definition, due to Popov [46],
was motivated by the classical theorem of Camille Jordan which
asserts that GLn(ℂ) is Jordan, and by a theorem of Serre [58] which
asserts that the Cremona group Bir(ℙ2) is also Jordan. The follow-
ing result, due to Prokhorov, Shramov and Birkar⁸, is a far-reaching
generalization of Serre’s theorem.

I will say that a collection of abstract groups is uniformly Jordan
if they are all Jordan with the same constant.

Theorem 10. Fix d ⩾ 1. Then the groups Bir(X) are uniformly Jor-
dan, as X ranges over d-dimensional rationally connected complex
varieties.

Unirational varieties are rationally connected. The converse is
not known, though it is generally believed to be false. Rationally
connected varieties naturally arise in the context of Mori theory, and
we are forced to consider them even if we are only really interested
in unirational varieties. Note that Theorem 10 does not become
any easier to prove if one requires X to be unirational. In fact, prior
to Birkar [7] (respectively, prior to Prokhorov–Shramov [49]), it was
an open question, due to Serre [58, Section 6], whether for each
d⩾ 4 (respectively, for d= 3) there exists even a single finite group
which does not embed into Bir(ℙd).⁹

Now observe that, while every finite group is obviously Jordan,
being uniformly Jordan is a strong condition on a sequence of finite
groups

G1,G2,G3,…. (12)

Suppose sequence (12) is chosen so that no infinite subsequence
is uniformly Jordan. Then we claim that

lim
n→∞

ed(Gn) = ∞. (13)

Indeed, if ed(Gn)= d, then there exists a d-dimensional linearizable
variety X with a faithful Gn-action. In particular, Gn is contained in
Bir(X). Since X is linearizable, it is unirational and hence rationally
connected. On the other hand, since no infinite subsequence of (12)
is uniformly Jordan, Theorem 10 tells us that there are at most
finitely many groups Gn with ed(Gn) = d, and (13) follows. Here
is an interesting family of examples.

Theorem 11. For each positive integer n, let Cn be a cyclic group
of order n and Hn be a subgroup of Aut(Cn). If limn→∞|Hn| = ∞,
then limn→∞ ed(Cn ⋊ Hn) = ∞.

⁸ Prokhorov and Shramov [50] proved this theorem assuming the
Borisov–Alexeev–Borisov (BAB) conjecture. The BAB conjecture was
subsequently proved by Birkar [7].

⁹ For the current status of Serre’s questions from [58, Section 6],
see [47, Section 3].

Note that this method does not give us any information about
ed(Cn ⋊ Hn) for any particular choice of n and of Hn ⊂ Aut(Cn).
For example, while Theorem 11 tells us that

edℂ(Cp ⋊ Aut(Cp)) > 10

for all but finitely many primes p, it does not allow us to exhibit
a specific prime for which this inequality holds. The reason is that,
when d > 3, a specific Jordan constant for the family of groups
Bir(X) in Theorem 10 is out of reach. In particular, an unconditional
proof of Corollary 8 along these lines does not appear feasible.
Nevertheless, Theorem 11 represents a big step forward: previously,
it was not even known that edℂ((Cp) ⋊ Aut(Cp)) > 3 for any
prime p.

A classification of the subgroups of Bir(X), as X ranges over the
unirational varieties of dimension d is a rather blunt instrument. It
would be preferable to find some topological or algebro-geometric
obstruction to the existence of a linearization map V ⇢ X, which
can be read off from the G-variety X without enumerating all
the possibilities for X. Unfortunately, all known obstructions of
this sort are of type 1: they do not distinguish between domi-
nant rational maps V ⇢ X and correspondences V ⇝ X of degree
prime to p, for a suitable prime p and thus cannot help us if
ed(G) > maxp ed(G;p).

Another draw-back of this method is that, as we mentioned in
the previous section, beyond dimension 1,¹⁰ none of the classifica-
tion theorems we need are available in prime characteristic.

7 Essential dimension of a representation

7.1 Representations of finite groups in characteristic 0
Let G be a finite group of exponent e, k be a field of characteristic 0,
K/k be a field extension, ρ∶ G → GLn(K) be a representation of G,
and χ ∶ G → K be the character of ρ. Can we realize ρ over k?
In other words, is there a representation ρ′ ∶ G → GL(k) such
that ρ and ρ′ are equivalent over K? A celebrated theorem of
Richard Brauer asserts that the answer is “yes” as long as k contains
a primitive root of unity of degree e. If it does not, there is a classical
way to quantify how far ρ is from being definable over k via the
Schur index, at least in the case where ρ is absolutely irreducible
and the character value χ(g) lies in k for every g ∈ G. The Schur
index of ρ is defined as the index of the envelope

Envk(ρ) ∶= Spank{ρ(g) ∣ g ∈ G} ⊂ Matn(K)

which, under our assumptions on ρ, is a central simple algebra
of degree n over k. The Schur index of ρ is equal to the minimal
degree [l ∶ k] of a field extension l/k such that ρ can be realized
over l.

¹⁰ Groups of essential dimension 1 have been classified over an arbitrary
field k; see [20,40]. Recall that Theorem 9 assumes that k = ℂ.
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The essential dimension edk(ρ) gives us a different way to
quantify how far ρ is from being definable over k. Here we do not
need to assume that ρ is irreducible or that its character values lie
in k. We simply think of ρ as an object of the functor

RepG ∶ K ↦ {K-representations of G, up to K-isomorphism}.

The naive upper bound on ed(ρ) is rn2, where n is the dimension
of ρ and r is the minimal number of generators of G. Indeed, if
G is generated by r elements g1,…, gr and ρ(gh) is the n × n
matrix (ah

ij), then ρ descends to the field

K0 = k(ah
ij ∣ i, j = 1,…,n; h = 1,…, r)

of transcendence degree at most rn2 over k. It is shown in [32] that,
in fact, ed(ρ) ⩽ n2/4 and, moreover, ed(RepG) ⩽ |G|/4. We have
also proved lower bounds on edk(ρ) in many cases (for details,
see [32]). Note that these are quite delicate: by Brauer’s theorem,
edk(G) = 0 as long as k contains suitable roots of unity.

7.2 Representations of finite groups in positive characteristic
Here the situation is entirely different.

Theorem 12 ([5, 32]). Let G be a finite group, k be a field of
characteristic p > 0 and Gp be the Sylow p-subgroup of G. Then

edk(RepG) =
⎧
⎨
⎩

0 if Gp is cyclic,

∞ otherwise.

Note that, by a theorem of Higman, in characteristic p, Gp is
cyclic if and only if the group algebra kG is of finite representation
type, i.e., if and only if kG (or equivalently, G) has only finitely
many indecomposable representations. Since kG is always of finite
representation type in characteristic 0, we obtain the following.

Corollary 13. Let G be a finite group and k be a field of arbitrary
characteristic. Then
• edk(RepG) < ∞ if kG is of finite representation type, and
• edk(RepG) = ∞ otherwise.

7.3 Representations of algebras
For simplicity, let us assume that the base field k is algebraically
closed. A celebrated theorem of Drozd asserts that every finite-
dimensional k-algebra A falls into one of three categories: (a) finite
representation type, (b) tame and (c) wild.

Informally speaking, A is of tame representation type if, for
every positive integer n, the n-dimensional indecomposable A-
modules occur in (at most) a finite number of one-parameter
families. On the other hand, A is of wild representation type if
the representation theory of A contains that of the free k-algebra
on two generators.

We can define the functor of representations RepA in the same
way as before: to a field K/k, it associates isomorphism classes of
finite-dimensional A⊗k K-modules. Corollary 13 tells us that, when
A= kG is a group ring, the essential dimension of the functor RepA
distinguishes between algebras A of finite representation type and
algebras of the other two types. It does not distinguish between
tame and wild representations types since ed(RepA) = ∞ in both
cases. Benson suggested that it may be possible to distinguish
between these two types of algebras by considering the rate of
growth of rA(n) = ed(RepA[n]), where RepA[n](K) is the set of
isomorphism classes of K-representations of A of dimension ⩽ n.
This is confirmed by the following theorem of Scavia [56].

Theorem 14.
(a) If A is of finite representation type, then rA(n) is bounded from

above as n → ∞.
(b) If A is tame, then there exists a constant c > 0 such that

cn− 1 ⩽ rA(n) ⩽ 2n− 1 for every n ⩾ 1.
(c) If A is wild, then there exist constants 0 < c1 < c2 such that

c1n2 − 1 ⩽ rA(n) ⩽ c2n2 for every n ⩾ 1.

This gives us three new invariants of finite-dimensional al-
gebras, ai(A) = lim supn→∞ rA(n)/ni for i = 0, 1, 2. Informally,
a2(A) (respectively, a1(A)) quantifies “how wild” (respectively,
“how tame”) A is. Scavia [56] computed a1(A) and a2(A) explicitly
in combinatorial terms in the case, where A is a quiver algebra.

8 Back to resolvent degree

8.1 The level of a field extension
Let k be a base field, K be a field containing k, and L/K be a field
extension of finite degree. I will say that L/K is of level ⩽ d if there
exists a finite tower of subfields

K = K0 ⊂ K1 ⊂ ⋯ ⊂ Kn (14)

such that L⊂ Kn and edk(Ki+1/Ki) ⩽ d for every i. The level of L/K
is the smallest such d; I will denote it by levk(L/K). Clearly,

levk(L/K) ⩽ edk(L/K).

If K is a field of rational functions on some algebraic variety
X defined over k, then it is natural to think of elements of K1

as algebraic (multi-valued) functions on X in at most edk(K1/K)
variables, and elements of L as compositions of algebraic functions
in at most levk(L/K) variables.

Example 15. If the field extension L/K is solvable, then we claim
that levk(L/K) ⩽ 1. Indeed, here we can choose the tower (14) so
that each Ki+1 is obtained from Ki by adjoining a single radical.
Then edk(Ki+1/Ki) ⩽ 1 for each i, and hence, levk(L/K) ⩽ 1, as
claimed.
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8.2 The resolvent degree of a functor
Let ℱ be a functor from the category of field extensions K/k to
the category of sets with a marked element. We will denote the
marked element in ℱ(K) by 1 and will refer to it as being “split”.
We will say that a field extension L/K splits an object α ∈ ℱ(K)
if αL = 1. Here, as usual, αL denotes the image of α under the
natural map ℱ(K) → ℱ(L). Let us assume that

for every field K/k and every α ∈ ℱ(K),
α can be split by a field extension L/K of finite degree. (15)

This is a strong condition ofℱ; in particular, it implies thatℱ(K) =
{1} whenever K is algebraically closed.

I will now define the resolvent degrees rdk(α) of α∈ℱ(K) and
rdk(ℱ) of the functor ℱ satisfying condition (15) by analogy with
the definitions of edk(α) and edk(ℱ) in Section 3. The resolvent
degree rdk(α) is the minimal integer d ⩾ 0 such that α is split
by a field extension L/K of level d (or equivalently, of level ⩽ d).
The resolvent degree rdk(ℱ) is the maximal value of rdk(α), as K
ranges over all fields containing k and α ranges over ℱ(K).

Example 16. Let n ⩾ 2 be an integer not divisible by char(k).
Then the functor H2(∗, μn) satisfies condition (15). I claim that
this functor has resolvent degree 1. Indeed, let α ∈ H2(K,μn), and
let ζ be a primitive nth root of unity in k. By the Merkurjev–Suslin
theorem, over K(ζ), we can write

α = (a1) ∪ (b1) + (a2) ∪ (b2) +⋯+ (ar) ∪ (br)

for some 0 ≠ ai, bi ∈ K(ζ). Now L = K(ζ, a1/n
1 ,…, a1/n

r ) splits α.
By our construction, L is solvable over K. Thus, as we saw in Ex-
ample 15, levk(L/K) ⩽ 1. This shows that rdk(α) ⩽ 1, as claimed.
Using the norm residue isomorphism theorem (formerly known
as the Bloch–Kato conjecture) in place of Merkurjev–Suslin, one
shows in the same manner that Hd(∗,μn) has resolvent degree 1
for every d ⩾ 1.

The resolvent degrees rdk(α; p) and rdk(ℱ; p) at a prime p
are defined in the same way as edk(α;p) and edk(ℱ;p). Here ℱ
is a functor satisfying (15), α ∈ ℱ(K) is an object of ℱ. That is,
rdk(α; p) is the minimal value of rdk(αK′), as K ′ ranges over all
field extension of K such that [K ′ ∶ K] is finite and prime to p,
and rdk(ℱ; p) is the maximal value of rdk(α; p), where K ranges
over all field containing k, and α ranges over ℱ(K). A variant of
the argument we used to prove (10) shows that rdk(ℱ; p) ⩽ 1
for every base field k, every functor ℱ satisfying (15) and every
prime p.

8.3 The resolvent degree of an algebraic group
The functor ℱ = H1(∗,G) whose objects over K are G-torsors
over Spec(K) satisfies condition (15) for every algebraic group G
defined over k. I will write rdk(G) for the resolvent degree of this

functor. For simplicity, let us assume that k = ℂ for the remainder
of this section. I will write rd in place of rdℂ.

Note that the quantity rd(n)we defined in the introduction can
be recovered in this setting as rd(Sn); cf. (8). Moreover, for a finite
group G, our definition of rd(G) coincides with the definition given
by Farb and Wolfson in [25].

Recall that, for a polynomial f(x) ∈ K[x], our definition of rd(f)
wasmotivated by wanting to express a root of f(x) as a composition
of algebraic functions in ⩽ d variables applied to the coefficients.
Equivalently, we wanted to find the smallest d such that the 0-cycle
in 𝔸1

K given by f(x) = 0 has an L-point for some field extension
L/K of level ⩽ d. If G is a linear algebraic group and T → Spec(K)
is a G-torsor, then our more general definition of rd(T) retains this
flavor. Indeed, T is an affine variety defined over K, and saying that
T is split by L is the same as saying that T has an L-point.

While little is known about rd(n) = rd(Sn), it is natural to ask
what rd(G) is for other algebraic groups G. Such questions can
be thought of as variants of Hilbert’s 13th problem. Let us now
take a closer look at the case where G is linear and connected. The
following folklore conjecture is implicit in the work of Tits.

Conjecture 17. Let G be a connected complex linear algebraic
group and K be a field containing ℂ. Then every α ∈ H1(K,G) is
split by some solvable field extension L/K.

Since solvable extensions are of level ⩽ 1, this conjecture im-
plies that rd(G) ⩽ 1 for every connected linear algebraic group G.¹¹
I can prove the following weaker inequality unconditionally [52].

Theorem 18. LetG be a connected complex linear algebraic group.
Then rd(G) ⩽ 7.

Note that if we knew that rd(Sn) ⩽ d for every n, we would
be able to conclude that lev(L/K) ⩽ d for every field extension
L/K of finite degree. This would, in turn, imply that rd(ℱ) ⩽ d for
every functor ℱ satisfying (15). Setting ℱ = H1(∗,G), we obtain
rd(G) ⩽ d for every algebraic group G. In particular, if we were able
to show that rd(ℱ) > 1 for some functor ℱ satisfying (15), we
would be able to conclude that rd(Sn) > 1 for some n. This would
constitute major progress on Hilbert’s 13th problem. I do not see
how to reverse this implication though: an upper bound on rd(G)
for every connected group G (such as the inequality rd(G) ⩽ 7
of Theorem 18) does not appear to tell us anything about rd(Sn).
However, Conjecture 17 and Theorem 18 make me take more
seriously the possibility that rd(Sn) may be identically 1 or at least
bounded as n → ∞.

¹¹ Other interesting consequences of Conjecture 17 are discussed in [17].
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Abel interview 2021: László Lovász and Avi Wigderson

Bjørn Ian Dundas and Christian F. Skau

Professor Lovász and Professor Wigderson. First, we want to con-
gratulate you on being the Abel Prize recipients for 2021. We cite
the Abel committee:

For their foundational contributions to theoretical computer
science and discrete mathematics, and their leading role in
shaping them into central fields of modern mathematics.

We would first like you to comment on the remarkable change
that has occurred over the last few decades in the attitude of,
say, mainstream mathematics towards discrete mathematics and
theoretical computer science. As you are fully aware of, not that
many years ago it was quite common among many first class
mathematicians to have a sceptical, if not condescending opinion,
of this type of mathematics. Please, could you start, Professor
Lovász?

Lovász. I think that is true. It took time before two things were
realized about theoretical computer science that are relevant for
mathematics.

One is simply that it is a source of exciting problems. When
I finished the university, together with some other young research-
ers, we started a group to study computing and computer science,
because we realized that it’s such a huge unexplored field; ques-
tions about what can be computed, how fast and how well and
so on.

The second thing is that when answers began to come, in
particular, when the notions of NP and P, i.e., nondeterministic
polynomial time and polynomial time became central, we realized
that the whole of mathematics can be viewed in a completely dif-
ferent way through these notions, through effective computation
and through short proofs of existence.

For us young people these two things were so inspiring that
we started to make connections with the rest of mathematics.
I think it took time until other areas of mathematics also realized
the significance of this, but gradually it came about. In number
theory it turned out to be very important, and also in group theory
these notions became important, and then slowly in a lot of other
areas of mathematics.

Wigderson. Yeah, I completely agree. In fact, it’s true that there
was a condescending attitude among some mathematicians to-
wards discrete mathematics. This was perhaps less so in theoretical
computer science, because it existed in the realm of computer sci-
ence as it was developing, and maybe people were less aware of it
directly? I think that Lovász is right in that the very idea of efficient
algorithms and the notions of computational complexity that were
introduced in theoretical computer science are fundamental to
mathematics, and it took time to realize that.

However, the real truth is that all mathematicians of all ages,
they all used algorithms. They needed to compute things. Gauss’
famous challenge to the mathematical community to find fast
methods to test whether a number is prime and to factor integers
is extremely eloquent, given the time it was written. It’s really
calling for fast algorithms to be developed.

Parts of discrete mathematics were viewed by some as trivial
in the sense that there are only finite number of possibilities that

Avi Wigderson
©Peter Badge/Abel Prize
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we have to test. Then, in principle, it can be done, so what is the
problem?

I think the notion of an efficient algorithm clarifies what the
problem is. There may be an exponential number of things to
try out, and you will never do it, right? If instead you have a fast
algorithm for doing it, then it makes all the difference. The question
whether such an algorithm exists becomes all important.

This understanding evolved. It caught up first with pioneers in
the 70s in the area of combinatorics and in the area of discrete
mathematics, because there it’s most natural; at least it’s easy to
formulate problems, so that you can attach complexity to them.
Gradually it spread to other parts of mathematics. Number theory is
a great example, because there too there are discrete problems and
discrete methods hiding behind a lot of famous number theoretical
results. From there it gradually dispersed. I think by now it’s pretty
universal to understand the importance of discrete mathematics
and theoretical computer science.

Turing and Hilbert

This is admittedly a naïve question, but as non-experts we have
few inhibitions, so here goes: Why is it that Turing’s notion of what
is today called a Turing machine captures the intuitive idea of an
effective procedure, and, so to speak, sets the standard for what
can be computed? How is this related to Hilbert’s Entscheidungs-
problem?

Wigderson. I think my first recommendation would be to read
Turing’s paper – in fact, to read all his papers. He writes so elo-
quently. If you read his paper on computing procedures and the
Entscheidungsproblem, you will understand everything.

There are several reasons why the Turing machine is so funda-
mental and so basic.  The first one is that it’s simple – it’s extremely
simple. That was evident to Turing and to many others at that time.
It’s so simple that it could be directly implemented. And thereby
he started the computer revolution. If you look at other notions of
computability that people studied, Gödel and others – definitely
Hilbert – with recursive functions and so on, they did not lend
themselves to being able to make a machine out of them. So this
was fundamental.

The second is that a few years later it was proved that all other
notions of efficient computability were equivalent. So the Turing
machine could simulate all of them. It encompassed all of them,
but it was much simpler to describe.

Thirdly, one way Turing motivates his model is to look at what
we humans do when we calculate to solve a problem, let’s say
multiply two long numbers. Look at what we do on a piece of
paper, we abstract it and formalize it. And when we do that, we
will automatically be lead to a model like the Turing machine.

László Lovász
© Peter Badge/Abel Prize

The fourth reason is the universality, the fact that his model is
a universal model. In a single machine you can have part of the
data be a program you want to run, and it will just emulate this
program. That is why we have laptops, computers and so on. There
is just one machine. You don’t need to have a different machine
to multiply, a different machine to integrate, a different machine
to test primality, etc. You just have one machine in which you can
write a program. It was an amazing revolution and it encapsulates
it in a really simple notion that everybody can understand and use,
so that is the power of it.

Now, you asked about the relation to the Entscheidungspro-
blem. You know, Hilbert had a dream, and the dream had two parts:
Everything that is true in mathematics is provable, and everything
provable can be automatically computed. Well, Gödel shattered
the first one – there are true facts, let’s say, about integers, that
can not be proven. And then Church and Turing shattered the
second one. They showed that there are provable things that are
not computable. Turing’s proof is not only far simpler than Gödel’s,
with Turing’s clever diagonal argument, it also implies the Gödel
result if you think about it. This is usually the way most people
teach Gödel’s incompleteness theory today; well, I don’t know if
“most people” would agree to this, but it’s using Turing’s notions.
So that’s the connection. Turing was, of course, inspired by Gödel’s
work. The whole thing that led him into working on computability
was Gödel’s work.

Lovász. I have just one thing I would like to add. A Turing machine
is really consisting of just two parts. It’s a finite automaton and
a memory. If you think about it, the memory is needed. Whatever
computation you do you need to remember the partial results.
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The memory in its simplest way is to just write it on a tape as
a string. The finite automaton is sort of the simplest thing that
you can define which will do some kind of, actually any kind of
computation. If you combine the two you get the Turing machine.
So it’s also natural from this point of view.

P versus NP

Nowwe come to a really big topic, namely the P versusNP problem,
one of the Millennium Prize Problems. What is the P versus NP
problem? Why is that problem the most important in theoretical
computer science? What would the consequences be if P = NP?
What do you envisage a proof of P ≠ NP would require of tools?

Lovász. Well, let me again go back to when I was a student.
I talked to Tibor Gallai, who was a distinguished graph theorist and
my mentor. He said: Here are two very simple graph-theoretical
problems. Does a graph have a perfect matching, that is, can the
vertices be paired so that each pair is connected by an edge? The
other one is whether the graph has a Hamiltonian cycle, i.e., does
it have a cycle which contains all the nodes?

The first problem is essentially solved; there is a lot of literature
about it. As for the other we only have superficial results, maybe
nontrivial results, but still very superficial.

Gallai said, well, you should think about it, so that maybe you
could come up with some explanation. Unfortunately, I could not
come up with an explanation for that, but with my friend, Péter
Gács, we were trying to explain it. And then we both went off –
we got different scholarships: Gács went to Moscow for a year and
I went to Nashville, Tennessee for a year. Then we came back and
we both wanted to speak first, because we both had learned about
the theory of P versus NP, which completely explains this. Peter
Gács learned it from Leonid Levin in Moscow, and I learned it
from listening in on discussions taking place at coffee tables at
conferences.

The perfect matching problem is in P and the Hamilton cycle
problem is NP-complete. This explained what really was a tough
question. It was clear that this was going to be a central topic,
and this was reinforced with the work of Karp proving the NP-
completeness of lots of everyday problems. So, summing-up, the
notions of P and NP they made order where there was such a chaos
before. That was really overwhelming.

Wigderson. The fact that it puts an order on things in a world
that looked pretty chaotic is the major reason why this problem
is important. In fact, it’s almost a dichotomy, almost all natural
problems we want to solve are either in P, as far as we know, or are
NP-complete. In the two examples Lovász gave, first the perfect
matching, which is in P, we can solve it quickly, we can characterize
it and do a lot of things, we understand it really well. The second

example, the Hamiltonian cycle problem is a representative of an
NP-complete problem.

The main point about NP-completeness is that every problem
in this class is equivalent to every other. If you solve one, you have
solved all of them. By now we know thousands of problems that
we want to solve, in logic, in number theory, in combinatorics, in
optimization and so on, that are equivalent.

So, we have these two classes that seem separate, and whether
they are equal or not is the P versus NP question; and all we need
to know is the answer to one of the NP-complete problems.

But I want to look at the importance of this problem from
a higher point of view. Related to what I said about natural prob-
lems we want to compute, I often argue in popular lectures that
problems in NP are really all the problems we humans, especially
mathematicians, can ever hope to solve, because the most basic
thing about problems we are trying to solve is that we will at least
know if we have solved them, right? This is true not only for math-
ematicians. For example, physicists don’t try to build a model for
something for which, when they find it, they will not know if they
have found it. And the same is true for engineers with designs, or
detectives with solutions to their puzzles. In every undertaking that
we seriously embark on, we assume that when we find what we
were looking for we know that we have found it. But this is the
very definition of NP: a problem is in NP exactly if you can check if
the solution you got is correct.

So now we understand what NP is. If P = NP, this means that
all these problems have an efficient algorithm, so they can be
solved very quickly on a computer. In some sense, if P = NP then
everything we are trying to do can be done. Maybe find a cure
for cancer or solve other serious problems, all these can be found
quickly by an algorithm. That is why P=NP is important and would
be so consequential. However, I think most people believe that
P ≠ NP.

Lovász. Let me add another thought on how it can be proved that
P ≠ NP. There is a nice analogy here with constructions with ruler
and compass. That is one of the oldest algorithms, but what can
you construct by ruler and compass? The Greeks formulated the
problems about trisecting the angle and doubling the cube by ruler
and compass, and they probably believed, or conjectured, that
these were not solvable by ruler and compass.  But to prove this is
not easy, even today. I mean, it can be taught in an undergraduate
class, in an advanced undergraduate class, I would say. You have
to deal with the theory of algebraic numbers and a little bit of
Galois theory in order to be able to prove this. So to prove that
these problems are not solvable by a specific algorithm took a huge
development in a completely different area of mathematics.

I expect that P ≠ NP might be similar. Of course, we probably
will not have to wait 2000 years for the solution, but it will take
a substantial development in some area which we today may not
even be aware of.

18 EMS MAGAZINE 122 (2021)



But we take it for granted that you both think that P is different
from NP, right?

Wigderson. I do, but I must say that the reasons we have are not
very strong. The main reason is that for mathematicians it seems
obviously much easier to read proofs of theorems that are already
discovered, than to discover these proofs. This suggests that P
is different from NP. Many people have tried to find algorithms
for many of the NP-complete problems for practical reasons, for
example, various scheduling problems and optimization problems,
graph theory problems, etc. And they have failed, and these failures
may suggest that there are no such algorithms. This, however, is
a weak argument.

In other words, I intuitively feel that P ≠ NP, but I don’t think
it’s a strong argument. I just believe it as a working hypothesis.

Problems versus theory

We often characterize mathematicians as theory builders or as
problem solvers. Where would you place yourself on a scale ran-
ging from theory builder to problem solver?

Wigderson. First of all, I love solving problems. But then I ask
myself: Oh, this is how I solved it, but maybe this is a technique
that can be applied other places? Then I try to apply it in other

places, and then I write it up in its most general form, and that is
how I present it. In this way I may also be called a theory builder.
I don’t know. I don’t want to characterize myself in terms of theory
builder or problem solver.

I enjoy doing both things, finding solutions to problems and try-
ing to understand how they apply elsewhere. I love understanding
connections between different problems, and even more between
different areas. I think we are lucky in theoretical computer sci-
ence that so many seemingly dispersed areas are so intimately
connected, but not always obviously so, like with hardness and
randomness. Theory is built out of such connections.

Lovász. I have similar feelings. I like to solve problems. I started
out under the inspiration of Paul Erdős, who was really always
breaking down questions into problems. I think that was a partic-
ular strength of his mathematics, that he could formulate simple
problems that actually illustrated an underlying theory. I don’t re-
member who said this about him: it would be nice to know the
general theories that are in his head, which he breaks down into
these problems that he feeds us so that we can solve them. And,
indeed, based on his problems, whole new areas arose, extremal
graph theory, random graph theory, probabilistic combinatorics
in general, and various areas of number theory. So I started as
a problem solver, but I always liked to make connections, and tried
to build something more general out of a particular problem that
I had solved.

László Lovász. ©Hungarian Academy of Sciences/Institute for Advanced Study, Princeton, NJ, USA
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Youth in Haifa

Professor Wigderson, you were born in 1956 in Haifa, Israel.
Could you tell us when you got interested in mathematics and, in
particular, in theoretical computer science?

Wigderson. I got interested in mathematics much earlier than in
computer science. As a very young child, my father introduced
me to mathematics. He liked to ask me questions and to look at
puzzles, and I got interested. We found books that I could read, and
in these there would be more problems. This was my main early
interaction with mathematics. In high school we had a very good
mathematics teacher who came from Ukraine, and he had a special
class for interested kids. He taught us more exciting stuff, like
college level stuff, and I got even more excited about mathematics.
In college I got much more into it, but it’s actually an accident that
I got into computer science, and thereby to theoretical computer
science.

After my army service, as I was applying to colleges in Israel,
I thought that I wanted to do mathematics, but my parents sug-
gested that it might be good to also have a profession when
I graduated. So they said: “Why don’t you study computer science,
it will probably be a lot of math in it anyway, and you will enjoy
it. Also, when you graduate you will have a computer science
diploma.” Nobody was thinking about academia at that time.

So I went to the computer science department at the Technion,
and I think I was extremely lucky. I am sure that if I had gone to
a math department I would have been interested in many other
things, like analysis, combinatorics, geometry, and so on. Because
I was in the computer science department, I took several theoretical
courses. We had, in particular, a very inspiring teacher, Shimon Even,
at the Technion. His courses on algorithms and complexity were
extremely inspiring. When I applied to graduate school I applied
for continuing to do this sort of stuff. This was how I was drawn
into theoretical computer science.

But still, in an earlier interview you have described yourself as
a beach bum and a soccer devotee. That contrasts rather starkly
with what you have been telling us now, doesn’t it?

Wigderson. I don’t think there is a contrast. I mentioned that my
dad was my main intellectual contact in mathematics. The schools
in the neighbourhood of our home were not very good, it was
pretty boring. The neighbourhood was situated by the beach, so
everybody was at the beach. We were beach bums by definition.
The weather in Israel is wonderful, so you can be altogether 300
days a year on the beach and in the water. So that was one pastime
activity. The other thing you mentioned, soccer, is the easiest game
to play. You need no facilities. And that was what we did, being
involved in these two activities. When I was growing up I never
saw myself as an intellectual. I loved math, but I also loved soccer,

I loved swimming and I loved reading. And this is how I spent all
my youth. There were no contrast and, if anything, it’s probably
good to do other things.

Youth in Budapest

Professor Lovázs, you were definitely not a beach bum.

Lovász. When I entered eighth grade, I did not have any special
subject that I was particularly interested in. In the eighth grade
I started to go to a math club, and I realized how many interesting
problems there are. Then the teacher of the math club recommen-
ded that I should go to a particular high school which had just
started and was specializing in teaching mathematically talented
kids. We had ten classes of mathematics a week, which this group
of students enjoyed very much, including myself. I appreciated very
much the fact that I was among a fairly large group of students
who had quite similar interests.

In elementary school, I was a little bit outside of the “cool”
group of the class. I was not in the mainstream of the class, but in
this new high school class I found myself much more at home. In
fact, I felt so much at home that I married one of my classmates,
Katalin Vesztergombi, and we are still together.

This high school was absolutely a great start for my life, that is
how I feel about it. Before that… you just had to survive the school.
I entered this new high school in the first half of the sixties. There
were many good mathematicians in Budapest at that time, and
they did not really have the chance to travel or to do anything
outside Hungary. So they had more time, and they came to the
high school and gave talks and they took a great interest in our
group. We learned a lot from them. I should, of course, mention
that Paul Erdős was often visiting the class and gave talks and gave
problems. So it was all very inspiring.

Professor Lovász, to quote professor Wigderson: “In the land of
prodigies and stars in Hungary, with its problem solving tradition,
he (meaning you) stands out.” We have a witness who recalls rush-
ing home from school to watch the final of one of the competitions
in which you participated on national television, where you solved
a combinatorial problem in real time and won the competition. It’s
kind of hard to imagine doing such things now and in the West.

Lovász. You are right. That was one of the things that went on
for a few years on Hungarian TV, but unfortunately it stopped.
Unfortunately, because I thought it was a very good popularization
of mathematics. You know, people like to watch competitions. The
way it worked was that there were two glass cells, and the two
students that were competing were sitting in separate cells. They
got the same problem which they had to solve, and then verbally
tell the solution; maybe there was a blackboard they could use as
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well. I think people like to watch youngsters sweating and doing
their best to win. You know, most people cannot jump over two
meters, but nevertheless we watch the Olympic Games. Even today
I meet people, of course older people, who say: “Oh, yeah, I saw
you on TV when you were in high school, and I was in the eighth
grade of elementary school, and it was so nice to watch you.” It
was really something quite special. 

A part of this story which is both funny and charming is that you
told us that the solution to the final problem, with which you
won the competition, you had previously learned from the other
competitor. Isn’t that correct?

Lovász. Yes, that’s true. But we competitors were also good
friends, and we still are very good friends. Especially the two people
with whom I competed in the semi-final and the final, are very
good friends of mine. One was Miklós Laczkovich. He came up with
the proof of Tarski’s conjecture about squaring the circle. And the
other one was Lajos Posa. He is very well known in math education.
He did a lot on developing methods to teach talented students.

Before we leave this subject, we should also mention that you
won the gold medal three years in a row 1964–65–66 at the
International Mathematical Olympiad, when you were 16–17–18
years old. These are impressive results! We don’t know of anyone
that has such record in that competition.

Lovász. Thank you, but there are others. Someone has won it five
times. You can go to the website of the International Mathematical
Olympiad, and there you find a list of achievements.

Lovász local lemma

Professor Lovász, you have published several papers – we think
six papers altogether – with your mentor Paul Erdős. We think we
know the answer to which one of these papers is your favourite,
and you can correct us if we are wrong. A weak version of the
important so-called Lovász local lemma was proven in 1975 in
a joint paper with Erdős – that’s the paper we have in mind. The
lemma itself is very important as is attested to by Robin Moser and
Gábor Tardos receiving the Gödel Prize in 2020 for their algorithmic
version of the Lovász local lemma. Anyway, could you tell us what
the Lovász local lemma is all about?

Lovász. Okay, I will try. Almost everything in mathematics, or at
least in discrete mathematics, you can formulate like this: there
are a number of bad events, and you want to avoid all of them.
The question is whether you can give a condition so you can avoid
all of these. The most basic thing is that if the probabilities of
these events add up to something less than one, then with positive

probability you will avoid all of them. That is a very basic trick in
applications of probability in discrete mathematics. But suppose
that the number is much larger, so that the probabilities add up
to something very large, how do you handle that? Another special
case is if they are independent events. If you can avoid each of
them separately, then there is a positive probability that you avoid
all of them, simply take the product of the probabilities for avoiding
each one of them.

The local lemma is some kind of combination of these two ideas.
If the events are not independent, but each of them is dependent
only on a small number of others, and if the sum of the probabilities
of those that it depends on is less than one – not the total sum,
but just those it depends on – then you can still, with positive
probability, avoid each of the bad events.

Maybe I should add one thing here. There was a problem of
Erdős which I was thinking about, and I came up with this lemma.
I was together with Erdős, actually at Ohio State for a summer
school. We solved the problem, and we wrote a long paper on that
problem and related problems, including this lemma. But Erdős
realized that this lemma was more than just a lemma for this
particular problem and made sure that it became known under my
name. Normally it would be called the Erdős–Lovász local lemma,
because it appeared in a joint paper of us, but he always promoted
young people and always wanted to make sure that it became
known if they had proved something important. I benefited from
his generosity.

The Kneser conjecture

In 1955 Kneser conjectured howmany colours you need in order to
colour a type of naturally occurring graphs, now known as Kneser
graphs. In 1978 you, professor Lovász, proved this conjecture by
encoding the problem as a question of high dimensional spaces,
which you answered by using a standard tool in homotopy theory,
and so boosted the field of combinatorial topology. How did such
a line of approach occur to you, and can you say something about
the problem and your solution?

Kneser graph K(5, 2)
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Lovász. It goes back to one of these difficult problems, the chro-
matic number problem: how many colours do you need to colour
a graph properly, where properly means that neighbouring vertices
must have different colours. That is a difficult problem in general,
it’s an NP-complete problem.

A first approach is looking at the local structure. If a graph has
many vertices which are mutually adjacent, then, of course, you
need many colours. The question is: is there always such a local
reason? It was already known at that time that there are graphs
which have absolutely no local structures, so that they don’t have
short cycles, but nevertheless you need many colours to colour
them. It was an interesting question to construct such graphs. For
example, just exclude triangles, or more generally, exclude odd
cycles from the graph. There was a well known construction for
such a graph by looking at the sphere, and then connecting two
points if they are almost antipodal. Then Borsuk–Ulam’s theorem
says that you will need more colours than the dimension, so that
the almost antipodal points have different colours. That was one
construction, and the other one was the construction where the
vertices would be a k-element subset of an n-element set, where
n > 2k, and you can connect two of these if they are disjoint.
Kneser conjectured what would be the chromatic number of such
a graph.

It was an interesting problem going around in Budapest. Simon-
ovits, a friend and colleague of mine, brought to my attention
that these problems could actually be similar, or that these two
constructions could be similar. So I came up with a reduction of
one into the other, but then it turned out that the reduction was
more general and gave a lower bound on the chromatic numbers
of any graph in terms of some topological construction. So, that is
how topology came in. It took actually quite some time to make
it work. As I remember it, I spent about two years to make these
ideas work, but eventually it worked.

Zero-knowledge proofs

Professor Wigderson, earlier in your career you made fundamental
contributions to a new concept in cryptography, namely the zero-
knowledge proof, which more than 30 years later is now being
used for example in blockchain technology. Please tell us specific-
ally what a zero-knowledge proof is, and why this concept is so
useful in cryptography?

Wigderson. As a mathematician, suppose you found the proof
of something important, like the Riemann hypothesis. And you
want to convince your colleagues that you have found this proof,
but you don’t want them to publish it before you do. You want
to convince them only of the fact that you have a proof of this
theorem, and nothing else. It seems ridiculous, it seems absolutely
ridiculous, and it’s contrary to all our intuition that there is a way

to convince someone of something they do not believe, without
giving them any shred of new information.

This very idea was raised by Goldwasser, Micali and Rackoff
in 1985, where they suggested this notion. They did not suggest
it for paranoid mathematicians, but they suggested it for cryp-
tography. They realized that in cryptography there are a lot of
situations, in fact, almost all situations, of interactions between
agents in a cryptographic protocol, in which no one trust the other
ones. Nevertheless, each of them makes claims that they are doing
something, or knowing something, which they don’t want to share
with you. For example, their private key in a public crypto system.
You know, each one is supposed to compute their public key by
multiplying two prime numbers, which they keep secret. I give
you a number and I tell you: here is a number; I multiplied two
secret prime numbers and this is the result. Why should you believe
me? Maybe I did something else, and this is going to ruin the
protocol. To fix this, it would be nice if there was a way for me to
convince you that that’s exactly what I did. Namely, there exist two
prime numbers whose product is the number I gave you. That is
a mathematical theorem, and I want to convince you of it, without
giving you any idea what my prime numbers are, or anything else.
Goldwasser, Micali and Rackoff suggested this extremely useful
notion of a zero-knowledge proof.

They gave a couple of nontrivial examples, which was already
related to existing crypto systems where this might be possible. And
they asked the question: what kind of mathematical statements can
you have a zero-knowledge proof for? A year later, with Goldreich
and Micali, we proved that it was possible for any mathematical
theorem. If you want it formally, it’s true for any NP-statement.

So this is the content of the theorem. I am not going to tell
you the proof of the theorem, though something can be said
about it. The proof uses cryptography in an essential way. It’s
a theorem which assumes the ability to encrypt. Why it’s useful in
cryptography is exactly for the reasons I described, but, in fact, it’s
much more general, as we observed in a subsequent paper. Given
a zero-knowledge proof, you can really automate the generation
of protocols that are safe against bad players. The way to get
a protocol that is resilient against bad players once you have a pro-
tocol that works if everybody is honest and doing exactly what
they should, is just to intervene every step with a zero-knowledge
proof, in which the potentially bad players will convince the others
that they are doing the right thing. It’s much more complex, zero-
knowledge is not enough, you have to have a way to computing
with secrets.

I want to stress that when we proved this theorem, it was
a theoretical result. It was clear to us from the beginning that the
protocol which enables zero-knowledge proof, is complex. We
thought it unlikely to be of any use in cryptographic protocols that
are running on machines.

The fact that they became practically useful is still an amaz-
ing thing to me, and I think that is a good point to make about
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many other theoretical results in theoretical computer science,
in particular, about algorithms. People tend to complain some-
times about the notion of P being too liberal when describing
efficient algorithms, because some algorithms, when they were
first discovered, may have a running time that looks too large. It’s
polynomial time, but maybe it’s n to the 10th power, and for n size
a thousand, or size a million, which are problems that come up
naturally in practice, it seemed useless, as useless as exponential
time algorithms. But what you learn again and again, both in the
field of cryptography and in the field of algorithms, is that once you
have a theoretical solution with ideas in it that make it very efficient,
then other people, especially if they are motivated enough, like in
cryptography or in optimization, can make it much more efficient,
and eventually practical. That’s a general point I wanted to make.

Randomness versus efficiency

It’s an amazing result, and we quote you saying: “This is probably
the most surprising, the most paradoxical of the results that my
colleagues and I have proved”. Let us continue, professor Wigder-
son, with another topic to which you have made fundamental
contributions. When you began your academic career in the late
1970s, the theory of computational complexity was in its infancy.
Your contribution in enlarging and deepening the field is arguably
greater than that of any other person. We want to focus here
on your stunning advances in the role of randomness in aiding
computation. You showed, together with co-workers Nisan and
Impagliazzo, that for any fast algorithm that can solve a hard prob-
lem using coin flipping, there exists an almost as fast algorithm
that does not use coin flipping, provided certain conditions are
met. Could you please elaborate on this?

Wigderson. Randomness has always fascinated me. Specifically,
the power of randomness in computation, but not only in compu-
tation. This is probably the area where I have invested most of my
research time. I mean, successful research time! The rest would be
trying to prove lower bounds or hardness results, like proving that P
is different from NP, where I generally – like everybody else – failed.

So, back to randomness. Ever since the 1970s, people real-
ized that randomness is an extremely powerful resource to have
in algorithms. There were initial discoveries, like primality tests.
Solovay/Strassen and Miller/Rabin discovered fast methods with
randomness to test if a number is prime. Then in coding theory,
in number theory, in graph theory, in optimization and so on, ran-
domness was used all over the place. People just realized it’s an
extremely powerful tool to solve problems that we have no idea
of how to solve efficiently without randomness. With randomness
you can find the solution very fast. Another famous class of ex-
amples is Monte Carlo methods. So you explore a large chunk of
problems using randomness. Without it, it seemed like it would

take exponential time to solve them, and it was natural to believe
that having randomness is much more powerful than not having it.

Nevertheless, mainly from motivations in cryptography, people
started in computational complexity trying to understand pseudor-
andomness. You need randomness in cryptographic protocols for
secrecy. On the other hand, sometimes random bits were not so
available, and you wanted to test when random bits are good, as
good as having independent coin flips – which you really assume
when talking about probabilistic algorithms.

So, there was a quest to understand when a distribution of
bits is as good as random. This started in cryptography with a very
powerful work by Blum, Micali and Yao. Notions began to emerge
which suggested that if you have computational hardness, if you
somehow have a hard problem, then you can generate pseudoran-
dom bits cheaply. So you can invest much less randomness in order
to generate a lot, which is still useful, let’s say for probabilistic
algorithms.

This kind of understanding started in the early 1980s. It took
about 20 years of work to really elucidate it and to be able to make
the weakest assumptions on what hardness you need in order to
have a pseudorandom outcome, which then corresponds to a full
probabilistic algorithm. Parts of this were indeed developed in my
papers with Nisan, and then with Babai and Fortnow, and then
with Impagliazzo and Kabanets.

The upshot of this development is again a conditional result,
right? You have to assume something, if you want the conclusion
you stated. What you need to assume is that some problem is diffi-
cult. You can take it to be the problem of colouring graphs, you can
take it to be any NP-complete problem you like, or even problems
that are higher up, but you need a problem that is exponentially
difficult. This is the assumption that the result is conditioned on. If
you are willing to make this assumption, then the conclusion is ex-
actly as you said, namely that every efficient probabilistic algorithm
can be replaced by a deterministic algorithm which does the same
thing. In fact, it does it without error and is roughly as efficient as
the original one.

In other words, the power of probabilistic algorithms is just
a figment of our imagination. It’s only that we are unable to find
deterministic algorithms that we can prove are as efficient. This
result suggests that there is no such power and that randomness
does not help to make efficient algorithms more efficient.

The hardness assumption that you need to make, were they some-
thing that you were expecting?

Wigderson. They are completely expected! First of all, they are
expected in the sense that they were there from the beginning,
specifically in the works of Blum, Micali and Yao that I mentioned,
which do create pseudorandom generators that are good against
efficient algorithms and which assume specific hardness assump-
tions like those used in cryptography. For example, that factoring
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is difficult, or that one way functions exist. These are very spe-
cific hardness assumptions, and these problems are unlikely to be
NP-complete.

In my paper with Nisan, we realized that a much weaker as-
sumption is enough. It was not enough to give the result stated
at the end, because it’s not efficient enough, but it already got
us pretty close to the understanding that random algorithms are
not as powerful as they seemingly are. It did not give the BPP = P
consequence, which is the final one. This was not surprising, the
connection paradigm between hardness and randomness came
from the very initial studies of computation of pseudorandom-
ness, and, if I remember correctly, the paper of Blum and Micali,
or perhaps even the Ph.D. thesis of Silvio Micali, is titled: Hard-
ness vs. Randomness. There is an intimate connection there –
it was there from the start – and the question is how tight the
connection is.

I should probably mention that the consequence of what we
just discussed is that hardness implies derandomization, and the
question is whether the reverse hold also. If you have a good pseu-
dorandom generator, or if you could derandomize all probabilistic
algorithms, does it mean that you can prove something like P≠NP?
The answer is that we have partial results like that. My paper with
Impagliazzo and Kabanets is one, and there is another paper with
just the two of them. So there are partial results for the converse,
and we don’t understand it fully. But it’s a fascinating connection,
because these two issues seem separate from each other. I think it’s
a very fundamental discovery of the field, this intimate connection
between computational difficulty and the power of randomness.

The LLL-algorithm

Professor Lovász, we would like to talk about the LLL-algorithm,
an algorithm which has striking applications. For instance, it’s
claimed that the only crypto systems that can withstand an attack
by a quantum computer use LLL. The algorithm appears in your
paper together with the Lenstra brothers on factorization of poly-
nomials, which more or less follows the expected path of reducing
modulo primes, and then using Hensel’s Lemma. But as far as we
understand the breakthrough from you and the Lenstra brothers
was that you were able to do the lift in polynomial time by an
algorithm giving you an approximation to the shorter vector in
a lattice. Tell us first how the collaboration with the Lenstras came
about.

Lovász. This is an interesting story about mathematics and the
role of beauty, or at least elegance, in mathematics. With Martin
Grötschel and Alexander Schrijver we were working on applications
of the ellipsoid method in combinatorial optimization. We came
up with some general theorem that stated some equivalence of
separation and optimization. Actually, these were polynomial time
equivalent problems under some mild additional conditions. But
there was a case where the algorithm did not work, and that was
when the convex body was lying in a lower dimensional linear
subspace. One could always get around this, sometimes by math-
ematical methods, for example, by lifting everything into a higher
dimensional space. But there was always some trick involved that
we wanted to avoid.
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At some point I realized that we can solve this if we can solve
some really ancient mathematical problem algorithmically. That
was Dirichlet’s result that several real numbers can be simultan-
eously approximated by rational numbers with the same denomin-
ator, and the question was whether you could solve this algorith-
mically. Now one looks at the proof and one sees immediately that
the proof is the opposite of being algorithmic; it’s a pigeonhole
principle proof, so it just shows the existence of such an approxima-
tion.  After some trial and error, I came up with an algorithm which
actually computed in polynomial time such an approximation with
rational numbers with common denominator.

A little bit earlier I heard a talk of Hendrik Lenstra, where he
talked about similar problems, but in terms of lattices and bases
reduction in lattices. Now it’s easy to reduce the Dirichlet problem
to a shortest lattice vector problem. So I wrote to them, and it
turned out that if I could solve the Dirichlet problem, then they
could factor polynomials in polynomial time.

This was actually very surprising. One would think that factor-
ing an integer should be easier than factoring a polynomial. But
it turns out that it’s the other way around, polynomials can be
factored in polynomial time. So that is how this joint paper came
about. Then a couple of years later Lagarias and Odlyzko discovered
that this algorithm can be used to break the so-called knapsack
crypto system. Since then this algorithm is used a lot in checking
the security of various crypto systems. 

As far as we understand it has applications way beyond anything
that you imagined?

Lovász. Yes, definitely. For example, shortly after it was published
it was used by Andrew Odlyzko and Herman te Riele in a very ex-
tended numerical computation to disprove the so-called Mertens
conjecture about the ζ -function in prime number theory. But the
point that I want to stress is that the whole thing started from some-
thing that was apparently not so important. Grötschel, Schriver and
I just wanted to get the nicest possible theorem about equivalence
of optimization and separation. This, however, was the motivation
for proving something that turned out to be very important.

The ellipsoid method

Indeed, in 1981 you published a paper together with coauthors
Grötschel and Schrijver entitled “The ellipsoid method and its con-
sequence in combinatorial optimization”, a paper which is widely
cited, and which you touched upon in your previous answer. There
is a prehistory to this, namely a paper by a Russian, Khachiyan,
containing a result that was regarded as sensational. Could you
comment on this, and how your joint paper is related to his?

Lovász. Khachiyan gave the first polynomial time algorithm for
linear programming using what is called the ellipsoid method today.
I should say that in the Soviet Union at that time there were several
other people who worked on similar results, but he proved the
necessary details. So it was Khachiyan who proved that linear
programming can be solved in polynomial time.

Of course, everybody got interested. In the theory of algorithms
before that there existed these mysterious problems that in prac-
tical terms could always be efficiently solved, but there was no
polynomial time algorithm known to them. So we got interested
in it, and we realized that to apply Khachyian’s method you don’t
have to have an explicit description of the linear program. It’s
enough if the linear program is given in such a way that if you ask
whether a point is a feasible point, then you should be able to tell
this, and you should be able to find them if any constraints are viol-
ated. That observation was made by several people, including Karp
and Papadimitriou, and I think Padberg and Rao. We realized that
in combinatorial optimization there are many situations like this.

Then I met Martin Grötschel, and he came up with a way to
apply these methods to another old problem, namely to find the
chromatic number of a perfect graph in polynomial time, which was
also an unsolved problem in those days. And for that it turned out
that you have to apply this ellipsoid method, not only to linear pro-
grams, but to convex programs more generally. We worked on this
together with Lex Schrijver, who visited the University of Szeged for
a year where we shared an office, and started to see what happens
in general in convex optimization and how to apply this. This is
how we came up with this result that I mentioned, the equivalence
of separation and optimization, it was sort of the main outcome of
this study. Eventually we wrote a monograph about this subject.

The zig-zag product

Expander graphs have been a recurring theme for the Abel Prize.
Last year we had Margulis, who constructed the first explicit ex-
pander graphs, after Pinsker had proven that they existed. Gromov,
who won the Abel Prize in 2009, used expanders on Cayley graphs
of fundamental groups, which were relevant for the study of the
Baum–Connes conjecture. Also Szemerédi, who won the Abel Prize
in 2012, made use of expander graphs. In 2000, you, professor
Wigderson, together with Reingold and Vadhan, presented the
zig-zag product of regular graphs, which is, as far as we under-
stand, analogous to the semidirect product in group theory, by
which you gave explicit constructions of very large and simple
expanders. Could we just start by asking: what is the zig and what
is the zag?

Wigderson. So, maybe I should start with what is an expander
graph? You should think of networks, and you should think that
one desirable property of networks is that there would be sort of
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fault tolerance. If some of the connections are severed you would
still be able to communicate. It could be computer networks, or
it could be networks of roads that you would like to be highly
connected. Of course, you don’t want to pay too much, so you
would like these networks to be sparse, that is, you don’t want
to have too many connections. You want a large graph in which
the degree of every vertex – that is, the number of connections to
every vertex – is small, let’s say constant, for example ten.

A random graph will have this property, and the whole ques-
tion – this is what Pinsker realized – becomes: can you describe
such graphs, and can you find them efficiently? Margulis gave the
first construction using this deep algebraic concept, namely Kazh-
dan’s property (T). They can also be built using results by Selberg
and others.

Then people started to simplify the proofs. By the time I was
teaching this material there were reasonably simple proofs, like
the one given by Jimbo and Maruoka, and you could teach it in
a class in an hour or two; it’s just basically Fourier transform on
finite groups. So you have everything you want, you have a very
nice explicit construction, you can even prove it in a class to under-
graduates, but to me it was, as with many proofs based on algebra,
so mysterious. I mean, what is going on? What is really behind the
fact that these are highly connected graphs? This was sort of an
obsession of mine for years, and I did not know what to do with it.

In 2000, just after I moved to the IAS, I had two postdocs here,
Salil Vadhan and Omar Reingold. We were working on a completely
different project about pseudorandomness, where an important
notion is the notion of an extractor, which has something to do
with purifying randomness. I will not talk about that now, but
we were trying to build better extractors. As we were doing this
we realized that one of our constructions may be useful towards
creating expanders. The constructions in the extractor business
were often iterative, and they have a very different combinatorial
nature than constructions, say, of the algebraic type. Once we
realized this we understood that we had a completely different
combinatorial construction of expanders, but more than that, one
in which, for me, it was evident from the proof why these graphs
are expanding.

This is the zig-zag result; the zig-zag name was actually sug-
gested by Peter Winkler. The construction starts with a small graph
which is expanding, and one uses it to keep boosting another graph
to be an expander. So you plug this little graph in somehow, and
you get a bigger expander, and then you repeat this to get a bigger
one, and so on. So you can generate arbitrary large expanders.
This local construction has some zig-zag picture in it if you look at
it, but that is not the important thing.

There is another way of describing an expander which I think is
more intuitive. An expander is a graph such that, no matter what
distribution you have on the vertices, if you take a vertex from
this distribution and go from this vertex to a random neighbour,
the entropy of the distribution increases. That is another way to

describe expanders, and this you see almost with your eyes in the
zig-zag construction. You see how the entropy grows, and that is
what I like about this way of looking at it.

To try to get a picture of what is going on: as far as we understand
you have a graph and you place this other graph at all the vertices.
Then you have to decide how to put the edges in. Then essentially
what you are doing, just like in the semidirect product situation
where you have the multiplication rule, you move a little bit in one
of the vertices, then you jump all the way to the next vertex, and
then you do the similar jump there. Is that correct, vaguely?

Wigderson. It’s completely correct, and moreover the connection
to semidirect products was something we realized two or three
years later with Alexander Lubotzky and Noga Alon. It was sort
of a challenge that I felt early on, namely that the graphs that
we got were expanders, they were combinatorially generated, we
understood them, and I was wondering whether our construction
could be useful to construct Cayley graphs. And then with Noga
Alon and Alexander Lubotzky we realized it’s not just similar, but
the zig-zag product is a combinatorial generalization of semidirect
products of groups applied to Cayley graphs. It’s more general and
it specializes in the case of Cayley graphs to semidirect products.
For example, because of this you can prove that Cayley graphs
of groups that are not simple can be expanding with a constant
number of generators. No algebraic method is known to give that.

This has been used extensively in many situations, and one of the
things one perhaps should mention is that the symmetric logspace
and the logspace are the same, as shown by Reingold in 2004.
This seems to be an idea that really caught on. Are you still using
it yourself, or have you let your “baby” grow up and run into the
mathematical community?

Wigderson. I think it’s great that we have a mathematical com-
munity. Many of our ideas have been taken to places beyond my
imagination. There is something fundamental about this construc-
tion, and it was used like you said in this Reingold result, which
can more simply be described as the logspace algorithm for con-
nectivity in graphs. In fact, it goes back to a result of Lovász and
his collaborators, and can be viewed as a randomization result.

Lovász with Karp, Aleliunas, Lipton and Rackoff showed in 1980
that if you want to test whether a large graph is connected, but
you have no memory, you just need enough memory to remember
where you are, then by tossing coins you can explore the whole
graph. This is the random logspace algorithm for graph connectivity.
Derandomizing this algorithm was another project of mine that
I never got to do, but Reingold observed that if you take the zig-zag
product and applied it very cleverly to their randomized algorithm,
you get the deterministic logspace algorithm for the same problem.
So it’s a particular pseudorandom generator tailored to this. It was
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also used in the new PCP-theorem of Irit Dinur. So, yeah, there is
something general with this zig-zag product that other people find
extremely useful.

Mutual influence

Actually, this brings us to an interesting place in this interview,
because here we are seeing connections between what the two
of you were doing.

Wigderson. Let me mention one of the most influential things
that happened to me in my postdoc years. It was in 1985. I was
a postdoc in Berkeley, and there was a workshop going on in
Oregon in which Lovász gave ten lectures. I don’t remember ex-
actly what it was called, but there were lectures on optimization,
geometry of numbers, etc. It was a whole week of lectures and
everybody wanted to hear Lovász’ talk, and everybody appreciated
how extremely clear his presentation was.

But the most important thing I got out of this is what Lovász
described himself when you asked him the question about the
LLL-algorithm, and its relation to the work on the ellipsoid and so
on. He stressed how a high level point of view, rather than one
focused on a specific problem, can connect lots and lots of areas
of mathematics of great importance. Lovász described to you how
a question that was a bit peculiar, namely about having a more eleg-
ant solution to a problem in optimization, led to solving the lattice
basis reduction problem, and how it was connected to Diophantine
approximation, as well as how it connects to cryptography, both
to breaking crypto systems and creating crypto systems. And, you
know, you get this panoramic view where everything fits in with
everything. I was extremely influenced by this, it was an amazing
memorable event in my early career. 

Lovász. I think I have some similar memories. The zero-knowledge
proof was such a shockingly exciting thing that I learned about,
and it sort of showed me how powerful these new ideas of cryp-
tography, and theoretical computer science in general, how very
powerful they are. I was always very interested inWigderson’s work
on randomness, even though I was sometimes trying to go the op-
posite direction, and find examples where randomness really helps.

One has to add that this is sometimes a matter of the model, of
the computational model. I mentioned some results about convex
optimization, convex geometry, algorithmic results in high dimen-
sional convexity, and it’s a basic problem there that if you have
a convex body, how can you compute the volume? One of my
Ph.D. students at the time, György Elekes, came up with a beauti-
ful proof showing that you need exponential time to approximate
this volume, even within a constant factor. That was in our model
in which we formulated this equivalence of optimization and sep-
aration of convex bodies given by a separation oracle. A few years

later, and that is actually another thing that Wigderson said, Dyer,
Frieze and Kannan came up with a randomized algorithm to com-
pute the volume, or to approximate the volume, in polynomial time
with an arbitrary small relative error.

The interesting thing is the dependence on the dimension. If
the dimension is n then their algorithm took n29 steps. Obviously
this was very far from being practical, but that started their flow of
research. I was also part of it and I really liked this result, and I was
quite interested in making it more efficient and understanding why
the exponent is so high. And then the exponent went down nicely
from 29 to 17, to 10, to 7, to 5, to 4. It stood for a long time at
4, but a year ago it went down to 3. So now this is close to being
practical. It’s still not, n to the cube is still not enough to be a really
fast algorithm, but it’s definitely not ridiculously way off.

Two comments about this example. Firstly, because it’s a differ-
ent computational model, provably randomness helps. It’s provable
that without randomness it takes exponential time, and with ran-
domness it’s now down to a decent polynomial time. And the
second is that polynomial time is an indicator that this problem
has some deep structure. You explore this deep structure, and
eventually you can improve the polynomial time to something
decent.

Graphons

Here is a question to you, professor Lovász, on a subject where
you have made major contributions: what is a limit theory for
graphs, and what are graph limits good for? Also, explain what
a graphon is.

Lovász. I will try to be not too technical. A graph is often given by
an adjacency matrix, so you can imagine it as a zero-one matrix.
And now, suppose that the graph is getting bigger and bigger,
and you have this sequence of matrices. We always think of these
as functions on the unit square, where we just cut into smaller
squares, each square carrying a zero or a one. And now these
functions in some sense tend to a function on the unit square,
which may be continuous, or, at least not discrete any more, and
that is a graphon. So, for example, if the graph is random, so each
square is randomly one or zero, then it will tend to a grey square,
that is, to an identical one half graphon. So a graphon is a function
on the unit square, which is measurable and symmetric, and it turns
out that you can exactly define what it means that a sequence of
graphs converges to such a graphon.

Now, a lot of properties of the graphs are preserved, that is,
if all the graphs in the sequence have a certain property, then the
limit will also have this property. For example, if all these graphs
have some good eigenvalue gap – a property that expanders have –
then the limit will also have a good eigenvalue gap. Here we are
considering dense graphs. So you look at this space of graphons,
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and then you have to prove – and there is a lot of technical details
there – that the space of graphons in an appropriate metric is
compact. This is very convenient to work with, because from then
on you can, for example, take a graph parameter, let’s say density
of triangles. It can be defined in the limit graphon what the density
of triangles is, and then in this limit graphon there will be a graphon
which minimizes this under certain other conditions.

So you can play the usual game which you play in analysis, that
studies the minimum, the minimizer, and then you try to determine
whether it’s a local minimum, or a global minimum. All these things
that you can do in analysis, you can do in this setting, and this all
has some translation back to the graph theory.

It’s worthwhile mentioning that the Regularity Lemma of Sze-
merédi is closely related to the topology of graphons. In particular,
compactness of the space of graphons implies a strong form of
the Regularity Lemma.

The Shannon capacity

Professor Lovász, in 1979 you published a widely cited paper
titled: “On the Shannon capacity of a graph”. In this paper you
determine the Shannon capacity of the pentagon by introducing
deep mathematical methods. Moreover, you proved that there is
a number, now called the Lovász number, which can be computed
in polynomial time. The Lovász number is the upper bound of the
Shannon capacity associated to a graph. Could you tell us a little
more about that, and explain what the Shannon capacity is?

Lovász. I will not give a formal definition of what the Shannon ca-
pacity is, but you have an alphabet and you are sending messages
composed of the letters of the alphabet. Now certain letters are
confusable or confoundable, so they are not clearly distinguished
by the recipient. You want to pick a largest subset of words which
can be sent without danger of confusion. For any two words there
should be at least one position where they are clearly distinguish-
able. So if the alphabet is described by the vertices of a graph, an
edge between two letters means that those two letters are confus-
able. Shannon came up with this model, and he determined the
capacity. If you are sending very long words, how many words can
you send without causing confusion? That number grows expo-
nentially, and the base of this exponential function is the Shannon
capacity.

The pentagon graph was the first one for which the Shannon
capacity was not known, and I introduced some technique called
the orthogonal representation, which enabled me to answer this
question.

This is an example of one of those things that occasionally
happen, namely when you answer a question, then all of a sudden
it begins to have its own life. For example, it was used to determine
the chromatic number of perfect graphs. In a very different direc-
tion, recently a group of physicists found some quite interesting
applications of it in quantum physics. So all of a sudden you hear
that something you did has inspired other people to do something
really interesting. That is very pleasing.

©Eirik Furu Baardsen/DNVA
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The Erdős–Faber–Lovász conjecture

Our last mathematical question to you, professor Lovász, is about
the so-called Erdős–Faber–Lovász conjecture, a conjecture that
was posed in 1972. How did it come about, and what were your
initial thoughts on how difficult it would be to prove it? Quite
recently the conjecture has been proved by Kang, Kelly, Kühn,
Methuku and Osthus. We should also add that apparently Erdős
considered this to be one of his three most favourite combinatorial
problems.

Lovász. The background for this problem was that there was
a meeting in August 1972 at Ohio State University, where we dis-
cussed hypergraph theory, which was just beginning to emerge
as an interesting topic. The idea is that instead of having a stand-
ard graph where an edge always has two endpoints, you can
instead look at structures where an edge has three endpoints, or
five endpoints, and so on. These are called hypergraphs, and the
question was: given any particular question in graph theory, like
chromatic number, connectivity, etc., how can this be generalized
to hypergraphs?

One of these questions was what is called the edge chromatic
number in graph theory. It’s a well known variant of the chromatic
number problem, in which case you colour the edges, not the
vertices, and you want that edges incident with the same vertex
should get different colours. And then you can ask the same ques-
tion about hypergraphs and what upper bound you can give on the
number of different colours needed. We came up with this obser-
vation that in all the known examples the number of vertices was
an upper bound on the number of colours needed to edge-colour
the hypergraph.

A few weeks after this meeting at Ohio State, I was visiting
the University of Colorado, Boulder, and so was Erdős. Then Faber
gave a party, and we began to discuss mathematics, that is what
mathematicians usually do at parties, and so we came up with this
question.

Erdős didn’t really believe this to be true. I was more optimistic
and thought maybe it is true. It certainly was a nice conjecture,
stating that the number of vertices was an upper bound on how
many colours is needed. Then we realized that the conjecture
had some nontrivial special cases, like something called the Fisher
inequality in the theory of block designs. And that is where we
got stuck. The conjecture became more and more famous, it’s
a very elementary question, very simple to ask. Nobody could
actually get a good grip on it. Eventually Jeff Kahn was able, maybe
10 years ago or so, to prove it with a factor of 1+ ε, for every
positive ε.

A year ago, Daniela Kühn and her students were able to prove
it, at least for every large enough n. One peculiar feature of this
conjecture is that you make a conjecture based on small n, and
then you can prove it for very large n. And what is in between often

remains a question mark. She gave a talk about it at the European
Congress a couple of months ago, and it was very convincing, so
I think it’s now proved. 

Quantum interactive proofs

In January 2020, five people, Ji, Natarajan, Vidick, Wright and Yuen
announced that they had proved a result in quantum complexity
theory that implied a negative answer to Connes’ embedding
problem in operator algebra theory. This came as a total surprise
to a lot of people, included the two of us, as we are somewhat
familiar with the Connes problem, a problem whose proof has
withstood all attacks over the last forty plus years. That a problem
which seems to have nothing to do with quantum complexity
theory should find its solution within the latter field is astonishing
to us. Professor Wigderson, do you have any comments?

Wigderson. Ever since this result came out I have tried to give
popular lectures about the evolution of the particular field that
is relevant to this result, namely interactive proofs, specifically
the study of quantum interactive proofs and how it connects to
the MIP∗ = RE result, as well as to particular questions, like the
Connes embedding problem and the Tsirelson problem in quantum
information theory. Of course, every particular result might be
surprising, but I am not at all surprised by this connection. By
now we have lots and lots of places all over mathematics where
ideas from theoretical computer science, algorithms and, of course,
discrete mathematics, are present and reveal their power.

As for the connection to operator algebras, and specifically
to von Neumann algebras, it’s not so mysterious as it may seem,
because of quantum measurements involving applications of op-
erators. The question of whether these operators commute is
fundamental in the understanding both of quantum information
theory and in the power of quantum interactive proofs. I was more
focused on the reason that possibly a proof could be obtained
in the realm of quantum interactive proofs, and not in classical
quantum information theory.

If you look at the formulation of quantum interactive proofs –
particularly the MIP∗ ones of multiple provers – and you com-
pare them to the EPR paper, the famous Einstein–Podolsky–Rosen
Gedankenexperiment testing quantum mechanics, you see the
same picture. You see there a two-prover interactive proof like you
see in the more recent complexity theoretic quantum interactive
proofs. If you look at the history of studying such experiments or
proofs, in the physics world the focus was on particular different
types of problems. There are several famous ones, like the Bell
inequalities. Whereas it’s very natural for people studying quantum
interactive proofs to study them as a collection. There is a collec-
tion of games, some games reducible to each other, and the proof
that MIP∗ = RE is a sequence of amazing reductions and ampli-
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fication results using various quantum coding theory techniques
and so on, even PCP techniques. This complexity-theoretic way
of looking at things builds a better understanding of how they
behave as a whole, and I think that is the source of the power of
this approach, and the applications come from the final result just
because the objects of study are operators on a Hilbert space.

Non-commutative optimization

Professor Wigderson, you are currently working on something
that appears to us to be quite different from what you have been
working on earlier. You call it noncommutative optimization, and
it seems to us that you are doing optimization in the presence
of symmetries of certain noncommutative groups, general linear
groups and stuff like that. It seems like a truly fascinating project
with connections to many areas. Would you care to comment
a little bit on what you are doing here?

Wigderson. First of all, it’s completely true that it’s very different
from anything that I have done before, because it’s more about
algorithms than about complexity. Even more, it’s using far more
mathematics that I did not know about beforehand. So I had to
learn, and I still have to learn much more mathematics, especially in-
variant theory, representation theory and some algebraic geometry
that I certainly was not aware of and never needed before.

This again shows the interconnectivity in mathematics, in par-
ticular, what is used from different areas of mathematics in order
to obtain efficient algorithms and for obtaining other results in
discrete mathematics. This connection, of course, goes in the other
direction as well and enriches these mathematical areas.

This project started from something that is very dear to me,
namely the derandomization project that I have been thinking
about for thirty years. One of the simplest problems which we
know has a probabilistic algorithm, but that we don’t know have
a deterministic counterpart – I mean without assumptions – is
the testing of algebraic identities. You can think of the Newton
identities between symmetric polynomials, you can think of the
Vandermonde identity, there are lots and lots of algebraic identities
in mathematics.

If anybody conjectures an algebraic identity, what do you do,
how do you check it? You may think about these as polynomials
with many variables. Of course, you can not expand them and
compare coefficients, because this would take exponential time
since there are exponentially many coefficients. Well, there is a sure
probabilistic way. What we do is just to plug random numbers
into the variables and evaluate the polynomials in question, and
compare the results. This will be correct with high probability. So
there is a fast probabilistic algorithm for this problem of polynomial
identity testing, and we don’t know if a fast deterministic one
exists.

About twenty years ago Kabanets and Impagliazzo realized
something absolutely fundamental, namely that if you find a de-
terministic polynomial time algorithm for this problem, you would
have proved something like P different from NP. The analogue in
algebraic complexity theory is that you would have proven that the
permanent is exponentially harder to compute than the determ-
inant. In short, a hardness result which will be a breakthrough in
computer science and mathematics!

First of all, I would like to say that this statement should be
shocking, because a fast algorithm implies hardness of a differ-
ent problem. It implies a computational hardness result, which is
amazing. Even before this result it was a basic problem to try to
derandomize, and there were various attempts in many special
cases that I worked on and others worked on. And, of course, this
result made these attempts far more important.

Some years ago the issue of what happens with polynomials
or rational functions that you are trying to prove are equivalent,
are not with commuting variables, but are rather with noncommut-
ative variables. It became evident that we needed it in a project
here with two postdocs, Pavel Hrubes and Amir Yehudayoff. We
started working on the noncommutative version of testing algeb-
raic identities; it’s basically the word problem for skew fields, so
it’s a very basic problem. It became apparent from our attempts
that invariant theory was absolutely crucial for this problem. So
understanding the invariants of certain group actions on a set of
matrices, as well as understanding the degree of the generating
invariants of such actions, became essential.

So I started learning about this and kept asking people in this
area, and then I started collaborating with two students in Prin-
ceton, Ankit Garg and Rafael Oliveira. Eventually, cutting a long
story short, together with Leonid Gurvits we found a deterministic
polynomial time algorithm for solving this problem in a noncom-
mutative domain, for noncommutative variables. Nothing like this
was known, even a randomized algorithm was not known, and it
uses essentially results in invariant theory.

And then we were trying to understand what we did. For the
last five years I have repeatedly attempted to better understand
what we did, to understand the extent of the power of these types
of algorithms. What are the problems they are related to or can
solve, and what these techniques can do, and what, in general, is
the meaning of this result?

I should say something about applications of this. It turns out
that it captures a lot of things that seemed to be unrelated. It’s
useful not just for testing identities, but also for testing inequalit-
ies, like the Brascamp–Lieb inequalities. It’s good for problems in
quantum information theory, it’s good for problems in statistics,
for problems in operator theory. It seems to be very broad.

Now all these algorithms just evolve along the orbit of a group
action on some linear space. That is the nature of all of them.
Many of these problems we are looking at are not convex, so
standard convex optimization methods don’t work for them. But
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these algorithms work. And what we understood was that these
algorithms can be viewed as doing convex optimizations, standard
first order, second order methods, that are used in convex optimiz-
ation, except, instead of taking place in Euclidean space, they take
place in some Riemannian manifold, and the convexity that you
need is the geodesic convexity of that space.

By now we have a theory of these algorithms, but, of course,
there is plenty that we don’t understand. The growing number
of application areas of this I find very fascinating. Of course, I am
hoping that eventually it will help us to solve the commutative case
and understand what works and what does not work there.

LL and AW are super heros

To our delight also some young Koreans have discovered that you
are mathematical super heroes. Your two sons have a common
Ph.D. advisor at Stanford, Jacob Fox, and this was seized upon by
a South Korean popular science journal aimed at a younger audi-
ence, where you and your sons are depicted as various characters
from Star Wars. As high profile scientists, do you feel comfortable
being actual heroes with lightsabers and what not?

Lovász. I always like a good joke, so I think this was a great
cartoon. 

Wigderson. I also loved it, and I think that it just shows that one
can always be more creative in getting younger audiences excited
about mathematics in ways that you did not expect before.

Is science under pressure?

There is a question we would like to ask that has nothing to do
as such with mathematics, and that is: do you feel that science
is under pressure and is this something that mathematicians can
and should engage in?

Lovász. I think that is true, science is under pressure. The basic
reason for that, as far as I see it, is that it has grown very fast,
and people understand less and less of what is going on in each
particular science, and that makes it frightening, that makes it
alien. Furthermore, that also makes it more difficult to distinguish
between what to believe and what not, to distinguish between
science and pseudoscience. This is a real problem. I think we have
to very carefully rethink how we teach students in high school.
Now, mathematics is one of the areas where the teaching of it is
really not up to what it could be. I guess about 90% of the people
I meet say: I have always hated mathematics.

I think we are not doing our job of teaching well. I am saying
this in spite of that some of my best friends are working on trying
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to improve mathematics education. Many people realize that there
is a problem there, but it’s very difficult to move ahead. I have less
experience with other areas, but just looking from the outside I can
see how biology today is different from what I studied in biology
in high school. It’s clear that it’s a huge task there in front of the
scientific community.

Mathematics should play central role because a lot of sciences
are using more and more mathematics, not only statistics, which
is sort of standard. For example, network theory or, of course,
analysis and differential equations, and quantum physics, which
is really also mathematics; it’s a complicated area of multilinear
algebra, so to say. I think the problem is there and that we should
do something about it.

On behalf of the Norwegian Mathematical Society and the Europ-
ean Mathematical Society, and the two of us, we would like to
thank you for this very interesting interview, and again, congratu-
lations with being awarded the Abel Prize!

Wigderson. Thank you!

Lovász. Thank you!
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Mudumbai Seshachalu Narasimhan (1932–2021)

Oscar García-Prada

On May 15, 2021, the eminent Indian mathematician Mudumbai
Seshachalu Narasimhan passed away at his home in Bangalore.
His work in the field of geometry is internationally recognised,
having deep connections with different branches of mathematics
and theoretical physics. Narasimhan spent much of his career
at the Tata Institute of Fundamental Research (TIFR) in Mumbai,
where he was a key figure in the creation and development of
the internationally acclaimed modern Indian school of algebraic
geometry. After retiring from TIFR, from 1993 to 1999, Narasimhan
was Head of the Mathematics Section of the International Centre
for Theoretical Physics (ICTP) in Trieste, an institution created in
1964 by the Pakistani 1979 Nobel Laureate in Physics Abdus Salam.

1 Life and career

Narasimhan was born on 7 June 1932 in Thandarai, a small town
in Tamil Nadu (India), to a prosperous farming family. Although
their circumstances were somewhat reduced after his father passed
away when he was only thirteen, his family encouraged him to
do what he wanted. From a young age he showed a great in-
terest in mathematics and already in school he decided to become
a researcher, even before really knowing what that meant. He
completed his first university studies at Loyola College in Madras,
in the heart of British India. There, he had as a teacher the French
Jesuit Father Charles Racine, who was in contact with legendary
figures of mathematics such as Elie Cartan, Jacques Hadamard,
André Weil and Henri Cartan. Racine introduced him to modern
mathematics, unknown in India, and, in particular, to the great
French school. At Loyola College Narasimhan met C. S. Seshadri –
also deceased in 2020 – who would later become one of his main
collaborators.

Following his studies at Loyola College and on the advice
of Father Racine, Narasimhan moved in 1953 to the newly cre-
ated TIFR in Bombay to do his doctorate under the direction of
K. Chandrasekharan, one of the founders of the centre’s School of
Mathematics. There he was able to interact with first-rate math-
ematicians who came as visitors to teach courses of two or three
months. Among them was Laurent Schwartz – Fields medallist in

Figure 1. M. S. Narasimhan, ICMAT, Madrid, 2017

1950 – who would have a great influence on Narasimhan and
would be his mentor during his three-year stay in Paris in the late
1950s, where he would also coincide with Seshadri. In the initial
period of his stay in Paris he could not completely concentrate
on mathematics as he was hospitalised due to a sickness. How-
ever, he used that time to read the paper of Kodaira and Spencer
on deformations of complex structures which eventually played
a great role in his future work. During his time in France he also
collaborated with Japanese mathematician Takeshi Kotake, who
was also in Paris to work with Schwartz.

When he returned to TIFR in 1960, Narasimhan and Seshadri
started an intense collaboration that resulted in the famous Nara-
simhan–Seshadri theorem, published in 1965. A bit later, he began
his long and fruitful collaboration with S. Ramanan. Along with
Ramanan, who was his first student, Narasimhan’s student roster
includes other such illustrious names as N. Nitsure, R. Parthasarathy,
V. K. Patodi, M. S. Raghunathan, T. R. Ramadas and R. R. Simha, who
have made essential contributions to various areas of mathematics.
Narasimhan’s presence at TIFR was indeed a source of inspiration
to several generations of young mathematicians.

During his time at TIFR, Narasimhan had also important ad-
ministrative activity. In particular, he was the first Chairman of the
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National Board for Higher Mathematics, which was set up in 1983
by the Government of India, under the Department of Atomic
Energy, to foster the development of higher mathematics in the
country. Together with S. Ramanan, who acted as Secretary, Nara-
simhan undertook the task of setting it up in the initial years. He
was also a member of the Executive Committee of the Interna-
tional Mathematical Union (IMU) during the period 1983–1986,
as well as President of IMU’s Commission on Development of
Exchange.

After retiring from TIFR, Narasimhan was the Head of the ICTP
Mathematics Section from 1993 to 1999. In this position, he carried
out in particular important work in supporting young mathem-
aticians from developing countries. When he retired from ICTP, he
continued to be an adviser of ICTP and served as a member of its
Scientific Council. In 2020, he was awarded the Spirit of Abdus
Salam Award by the family of the ICTP founder at a ceremony
where numerous mathematicians from around the world showed
him their great admiration, respect and affection.

After his stay at the ICTP, Narasimhan spent three years at
SISSA (Trieste), before returning to India, where he continued his
mathematical activity at the Indian Institute of Science in Bangalore.

Narasimhan’s work earned him many prestigious awards, in-
cluding the Shanti Swarup Bhatnagar Prize (1975), Third World
Academy of Sciences Prize for Mathematics (1987), the Srinivasa
Ramanujan Medal (1989), the French Ordre National du Mérite
(1990), the Padma Bhushan Award by the President of India (1990),
the C. V. Raman Birth Centenary Award of the Indian Science Con-
gress (1994), and the 2006 King Faisal International Prize in Science
that he shared with Sir Simon Donaldson. He was also a Fellow
of the Indian National Sciences Academy, Indian Academy of Sci-
ences, the Royal Society of London and the Third World Academy
of Sciences.

Narasimhan was a great fan of detective novels, and literature
in general, in Tamil, English and French. He also liked Indian classical
music, as well as Western classical music.

Narasimhan was married to Sakuntala Narasimhan, a renowned
Indian classical music singer and journalist. The couple had a daugh-
ter, Shobhana Narasimhan, a physics researcher and professor at
the Jawaharlal Nehru Center for Advanced Scientific Research, and
a son, Mohan Narasimhan, who, after obtaining an MBA and hav-
ing worked in the US for several years, returned to India, where he
teaches martial arts.

2 Work

Narasimhan made important contributions in several areas of math-
ematics, including algebraic geometry, differential geometry, rep-
resentation theory of Lie groups and analysis. Here, we will focus
mostly on his work in algebraic geometry, and specially in the the-
ory of moduli spaces of vector bundles on Riemann surfaces, with

particular reference to works that are more familiar to the author.
For details, one can consult the Collected Papers of M. S. Nara-
simhan [10].

The theorem of Narasimhan and Seshadri
Upon his return to TIFR in 1960, Narasimhan embarked on an
intense collaboration with Seshadri that resulted in the famous
Narasimhan–Seshadri theorem, published in 1965. This theorem
captures the interconnection between various branches of geo-
metry, topology and theoretical physics, and was the basis for later
fundamental works by some of the greatest mathematicians of our
time such as Michael Atiyah, Raoul Bott, Simon Donaldson, Karen
Uhlenbeck, Shing-Tung Yau, Nigel Hitchin and Carlos Simpson,
among others.

The problem of classifying holomorphic vector bundles over
a compact Riemann surface X of genus g is a central one in algeb-
raic geometry. The set of equivalence classes of holomorphic line
bundles on X is given classically by the Picard group of X. For genus
g = 0 higher rank holomorphic vector bundles were classified by
Grothendieck (1957), and in a different fashion by earlier work of
Birkhoff (1909). The case of elliptic curves (g = 1) was solved by
Atiyah (1957).

For genus g ≥ 2 the problem is much harder. Inspired by some
remarks in the 1938 paper of A. Weil on “Généralisation des fonc-
tions abéliennes”, Narasimhan and Seshadri started looking in
1961–62 at unitary vector bundles. A unitary representation ρ of
dimension n of the fundamental group of X defines a holomorphic
vector bundle Eρ of rank n and degree 0, which is referred to as
a unitary vector bundle. This is called an irreducible unitary vector
bundle if ρ is irreducible. They showed that the infinitesimal deform-
ations of a unitary vector bundle Eρ as a holomorphic bundle can
be identified with the infinitesimal deformations of the representa-
tion ρ. From this, they deduced that the set of equivalence classes
of unitary vector bundles had a natural structure of a complex
manifold, and were able to compute the expected dimension.

A breakthrough came with the work of Mumford on Geometric
Invariant Theory. In the 1962 International Congress in Stockholm,
he introduced the notion of stability of a vector bundle on a com-
pact Riemann surface, and proved that the set of equivalence
classes of stable bundles of fixed rank and degree has a natural
structure of a non-singular quasi-projective algebraic variety, pro-
jective if the rank and degree are coprime. Let E be a holomorphic
vector bundle over X. Define the slope of E as

μ(E) = deg(E)
rank(E) .

The holomorphic vector bundle E is said to be stable if μ(F) < μ(E)
for every proper holomorphic subbundle F ⊂ E. One can similarly
define semistability replacing the strict inequality by ≤ for every
subbundle F ⊆ E.
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After they became aware of Mumford’s work, the relation with
unitary bundles was clear to them. Narasimhan and Seshadri proved
that an irreducible unitary bundle is stable. For arbitrary degree
they showed that the stable vector bundles on X are precisely the
vector bundles on X which arise from certain irreducible unitary
representations of suitably defined Fuchsian groups acting on the
unit disc and having X as quotient. The result that they proved in
[8] can be easily reformulated as saying that a holomorphic vector
bundle over X is stable if and only if it arises from an irreducible pro-
jective unitary representation of the fundamental group of X. From
this, one deduces that a reducible projective unitary representation
of the fundamental groups corresponds to a direct sum of stable
holomorphic vector bundles of the same slope (what is nowadays
referred as a polystable vector bundle). One can observe that the
projective unitary representations lift to unitary representations of
a certain central extension of the fundamental group of X.

The Narasimhan–Seshadri theorem has been a paradigm and
an inspiration for almost 60 years now for many important devel-
opments. The theorem was generalised by Ramanathan (1975) to
representations into any compact Lie group. The gauge-theoretic
point of view of Atiyah and Bott (1982), using the differential geo-
metry of connections on holomorphic bundles, and the new proof
of the Narasimhan–Seshadri theorem given by Donaldson (1983)
following this approach, brought new insight and new analytic
tools into the problem. In this approach a projective unitary repres-
entation of the fundamental group is the holonomy representation
of a unitary projectively flat connection.

The case of representations into a non-compact reductive
Lie group G required the introduction of new holomorphic ob-
jects on the Riemann surface X called G-Higgs bundles. These
were introduced by Hitchin (1987), who established a homeo-
morphism between the moduli space of reductive representation in
SL2(ℂ) and polystable SL2(ℂ)-Higgs bundles. This correspondence
was generalised by Simpson (1988) to any complex reductive Lie
group (and in fact, to higher dimensional Kähler manifolds). The
correspondence in the case of non-compact G needed an extra
ingredient – not present in the compact case – having to do with
the existence of twisted harmonic maps into the symmetric space
defined by G. This theorem was provided by Donaldson (1987)
for G = SL2(ℂ) and by Corlette (1988) for arbitrary G. It is per-
haps worth pointing out that this theorem is a twisted version
of an existence theorem of harmonic maps of Riemannian man-
ifolds proved by Eells–Sampson (1964) pretty much around the
same time as the theorem of Narasimhan and Seshadri. Corlette’s
theorem, which holds for any reductive real Lie group, can be
combined with an existence theorem for solutions to the Hitchin’s
equations for a G-Higgs bundle, given by the author in collabor-
ation with Bradlow, Gothen and Mundet i Riera (2003, 2009) to
prove the correspondence for any real reductive Lie group G. Earlier,
Simpson (1992) gave an indirect proof of this by embedding G in
its complexification.

There is another direction in which the Narasimhan–Seshadri
theorem has been generalised. This is by allowing punctures in the
Riemann surface. Here one is interested in studying representations
of the fundamental group of the punctured surface with fixed
holonomy around the punctures. These representations now re-
late to the parabolic vector bundles introduced by Seshadri (1977).
The correspondence in this case for G = Un was carried out by
Mehta and Seshadri (1980). A differential geometric proof mod-
elled on that of Donaldson for the parabolic case was given by
Biquard (1991). The case of a general compact Lie group has
been studied by Bhosle–Ramanathan (1989), Teleman–Woodward
(2003), Balaji–Seshadri (2015), Balaji–Biswas–Pandey (2017) and
others, under suitable conditions on the holonomy around the
punctures.

The non-compactness in the group and in the surface can be
combined to study representations of the fundamental group of
a punctured surface into a non-compact reductive Lie group G.
Simpson (1990) considered this situation when G = GLnℂ. Biquard
and Mundet i Riera in collaboration with the author (2020) exten-
ded this correspondence to the case of an arbitrary real reductive
Lie group G (including the case in which G is complex), establishing
a one-to-one correspondence between reductive representations
of the fundamental group of a punctured surface X with fixed
arbitrary holonomy around the punctures and polystable parabolic
G-Higgs bundles on X.

In 1972 Takemoto generalised Mumford’s stability to holo-
morphic vector bundles on a higher dimensional complex projective
variety. This was easily extended to any compact Kähler manifold
and, in this setup, the projectively flat condition of the theorem of
Narasimhan and Seshadri generalises to the Hermitian–Yang–Mills
equation, whose existence of irreducible solutions is equivalent to
Mumford–Takemoto stability of the bundle, as proved by Donald-
son (1986, 1987) in the algebraic case, and by Uhlenbeck and Yau
(1986) in the general Kähler situation.

In a very different direction, partial p-adic analogues of the
Narasimhan–Seshadri theorem and the Hitchin–Simpson corres-
pondence have been studied by Deninger–Werner (2005, 2010),
Faltings (2005, 2011), Ogus–Vologodsky (2007), as well as Abbes–
Gros (2016) and Xu (2017).

Collaboration with S. Ramanan
After his return to TIFR in 1960, Narasimhan also began his long and
fruitful collaboration with S. Ramanan. Together, they developed
over more than two decades the theory of moduli spaces of vector
bundles on Riemann surfaces.

Their first collaboration, however, was in the area of differential
geometry, proving the existence of universal connections. In a first
paper (1961) they proved that for the unitary group, namely the
Stiefel bundle over the Grassmannian, there was a natural homo-
geneous connection which could serve as a universal connection.
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They later generalised this result to all compact Lie groups and in
fact to all Lie groups (1963). This result has been extensively used
by physicists and geometers, for instance in Chern–Simons theory
and in the work of Quillen on superconnections.

After the work of Narasimhan and Seshadri, using Mumford’s
theory, Seshadri (1967) showed that on the set M(n,d) of semi-
stable vector bundles of rank n and degree d on X of genus g ≥ 2,
under a certain notion of equivalence introduced by Seshadri – what
later was called S-equivalence –, there is a natural structure of a nor-
mal projective variety. In [6] Narasimhan and Ramanan showed that
the smooth points of M(n,d) correspond precisely to the stable
vector bundles, except for the case n = 2, g = 2 in which case
M(2,0) is smooth. They also gave an explicit description ofM(2,0)
and M(2, 1) when g = 2. The explicit description of M(2, 1) had
also been given independently by Newstead (1968) using different
methods, and was later extended by Desale–Ramanan (1976) to
hyperelliptic curves. Later Narasimhan and Ramanan began study-
ing the case of genus g = 3 for which an earlier purely geometric
study by Coble was very helpful.

Their next joint endeavour was to study the geometry of the
moduli spaces M(n,d), in general, using the geometry of X. Nara-
simhan and Ramanan [7] proved an analogue for the moduli spaces
of vector bundles of the Torelli theorem regarding the Jacobian of X.
A significant difference is that, unlike the Jacobian, which can be
deformed into abelian varieties which are not necessarily Jacobians,
the deformations of the moduli spaces of fixed determinant are ob-
tained only from deformations of the Riemann surface. In [7] they
introduced and exploited the notion of Hecke correspondence. In
particular, when the genus is 2, this is a correspondence between
the moduli spaces M(2, 0) and M(2, 1) with fixed determinants

Figure 2. From left to right: M. S. Narasimhan, the author, C. S. Seshadri,
S. Ramanan and M. S. Raghunathan, Indian Institute of Science,
Bangalore, 2012

that they had explicitly described. The Hecke correspondence has
been extensively used in the study of moduli spaces and plays
a central role in the Geometric Langlands Programme.

They later looked at direct images of line bundles on etale
coverings of the Riemann surface, and described them as fixed-
point subvarieties of the moduli space of vector bundles under
a natural action given by tensoring by a line bundle of finite order.
Using the fixed point theorems, they were able to compute some
topological invariants of the moduli space. This provided a higher
rank generalisation of the Prym construction that has been recently
generalised tomoduli spaces of principal bundles and Higgs bundles
in joint work of the author with Ramanan (2019), and with Barajas
(2021).

Jointly with A. Beauville, Narasimhan and Ramanan (1989) gen-
eralised the Hitchin integrable system, given by the moduli space of
Higgs bundles, to the situation in which the Higgs field is twisted by
an arbitrary line bundle. This was extensively used by Ngô (2010) in
his proof of the fundamental lemma of the Langlands Programme.
A generalisation of this system twisting by a higher rank vector
bundle was given recently by Narasimhan in collaboration with
G. Gallego and the author [2]. This generalisation was motivated
by a problem in supersymmetric gauge theory, and made use of
ideas of Chen and Ngô (2020) in their study of the Hitchin fibration
for higher dimensional varieties. A generalisation of the results by
Beauville–Narasimhan–Ramanan for higher dimensional varieties
was given by Narasimhan and Hirshowitz (1994).

The Harder–Narasimhan filtration
Another seminal contribution of Narasimhan is his joint work with
G. Harder [3] on the computation of the cohomology of the moduli
space of vector bundles M(n,d) with n and d coprime. Their num-
ber theoretical approach, counting points over finite fields, was
based on theWeil conjectures that had just then been proved by De-
ligne (1974), and Siegel’s formula. Earlier, Harder (1970), using the
work by Newstead (1968) on the computation of the Betti numbers
for M(2, 1), had established a connection between the cohomo-
logy groups of the rank 2 moduli space and the Tamagawa number
of SL2(ℂ). This method, pursued by Desale–Ramanan (1975), led
to an explicit inductive formula for the Betti numbers of the moduli
spaces M(n, d) in the coprime situation. Later, Atiyah and Bott
(1983) used Yang-Mills theory to give an alternative computation
of the Betti numbers.

An important concept introduced in [3] is that of Harder–
Narasimhan filtration. Harder and Narasimhan proved that given
any vector bundle E there is a canonical filtration

0 = E0 ⊂ E1 ⊂ ⋯ ⊂ Ek = E

such that Ei/Ei−1 is semistable for i = 1,…, k, and

μ(Fi/Fi−1) > μ(Fi+1/Fi) for i = 1,…, k− 1.
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The Harder–Narasimhan filtration also played a central role in
the approach of Atiyah and Bott, using the differential geometry
of connections and holomorphic structures on vector bundles.

The notion of Harder–Narasimhan filtration has been extended
to principal bundles, Higgs bundles and other similar objects with
important applications. Analogues of this filtration have been used
extensively in numerous other contexts in algebraic geometry and
number theory.

Other contributions
There are many other important contributions of Narasimhan, some
of which would deserve a section of their own, but for lack of space
wewill just briefly describe some of them here. For a more complete
account we refer to [10].

It was in the mid 1950s that the first papers of Narasimhan
appeared. They were devoted to the study of the Laplace operator
on Riemannian manifolds (1956) and certain extensions of elliptic
operators (1957). After these, he wrote a paper giving a new ap-
proach to the construction of Green’s function of an open Riemann
surface (1960), and another paper studying the local properties of
variations of complex structures on a relatively compact subdomain
of an open Riemann surface (1961).

Together with T. Kotake, Narasimhan proved a theorem charac-
terising real analytic functions by Cauchy-type inequalities satisfied
with respect to powers of a linear elliptic operator with analytic
coefficients (1962). This result was used in the original proof of
the Atiyah–Bott fixed point theorem, and has been generalised
in several directions by many authors, including Lions–Magenes,
Bouendi–Goulaouic, Bouendi–Metvier and Bolly–Camus–Mattera.

Narasimhan and R. R. Simha [9] proved, using differential geo-
metric methods, that the set of isomorphism classes of complex
structures with ample canonical line bundle on a compact connec-
ted real analytic manifold has a natural structure of a Hausdorff
complex space.

Jointly with K. Okamoto [4], Narasimhan made an import-
ant contribution to the theory of representation of Lie groups.
It had been suggested by Langlands (1966) that, in analogy to the
Borel–Weil–Bott theorem for compact groups, the Harish-Chandra
discrete series of a real semisimple non-compact Lie group defining
a symmetric space of Hermitian type could be realised as square-
integrable harmonic forms in certain holomorphic vector bundles.
The work of Narasimhan and Okamoto was the first breakthrough
in the proof of this conjecture. Although Narasimhan did not pur-
sue this any further, his student Parthasarathy has contributed in
an important way to this field.

Narasimhan wrote two joint papers with H. Lange: the first
one (1983) on the study of maximal subbundles of rank two vector
bundles on curves, and a second one (1989) on squares of ample
line bundles on abelian varieties.

J.-M. Drezet and Narasimhan [1] proved that the moduli space
of vector bundles on a curve is locally factorial and determined
the Picard group, showing that this is isomorphic to the integers.
Their results enable one to define a generalisation of the Riemann
theta divisor of the Jacobian. The famous Verlinde formula gives
the dimension of the space of sections of powers of the theta line
bundle (generalised theta functions) on the moduli space. Tsuchiya–
Ueno–Yamada (1989) had proved factorisation theorem and the
Verlinde formula in the context of Conformal Field Theory. Nara-
simhan and Ramadas [5] gave an algebro-geometric proof of this in
the rank 2 case, which they extended also to parabolic bundles. In
a previous collaboration, Narasimhan and Ramadas (1979) studied
Yang–Mills theory on the product of the 3-sphere with the real line,
using topological and differential geometric techniques to identify
the configuration space as the base space of a principal bundle
with the gauge group as structure group.

In joint work with S. Kumar (1997), Narasimhan extended his
result with Drezet to the moduli space of principal bundles over
a compact Riemann surface with a simple, simply-connected con-
nected complex affine algebraic structure group. And with S. Kumar
and A. Ramanathan (1997), using the relation between principal
bundles and infinite Grassmanians, they elucidated the relation
between conformal blocks and generalised theta functions. This
enables one to compute the dimension of the space of generalised
theta functions using the Verlinde formula. This was also proved
by Beauville–Lazlo (1994) in the vector bundle case.

Narasimhan and M. Nori (1981) proved that there are only
finitely many smooth curves having a given abelian variety as the
Jacobian. I. Biswas and Narasimhan (1997) studied Hodge classes
of moduli spaces of parabolic bundles on general curves. With
Y. I. Holla (2001), Narasimhan proved a generalisation of a theorem
of Nagata on a ruled surface to the case of a bundle of flag varieties
associated to a principal bundle.

Narasimhan also worked on vector bundles on higher dimen-
sional varieties. He studied the moduli space M of stable vector
bundles of rank 2, vanishing first Chern class and second Chern
class c2 = 2 on complex projective 3-space. With A. Hirschowitz
(1982) he proved that M is rational. A compactification of M was
given by Narasimhan and G. Trautmann (1990) as the closure in the
moduli space of sheaves constructed by Maruyama (1978). Later,
Narasimhan and Trautmann (1991) computed the Picard group of
the compactification. With W. Decker and F.-O. Schreyer (1990),
he studied rank 2 vector bundles on projective 4-space, developing
a construction by Barth (1980) of irreducible rank 2 bundles with
first Chern class c1 = −1. G. Elencwajg and Narasimhan (1983)
wrote a paper on projective bundles on complex tori.

Jiayu Li and Narasimhan (1999) proved a correspondence re-
lating the existence of a Hermitian–Einstein metric on a rank 2
parabolic bundle over a Kähler surface to the stability of the para-
bolic bundle. This was related to work by Munari (1993) and
Biquard (1997).
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3 Some personal reminiscences

I first met Narasimhan quite soon after having completed my
doctoral thesis in 1991. From the very beginning, he was very
kind to me, and extremely generous in the exchange of ideas. In
those years, we mostly met in conferences in Europe, but thanks
to my collaboration with S. Ramanan, whom I had met soon
after Narasimhan, I started travelling regularly to India, where
we also met.

We were very lucky to have Narasimhan in Madrid on several
memorable occasions. In 2006 he participated in a panel, jointly
with Sir Michael Atiyah, Jean-Pierre Bourguignon, Philip Candelas,
José Manuel Fernández de Labastida, and Shing-Tung Yau on “New
Interactions between Geometry and Physics”, organised in the
context of a conference in honour of Nigel Hitchin for his 60th
birthday, that took place in Madrid soon after the International
Congress. In 2012, the Instituto de Ciencias Matemáticas (ICMAT) in
Madrid organised a conference in his honour for his 80th birthday,
and later in 2017 he was invited as a special guest for a conference
that ICMAT organised celebrating Ramanan’s 80th birthday. On
that occasion he participated in a special panel jointly with Antonio
Córdoba, Nigel Hitchin and S. Ramanan on “Mathematics in India
and Europe”. A photographic exhibition on “Kolam, an Ephemeral
Women’s Art of South India” by photographer and anthropologist
Claudia Silva was opened after the panel.

Over the years, we had many discussions on the possibility of es-
tablishing a scheme for mathematical collaboration between India
and Europe in our research field. There had been some bilateral
programmes between France and India, and we were contemplat-
ing the idea of bringing that to a larger context. It took a long time,
but eventually we established a collaboration programme involving
four nodes in Europe (Aarhus, Madrid, Oxford and Paris) and four
in India (Bangalore, Mumbai and two in Chennai). This was the
Indo-European Project on Moduli Spaces that was operating during

Figure 3. From left to right: M. S. Narasimhan, S. Ramanan, N. Hitchin and
A. Córdoba, ICMAT, Madrid, 2017

Figure 4. From left to right: Guillermo Barajas, Guillermo Gallego,
Gadadhar Misra and M. S. Narasimhan, Bangalore, 2020

the period 2013–2017, involving more than eighty mathematicians,
funded under the Marie Curie Programme by the European Com-
mission, and coordinated by ICMAT in Madrid. Narasimhan played
an important role in the gestation of this project.

In addition to discussing mathematics and scientific collabora-
tion, Narasimhan and I very much liked to enjoy a glass (or two!)
of good red wine, very often in company of our common friend
and collaborator Ramanan, and other good friends. My wife and
I were very fortunate to enjoy his great hospitality and that of his
wife Sakuntala and daughter Shobhana, at his home during our
many visits to Bangalore over the last few years.

I last saw Narasimhan in person in Bangalore in February 2020,
during an activity on Moduli Spaces organised at the International
Centre for Theoretical Sciences (ICTS). On that occasion we also
had the opportunity to have a very nice dinner, accompanied as
usual by good red wine, with our friend Gadadhar Misra and other
friends. After the ICTS meeting, I went to Chennai for a few days,
for a visit to the Chennai Mathematical Institute (CMI), where as
a matter of fact I also saw C. S. Seshadri for the last time. I had
actually met Seshadri in the late 1980s when I was still a graduate
student at Oxford, where he gave a talk on parabolic bundles,
a subject of great interest at the time in relation to Jones–Witten
theory and the Atiyah–Segal approach to topological quantum field
theory.

My students Guillermo Barajas and Guillermo Gallego also came
to the workshop at ICTS in February 2020, and after that, while
I was visiting the CMI, they went to the Indian Institute of Science
to discuss with Narasimhan for a week. As always Narasimhan
was extremely generous, spending a lot of time talking with them
and, together with Gadadhar Misra, entertaining them (Figure 4).
The last paper of Narasimhan, written jointly with Gallego and the
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author [2] appeared just a few days before his passing. The discus-
sions with Barajas were very useful in connection with a joint paper
of Barajas and the author (2021), which generalises to principal
bundles and Higgs bundles the Prym-type construction given by
Narasimhan and Ramanan (1975).

In addition to being a great mathematician, Narasimhan was
a wonderful human being. He was kind, generous and sympathetic,
and is very much missed by many people who loved him.
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Teaching school mathematics to prospective teachers

Hung-Hsi Wu

What kind of mathematics should be taught to prospective mathe-
matics teachers has been a longstanding open problem in mathe-
matics education. We contend that we should teach them exactly
what they need for their work: school mathematics.

1 Introduction

Good school mathematics education requires teachers who are
mathematically knowledgeable. After all, one can’t teach what one
doesn’t know. However, at least in America, we are still none too
sure about what kind of mathematics we should teach prospective
teachers to make them knowledgeable (cf. [12]). In a well-known
article back in 1990 [1], Deborah Ball reported on her study of the
subject matter knowledge of 252 prospective mathematics teacher
candidates (217 elementary school teachers and 35 high school
teachers) in five universities. The study zeroed in on one topic:
division of fractions. When presented with the division of 1 3

4 ÷ 1
2

and four story problems, only 30% of them were able to select the
problem that correctly represented this division. In a smaller study,
35 of the 217 teachers (25 elementary and 10 high school) were
asked to create a word problem of their own to correctly represent
this division. Only 4 out of the 35 teachers (thus 11%) could give
a satisfactory answer and all 4 were high school teachers. Ball’s
(separate) interviews—on the same topic of fraction division—with
mathematics majors in college who did not plan to go into teaching
did not produce better results. Her conclusion was that the subject
matter preparation of prospective teachers was in dire need of our
serious reappraisal.

The inquiry into how best to help prospective teachers acquire
the needed understanding of mathematics for teaching naturally
predated Ball’s study and went back to at least the beginning of
the 20th century. In the waning days of the New Math phase of
the 1960s, E. G. Begle also pondered over the possible correlation
between teachers’ knowledge of the subject matter and their
students’ achievements. In his 1972 study of 308 teachers of high
school algebra [2], he found no evidence that the amount of teacher
training in mathematics led to increased student achievement. This
finding was further confirmed in 1979 [3].

The decades since the works of Begle and Ball have lent clarity
to the phenomenon they uncovered. We will first analyze Ball’s
data about 1 3

4 ÷ 1
2 , and then put the data in the proper perspec-

tive by coming to terms with the fact that school mathematics is
a separate discipline distinct from the mathematics we teach in
universities.

2 The division of fractions: two views

We will approach the topic of fraction division from two perspec-
tives. First, we describe what elementary students need to know to
answer Deborah Ball’s questions and, second, what university stu-
dents in a course on algebra can learn about fraction division. Due
to length limitations, we will focus only on the criticalmathematical
differences between the two without addressing the pedagogical
ramifications.

When the topic of fraction division is brought up in upper
elementary school, students face a real conceptual challenge: the
concept of a fraction is a higher level of abstraction than anything
they have ever faced, and the concept of division is the most elusive
of the four arithmetic operations on fractions. Students cannot
overcome either obstacle if they are not told exactly what these
concepts mean. As an Arizona elementary school teacher Kyle
Kirkman said:

I have learned that precise mathematical definitions are critical.
If precision is lacking, students will fill in any missing or vague
elements of the definition with whatever happens to be
present in their paradigm that seems to fit the idea. Not all of
mathematics is intuitive in nature, so this can definitely lead to
erroneous conclusions. [12, Section 4.2.4]

Unfortunately, it is the case that school mathematics usually
explains fractions to students in terms of vague metaphors without
giving a precise definition, at least not one that students can use
for reasoning about the four operations on fractions. We have to
first describe a remedy for this deplorable situation. We will define
a fraction in terms of something that feels “real” and “tangible”
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to elementary students, and the commonly accepted definition
nowadays is as a point on the so-called number line (see [9, Sec-
tions 12.1 and 12.2] or [11, pp. 1–18]), as follows. We assume
that we can tell whether two segments (i.e., closed intervals) on
a line have equal length or not. A number line is a horizontal line
on which the whole numbers have been identified as points so
that the numbers 1, 2, 3,… are placed successively to the right of
0 and the segments [0, 1], [1, 2], [2, 3],… all have equal length
(Figure 1). The fractions with denominators equal to 5 (for example)
consist of the whole numbers together with the division points
when each of the segments [0, 1], [1, 2], [2, 3],… is divided into
5 equal parts, i.e., 5 segments of equal length (Figure 2). We call
this sequence the sequence of fifths. We can likewise introduce
the sequence of n-ths for each nonzero whole number n. (Observe
the resemblance of the sequence of n-ths for each n to the se-
quence of whole numbers.) Fractions are by definition the totality
of all the points in the sequence of n-ths for all nonzero whole
numbers n.

Next, we introduce the concept of length for certain segments.
By definition, the length of the segment [0, ab ] (

a
b a fraction) is a

b .
Thus a segment with the same length as [0, ab ] now also has length
a
b . To put this definition to use, we introduce the concept of the
concatenation of a collection of segments—say L1, L2, and L3—
to be the segment formed by putting these segments together
end-to-end:

L1 L2 L3

It follows that the length of the concatenation of 3 of the parts
when [0, 1] is divided into (let us say) 7 equal parts is 3

7 because
this segment has the same length as [0, 37 ].

Since division is based on multiplication, we will come straight
to fraction multiplication without discussing equivalent fractions
or fraction addition. By definition, 2

5 × 3
4 is the length of the con-

catenation of 2 of the parts when the segment [0, 34 ] is divided
into 5 equal parts. The multiplication of two fractions in general is
defined similarly (see, e.g., [11, Section 1.5] or [15, Section 1.4]). It
becomes a nontrivial fact (for elementary students) to prove the

following product formula:

2
5
× 3

4
= 2× 3

5× 4
. (1)

See, e.g., [11, Theorem 1.5, p. 60].
This definition of fraction multiplication did not come out of

the blue. If, in the definition of 2
5 × 3

4 , we replace the fraction
3
4

by 1 (= 1
1 ), then the definition of

2
5 × 1 (“the total length of 2 of the

parts when [0, 1] is divided into 5 equal parts”) becomes exactly
the above definition of 2

5 , so that (not surprisingly) 2
5 × 1 = 2

5 . Fur-
thermore, if we consider the product of whole numbers, say 2× 3,
we can also regard it as the multiplication of the fractions 2

1 and 3
1 .

Then the definition of fraction multiplication says that this product
is the total length of 2 of the parts when the segment [0, 3] is
divided into 1 equal part, i.e., when each part is the segment [0,3]
itself. In other words, the product 2× 3, whether considered as
the product of two whole numbers or the product of two fractions,
is just 3+ 3. In this light, we see that this definition of fraction
multiplication is a very natural outgrowth of familiar concepts.

How is this concept of multiplication related to the real world?
To elementary students, this is an important concern, as the fol-
lowing problem shows.

Example 1. If 4 2
3 buckets of water fill a water container exactly,

what is the volume of the container if the volume of the bucket is
5.5 liters?

Solution. The important thing is to understand the given data.
Since 4 2

3 = 4+ 2
3 by definition, the container contains 4 buckets

and 2
3 of a bucket of water. The total volume of 4 buckets is clear:

4× 5 1
2 liters. Now, students have to understand (and a teacher

should explain) that “ 2
3 of 5 1

2 liters” means that it is the total
volume of “2 of the parts when 5 1

2 liters is divided into 3 parts of
equal volume”. By our definition of fraction multiplication, this is
precisely 2

3 × 5 1
2 liters on the number line whose “1” is interpreted

as “1 liter”. By the distributive law, the volume of the container is

(4× 5
1
2
) + (2

3
× 5

1
2
) = 4

2
3
× 5.5 liters.

Thus, “4 2
3 of 5.5 liters” is equal to “(4 2

3 × 5.5) liters”.
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Incidentally, this explains why, when textbooks do not define
fraction multiplication, they give the rote instruction that the word
“of” means “multiply”.

Next, division. We must first review the concept of division
among whole numbers (see [9, pp. 97–100]). Observe that, where-
as we can add or multiply any two whole numbers, we are not free
to subtract or divide any two whole numbers. For example, in the
context of whole numbers, the subtraction 3− 7 is not allowed,
nor is 21 ÷ 5. Let us explain the latter: within whole numbers,
we can write 21÷ 7 (respectively, 15÷ 3) only because we know
ahead of time that 21 (resp. 15) is a whole number multiple of 7
(resp. 3). For example, the definition of division 21÷ 7 is:

21÷ 7 = {the whole number k so that k× 7 = 21}. (2)

This is why 21÷ 7= 3. The definition makes it perfectly clear that,
without a prior guarantee that 21 is a multiple of 7, the whole
number 21 ÷ 7 would be impossible to define. Equivalently, if
we do not know that 21 objects can be partitioned into 3 equal
groups of 7, then we cannot talk about 21÷ 7. If students find
equation (2) to be confusing, remind them that (2) is no different
from the definition of subtraction:

21− 7 = {the whole number ℓ so that ℓ+ 7 = 21}.

Why this review is important is that the division among whole
numbers serves as a model for the division among fractions, be-
cause whole numbers are also fractions (see [9, pp. 284–289]). So,
according to (2), the division 1 3

4 ÷ 1
2 (1 3

4 is just 7
4 ) would make

no sense unless 1 3
4 is a fractional multiple of 1

2 in the sense that
1 3
4 = m

n × 1
2 for some fraction

m
n . (This

m
n is unique; see [9, Lemma,

p. 286] or [11, Lemma 1.7, p. 75].) Assuming there is such an m
n ,

then we can define 1 3
4 ÷ 1

2 in exactly the same way as in (2):

1
3
4
÷ 1

2
= {the fraction m

n
so that

m
n

× 1
2
= 1

3
4
}. (3)

See [9, p. 289] or [11, p. 75].
Surprisingly, in contrast with the case of whole numbers, it

turns out that such a fraction m
n on the right side of (3) can always

be found as follows:

1
3
4
= 1× 1

3
4
= (1

2
× 2

1
) × 1

3
4

= 1
2
× (2

1
× 1

3
4
) (associative law of mult.)

= (2
1
× 1

3
4
) × 1

2
(commutative law of mult.). (4)

From (4), we see that if we let m
n = 2

1 × 1 3
4 , then 1 3

4 = m
n × 1

2 and
(3) would allow us to conclude that

1
3
4
÷ 1

2
= 2

1
× 1

3
4
.

This is of course the invert and multiply rule for fraction division.
This reasoning is seen to be perfectly general.

We now give a word problem whose solution requires the use
of the division 1 3

4 ÷ 1
2 in Ball’s article [1] and we will also explain

how this comes about.

Example 2. How many cups of water will fill a jar with a volume
of 1 3

4 liters if the cup holds 1
2 liters?

Solution. Let m
n cups of water fill the jar. Using the reasoning in

Example 1 about the volume of a water container, we see that

m
n

× 1
2
= 1

3
4
.

By the definition of fraction division, this means

m
n

= 1
3
4
÷ 1

2
= 2

1
× 1

3
4
= 3

1
2
,

where the last equality is a routine calculation.

We have now done enough to show the minimal mathemati-
cal knowledge a school teacher needs to teach fraction division
correctly to elementary students. We point out once again that this
minimal knowledge is not typically what elementary students are
taught in schools. Be that as it may, it is time to take up the other
concern in Ball’s 1990 article about why university mathematics
majors may not possess such knowledge either. We will only be
able to provide the barest outline in the following discussion.

A university course on abstract algebra that includes the math-
ematically correct way to define fractions is essentially students’
first introduction to abstract mathematics. The main purpose of
such a course is to guide students’ first steps in the new environ-
ment of what is called abstract mathematics. Hence the relentless
emphasis in such courses is on correct definitions and proofs, and
on reducing all complex mathematical phenomena—by the use of
logic—down to the bare essentials. For the case at hand, let us put
ourselves at the juncture where students are already in possession
of the integers, to be denoted by ℤ, and are made aware that
the main defect of ℤ from an abstract point of view is that no
nonzero integer other than 1 and −1 has a multiplicative inverse,
i.e., given an integer z, z ≠ 1 or −1, there is no integer z ′ so that
zz ′ = z ′z = 1. The way to eliminate this defect is to expand ℤ by
including the desired multiplicative inverses to form the field of
quotientsℚ. Thisℚ is of course what we call the rational numbers
(the fractions and negative fractions), but in the abstract setting,
we cannot just adjoin the new numbers ± 1

2 , ±
1
3 , etc., to ℤ and

declare, “There you are!”. After all, what are these new numbers
and how do we add and multiply them? We want students to learn
how to use a similar reasoning to expand any integral domain into
a field so that every nonzero element of the integral domain will
have a multiplicative inverse in the field. The way to do this is to
form the set of all ordered pairs of integers {⟨u, v⟩} (where u and v
are integers with v ≠ 0) and introduce into this set an equivalence
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relation (which essentially declares that the cross-multiplication
algorithm is valid), and then ℚ is by definition the set of equiva-
lence classes. After that, we can show that each integer u in ℤ
can be identified with the equivalence class containing ⟨u, 1⟩, and
we also write u

v for the equivalence class containing ⟨u, v⟩ so as to
align the new notation with the old. In particular, this means u

1 is
identified with the integer u for each u.

For beginners, just getting used to this general construction
and being at ease with the idea that each “number” inℚ is now an
equivalence class (each containing an infinite number of elements)
is already a full-time job. But more is yet to come. So far, we only
have a larger set ℚ containing ℤ but we do not yet know how to
do arithmetic in ℚ, i.e., given two arbitrary elements of ℚ, we do
not know as yet how to add them or multiply them. The next step
is therefore to define the rules for adding and multiplying elements
in ℚ (which are equivalence classes) with the goal of showing that
ℚ in fact forms a field, which means in particular that each nonzero
element z of ℚ will have a multiplicative inverse z−1, i.e., so that
zz−1 = z−1z = 1. Here are the relevant definitions: for u, v, s, t
in ℤ with v ≠ 0 and t ≠ 0,

u
v
+ s

t
def
= ut+ sv

vt
,

u
v
× s

t
def
= us

vt
. (5)

We underscore the momentous shift in perspective that has just
taken place here. In school mathematics, fractions are considered to
be a part of nature that students should get to know; the idea that
two fractions can be multiplied is taken for granted. What needs
to be to explained is how the product of two fractions is related to
the daily phenomena around us and why the product formula (1) is
correct. By contrast, abstract mathematics progresses from ℤ to ℚ
by regarding only the integers as known so that how to add or
multiply the unknown non-integer rational numbers is a total blank
that is waiting to be filled in; this is done by judiciously defining
what the sum and product of two rational numbers must be. The
internal structure of ℚ is the sole concern here, not how u

v × s
t is

related to daily phenomena. In particular, whereas equation (1) is
a theorem in school mathematics, the same statement (5) is merely
a definition in university mathematics.

We can now explain why university mathematics majors are
generally not capable of explaining to elementary students how
to multiply two fractions. First of all, most if not all of these math
majors were not provided with this kind of knowledge when they
were in elementary school themselves (see, e.g., [16]). More to
the point, what they learn about fractions in college mathematics
courses is about the abstract structure of the rational numbers as
a field, not about how fractions are related to daily experiences.
Therefore, it is not that university mathematics majors are igno-
rant about fractions, but that their understanding of fractions is
divorced from the concerns of elementary students. To the extent
that multiplication is the foundation of division, the same comment

will apply to the school mathematics of fraction division, as we
now show.

As part of the mission of university mathematics to reduce all
phenomena to bare essentials, the four arithmetic operations in
school mathematics are reduced to only two, namely, addition
and multiplication. In a field, subtraction a − b is by definition
the addition a + (−b), where −b is the additive inverse of b,
and division a÷ b (b ≠ 0) is by definition just the multiplication
a × b−1, where b−1 is the multiplicative inverse of b. Since the
multiplicative inverse of a nonzero rational number s

t is clearly
just the reciprocal t

s , the invert-and-multiply rule is now—like the
product formula (5)—a matter of definition:

u
v
÷ s

t
def
= u

v
× ( s

t
)
−1

= u
v
× t

s
. (6)

From the point of view of abstract mathematics, “division” is just
an afterthought once multiplication is in place. Mathematics majors
would usually be busy with exploring the new algebraic structures
(groups, fields, rings, etc.) at this point and any puzzlement over
division or its ramifications in real life simply does not enter the pic-
ture. If they cannot help elementary students overcome the fear of
“Ours is not to reason why, just invert and multiply”, it is—again—
not because they know less than school teachers but because
they know something different from the concerns of elementary
students.

3 What is school mathematics?

Through one small topic—fraction division—we get to see the criti-
cal difference between what may be called university mathematics
(the mathematics taught in universities to prepare students for
mathematical research) and school mathematics (the mathematics
taught in K-12 schools). A main goal of the former is to introduce
students to abstract mathematics, and the main emphasis is on
logical completeness and the use of abstractions to achieve this
goal. No matter how gently this is done, it is too austere and too
sophisticated to be suitable for use in schools. School students who
come mostly from the world of tactile experiences need a bridge to
help them transition to the world of abstractions. School mathemat-
ics is that bridge, and it should be recognized as an independent
discipline devoted to the customization of university mathematics
to meet the needs of school students, in the same way that chemi-
cal engineering is the discipline that customizes abstract chemical
principles to meet human needs. In this sense, school mathematics
is mathematical engineering (see [7]).

Now, there is good engineering and there is also bad engineer-
ing. Good engineering always observes the basic principles of its
associated scientific discipline—for example, mechanical engineer-
ing does not engage in designing perpetual motion machines—but
bad engineering can do just the opposite. In the case of mathemat-
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ics, bad mathematical engineering has been at work for a long time
at least in America; it has produced school mathematics that seems
to make a mockery of the fundamental principles of mathematics
(see, e.g., [16]). But before proceeding any further, let us state one
version of the fundamental principles of mathematics [8]:
(i) Clear definitions. Each concept is precisely defined so as to be

usable for reasoning.
(ii) Logical reasoning. Every claim is supported by reasoning that

explains why it is true. (It is understood that in a few spe-
cial cases, such as the fundamental theorem of algebra, the
reasoning can be deferred.)

(iii) Precise language. There is no place for ambiguity in a discipline
where the difference between true and false is absolute.

(iv) Coherence. The concepts and skills are not fragmented bits
and pieces but are part of a coherent whole.

(v) Purposefulness. Each concept or skill is there for a purpose.

We have seen all of them in action in the preceding discussion
of fraction division. Thus, fraction, fraction multiplication, and
fraction division were all precisely defined to make possible the
use of reasoning to explain formulas (5) and (6). An example of
the precision that is in school mathematics is the definition of
division among whole numbers that shows why “m÷ n” does not
always make sense for two arbitrary whole numbers m and n. As
for “coherence”, we took pains to explain how the definition of
fraction multiplication evolves from the definition of a fraction as
well as from the definition of whole-number multiplication. We
also showed that the definition of fraction division is modeled
on the definition of whole-number division. Finally, although the
purpose of the concepts of fraction multiplication and division is
all too obvious, there are many other concepts or skills whose
presence in the school curriculum is not well explained, e.g., why
learn how to round to the nearest ten or nearest thousand (see
[9, Chapter 10]), why take the absolute value of a real number
(see [15, pp. 130–131] and [14, pp. 120, 123]), etc. Also see the
discussion of slope below.

We will refer to school mathematics that observes the funda-
mental principles of mathematics as PBSM (Principles-Based School
Mathematics; see [5]).

We now have the necessary tools to revisit the problem con-
cerning the mathematical education of teachers that Begle, Ball,
and others uncovered but did not clearly articulate. In our lan-
guage, their message is that to get mathematically knowledgeable
teachers, we have to teach teachers PBSM instead of university
mathematics. This is because school mathematics and university
mathematics are related but essentially distinct disciplines, so that
knowing university mathematics does not imply knowing PBSM.
We have underscored their differences using a small topic—that of
fraction division—but there are many other such examples. Let us
briefly look at two additional ones to further plead our case: the
concept of the slope of a line, and the broad issue of the school

geometry curriculum. Similar examples are pointed out throughout
the six volumes [9–11,13–15].

First, consider how school mathematics handles “slope”. The
typical starting point is to let students retain their naive conception
of a line as in Euclidean geometry and define slope in terms of
this naive conception. Thus, let a line L in the coordinate plane ℝ2

be given. Suppose L is not vertical (i.e., not parallel to the y-axis).
Then school mathematics defines the slope of L as the quotient

slope of L
def
= y1 − y2

x1 − x2
, (7)

where (x1, y1) and (x2, y2) are any two distinct points on L.

�
�
�

�
�

�
�
�

�
�

q
q
(x1, y1)

(x2, y2)

L

O
X

Y

We can explain to students that the slope of a (nonvertical) line
is a measurement of its “slant” relative to the y-axis (see [15,
pp. 338–346]). Incidentally, this explanation is an example of the
purposefulness of a concept. In any case, the central fact concern-
ing slope is the following theorem [14, Theorem 6.11, p. 354].

Theorem 1. The graph of a linear equation y = mx+ b (m and b
are constants) is a line with slope m, and conversely a line with
slope m is the graph of an equation y = mx+ b.

There is a subtlety hidden in the definition of slope: how do
we know that the right side of (7) does not change no matter
which two points (x1, y1) and (x2, y2) are chosen on L? Most
school textbooks evade this question, leading to much confusion
in students’ understanding of slope. The fact is that to answer this
question, we need the theorem that two triangles are similar if
they have a pair of equal angles. Rare is the school curriculum that
has covered similar triangles by the time it takes up the topic of
slope. Consequently, slope is rarely defined correctly. If there is no
correct definition for a concept, then there can be no theorem
involving the concept. Consequently, Theorem 1 is almost never
proved in school mathematics.

Not surprisingly, university mathematics approaches slope by
ignoring any reference to students’ naive knowledge and simply
defining a line in the plane as the graph of an equation y=mx+ b
(m and b being constants) or x= b (a vertical line). Then the slope of
the graph of y =mx+ b is by definition m. Very simple! Therefore,
brevity and total clarity are achieved at the expense of students’
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intuition. (Unfortunately, there are mathematics textbooks for
teachers that ignore the need for mathematical engineering and
also define a line the same way.) Clearly, such an understanding
of the slope of a line, while mathematically correct, will not help
secondary school students to come to terms with the concept
of slope.

Finally, a few passing remarks about the school geometry cur-
riculum. There are obvious defects in this curriculum that cry out
for correction. We have already brought up the need for coordi-
nating the teaching of similar triangles with the teaching of slope;
this need is generally not met. There is also the need to explain
the concepts of congruence and similarity because they come
up naturally in daily life. However, the school curriculum usually
teaches only triangle congruence and similarity in the course on
Euclidean geometry but never the congruence and similarity of
general geometric figures. This is not only defective as general ed-
ucation but also detrimental to the school mathematics curriculum
itself as a general knowledge of the congruence and similarity of
parabolas would greatly clarify the subject of quadratic equations
and functions (see [13, Sections 2.1 and 2.2]). Last but not least,
the course on Euclidean geometry is usually flaunted as the crown
jewel of school education on teaching students how to use logic
to prove everything strictly on the basis of axioms. The sooner we
can disabuse school students of this illusion the better! Indeed,
we have known since the work of Hilbert (1862–1943) that the
axiomatic system of Euclidean geometry is extraordinarily subtle
and its inner workings are not suitable for the education of school
students (see the early chapters in Hartshorne’s book [4]; they will
tax the dedication of even university mathematics majors). School
mathematics education should steer away from this make-believe
about axiomatic systems of Euclidean geometry and, instead, try
to introduce a reasonably large number of redundant assumptions
into Euclidean geometry to minimize students’ need to prove many
boring, obvious, and difficult-to-prove theorems at the beginning.
Compare [15, Chapters 4–5] and [13, Chapters 6–8].

Needless to say, no part of university mathematics will ever
address any of these issues in the presentation of high school
geometry. Serious mathematical engineering is called for here to
make plane geometry truly consumable by high school students.

4 An existence proof

Thus far, we have advocated for the need to teach prospective
teachers PBSM. The implicit assumption is that PBSM has always
been around and is ready for the taking. This is a pleasant assump-
tion to make and an even more pleasant assumption to believe.
However, it is sobering to realize that, with all kinds of defective
school mathematics out in the world, there is a distinct possibil-
ity that university mathematics can never be customized for the
consumption of school students without violating one or more

of the fundamental principles of mathematics. Alan Schoenfeld
seems to be the first among educators to acknowledge in 1994
that, although he believed that something like PBSM should exist,
there was as yet no documented proof that such was the case
[6]. What we can report in 2021 is that there is now at least one
systematic exposition of PBSM from kindergarten to grade 12 in
the form of six volumes: [9] for teachers of grades K-5, [10,11] for
teachers of grades 6–8, and [13–15] for teachers of grades 9–12.

We can explain the need for such a complete exposition of
thirteen years of PBSM. There have been articles and books that
demonstrate the possibility of introducing reasoning to a specific
topic or two in school mathematics, but discussions on such a small
scale cannot bring out the essence of the fundamental principles
of mathematics. For example, to expose teachers to the need for
precise definitions, we cannot show them PBSM on just a few
key topics because teachers need to experience this need in ev-
ery aspect of school mathematics, including the definitions of the
most mundane of concepts such as percent, ratio, speed, equation,
variable, angle, graph of an inequality, etc. Or, consider the issue of
coherence: it is usually invisible when school mathematics is viewed
through a microscope, such as a focus on fraction addition or frac-
tion division. But when the subject of fractions is taken as a whole,
then the way the theorem of equivalent fractions pulls all the di-
verse parts of fractions together becomes somewhat breathtaking
(see, e.g., [11, pp. 28–86]). On a slightly larger scale, one also gets
towitness coherence at workwhen the concept of division is shown
to be qualitatively the same for whole numbers, fractions, rational
numbers, and real numbers (cf. [9]). We should add that, without
such a longitudinal overview of school mathematics, the defects
of the school geometry curriculum might not have been detected.

The 6-volume exposition of PBSM, beyond providing a foun-
dation for student textbooks in school mathematics, shows in
detail how we can achieve a better mathematical education for
teachers. In America, teachers are taught in three grade-bands: el-
ementary (K-grade 5), middle school (grades 6–8), and high school
(grades 9–12). As noted above, the six volumes in question have
been written with these grade-bands in mind so that, collectively,
they now provide one answer to the original question implicitly
raised by Begle, Ball, et al., namely, what kind of mathematics
should we teach teachers? (A more detailed answer to this ques-
tion is given in [15, p. xxi].) It goes without saying that school
mathematics curricula are not now—and won’t ever be—all alike,
but we hope such a complete exposition of PBSM will neverthe-
less contribute to better school mathematics education by freeing
educators from the need to perform the necessary mathematical
engineering. It should now be relatively easy to freely modify this
existing model [9–11,13–15] to meet diverse needs.

Acknowledgements. I am very indebted to Larry Francis for his
important suggestions for improvement.
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RICAM, the Johann Radon Institute for Computational and Applied Mathematics

Philipp Grohs, Peter Kritzer, Karl Kunisch, Ronny Ramlau and Otmar Scherzer

The Johann Radon Institute for Computational and Applied Math-
ematics (RICAM) of the Austrian Academy of Sciences focuses on
basic research in applied mathematics. The institute is based in
Austria’s third-largest city and industrial hub, Linz. Researchers
from all around the globe collaborate on common core areas in
mathematical modeling, simulation, inverse problems, and op-
timization. RICAM stands for excellence in research, as can be
seen from a high level of publications and the popularity of the
Institute’s Special Semesters within the academic community. The
work groups at RICAM provide a broad field of expertise over
a whole range of different subjects, and together they create an
exciting atmosphere to carry out research in applied mathematics.

1 Introduction: The structure of RICAM

The Johann Radon Institute for Computational and Applied Math-
ematics (RICAM) was founded in 2003 by Heinz Engl, who is now
acting as the Rector of the University of Vienna, with the goal of es-
tablishing an internationally visible and successful research institute
in the field of applied mathematics. Since then, RICAM has car-
ried out basic research in computational and applied mathematics
according to highest international standards and has emphasized
interdisciplinary cooperation between its workgroups and with
institutions with similar scope and universities around the globe.
The researchers also cooperate with other disciplines, in particu-
lar within the framework of Special Semesters on topics of major
current interest. One of the institute’s goals is to support young
scientists. Indeed, the positions at the institute are usually for PhD
students and PostDocs, and most of the members are young scient-
ists who are in a stage of their career between the very beginning
of their doctorate and the final step of obtaining a permanent
position at a university or another research institution. The leaders
of the work groups, which usually comprise 2–10 members, are
typically university professors in Austrian universities. Through its
position as the biggest mathematical non-university institute in Aus-
tria, through its work, and by its efforts in public outreach, RICAM
promotes the role of mathematics in science, industry, and society.

RICAM currently consists of the following work groups with their
corresponding leaders:
• Computational Methods for PDEs led by Ulrich Langer/Herbert
Egger (Johannes Kepler University Linz),

• Geometry in Simulations led by Bert Jüttler (Johannes Kepler
University Linz),

• Inverse Problems and Mathematical Imaging led by Otmar
Scherzer (University of Vienna),

• Mathematical Data Science led by Philipp Grohs (University of
Vienna),

• Mathematical Methods in Medicine and Life Sciences led by
Luca Gerardo-Giorda (Johannes Kepler University Linz),

• Optimization and Optimal Control led by Karl Kunisch (Karl
Franzens University Graz),

• Symbolic Computation led by Josef Schicho (Johannes Kepler
University Linz),

• Transfer Group led by Ronny Ramlau (Johannes Kepler Univer-
sity Linz),

• Applied Discrete Mathematics and Cryptography led by Arne
Winterhof (RICAM),

• Multiscale Modeling and Simulation of Crowded Transport
in the Life and Social Sciences led by Marie-Therese Wolfram
(University of Warwick), being phased out in 2021,

• Multivariate Algorithms and Quasi-Monte Carlo Methods led
by Peter Kritzer (RICAM).

Prof. Heinz Engl was the first Director of the Institute until the end
of 2011, when he became Rector of the University of Vienna.

Currently, the institute is led by Managing Director Prof. Ronny
Ramlau and Deputy Director Prof. Karl Kunisch.

In the following sections, we would like to present selected recent
research activities at RICAM.
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Figure 1. Left to right: Managing Director Ronny Ramlau, Deputy Director
Karl Kunisch, and the founder of RICAM, Heinz Engl. Photos by Claudia
Börner.

Figure 2. The institute is housed in one of the Science Park buildings on
the campus of JKU Linz. Photo by Claudia Börner.

2 Scientific machine learning

The usage of (data-driven) machine learning methods to tackle
model-based problems, for example from the natural sciences, has
recently evolved into a promising research area often termed “sci-
entific machine learning”. In this section we describe partly related
efforts in this direction by the two research groups “Mathematical
Data Science” and “Optimization and Optimal Control”.

The group “Mathematical Data Science” represents the area
of data science, particularly in relation to different aspects of ap-
plied mathematics. Its research is motivated by interdisciplinary
applications and ranges from theory over algorithm development
to the solution of real-world problems. A particular focus is cur-
rently put on the use and analysis of deep learning methods for the
numerical solution of mostly high dimensional partial differential
equations (PDEs) that are burdened by the curse of dimensionality
in the sense that the computational complexity of most known
algorithms scales at least exponentially in the underlying problem
dimension. Prominent examples include the Black–Scholes (BS)
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Figure 3. Empirical evidence shows that the total computational cost for
solving parametric Black–Scholes PDEs by the deep learning based
algorithm of [2] does not suffer from the curse of dimensionality.

Figure 4. Potential energy surface of H10 chain computed by the deep
learning based algorithm of [15].

PDE from computational finance, the Hamilton–Jacobi–Bellmann
(HJB) PDEs arising from stochastic optimal control problems, or the
many-electron Schrödinger equation from computational chem-
istry. For BS PDEs and certain nonlinear HJB PDEs we were recently
able to prove that neural networks are capable of representing
their solutions without incurring the curse of dimensionality [9,10],
and that such solutions can be numerically found by solving an
empirical risk minimization (ERM) problem of a size scaling only
polynomially in the problem dimension [3]. While the analysis of
the computational complexity of the ERM problem remains wide
open, there are some empirical results suggesting that its scaling
does not suffer from the curse of dimensionality either, see [2]
and Figure 3. In another direction, we investigate the numerical
solution of the many-electron Schrödinger equation using a deep
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learning based Quantum Monte Carlo ansatz. We show that a ju-
dicious weight sharing strategy enables the efficient computation
of potential energy surfaces with chemical accuracy, see [15] and
Figure 4. We see that the use of modern machine learning methods
for problems in scientific computing has the potential to overcome
the curse of dimensionality for several important problems arising
for example in computational finance, computational chemistry
or optimal control. It therefore presents exciting opportunities to
render previously intractable problems in these fields feasible. The
extent to which this potential can be fully realized will constitute
a central topic in future work.

The “Optimization and Optimal Control” group combines tech-
niques from scientific machine learning with efforts to efficiently
solve deterministic closed loop optimal control problems governed
by partial differential equations, and problems in computer vision
and medical imaging.

In [6] a tensor decomposition approach for the solution of high-
dimensional, fully nonlinear HJB equations arising in deterministic
optimal feedback control of nonlinear dynamics is presented. It
combines a tensor train approximation for the value function with
a Newton-like iterative method for the solution of the resulting non-
linear system. In numerical tests the tensor approximation leads to
a polynomial scaling with respect to the dimension, thus partially cir-
cumventing the curse of dimensionality. In an alternative approach
[13], rather than obtaining the feedback from the HJB equation
directly, the feedback gains are approximated by neural networks,
which are trained by open loop optimal controls. A third prom-
ising approach for the computation of high-dimensional optimal
feedback laws is based on sparse regression exploiting the control-
theoretical link between HJB equations and first-order optimality
conditions via Pontryagin’s Maximum Principle [1]. Combined with
model reduction techniques these methods have the potential of
solving closed loop optimal control for complex partial differential
equations. In another line of research [7], variational formulations
of mathematical imaging problems are combined with deep learn-
ing techniques by introducing a data-driven total deep variation
regularizer. We take advantage of the well-known phenomenon
that typically the best image quality is achieved when the gradient
flow process is stopped before converging to a stationary point.
This paradox originates from a trade-off between optimization and
modeling errors of the underlying variational model. An optimal
stopping time is introduced, which is learned from data by means
of an optimal control approach.

3 Inverse problems in science and industry

For many years, Linz has been a center of research in the area
of “Inverse Problems”. Given – possibly noisy – measured data y,
the goal of this research area is the development and analysis of
methods that allow for a reconstruction of the underlying quantity

x using a suitable model F that connects y and x. This results in the
task of solving a (possible) nonlinear operator equation F(x) = y.
In many applications of interest the solution x of the operator
equation does not depend continuously on the data y, and requires
the use of regularization techniques for a stable reconstruction [8].
A well known example is Computerized Tomography (CT), where
the measured damping of x-rays passing through a body is used
to reconstruct the density distribution of the body. In this case,
the connection between the density and the data is given by the
Radon transform R [14].

An active research area of the “Inverse Problems and Imaging
Group” concerns the analysis and implementation of regulariza-
tion methods, in particular total variation (TV) regularization (Fig-
ure 5) and tomographic inversions with uncertainties in the model
(cf., e.g., [12]). One particular application of the latter is 3D visualiz-
ation of optically and acoustically trapped particles from recorded
diffraction images.

Figure 5. Total variation deblurring with decreasing noise level and
regularization parameter. Left to right: input image blurred and with
additive noise, numerical deconvolution results, some of the level lines
approaching those of the true data (geometrical convergence).

The “Transfer Group” is involved in several research projects with
industry as well as other branches of science, with the goal of
developing state of the art mathematical methods for applications.
The group has a very tight collaboration with the “Inverse Prob-
lems and Imaging Group” within the special research program
(SFB) Tomography across the Scales, which is formed by a group
of researchers from mathematics, physics, astronomy and medical
engineering. The Transfer Group has been particularly active in
the field of Adaptive Optics (AO). AO was initially invented for the
correction of degraded images from astronomical images, caused
by turbulences in the atmosphere above earth-bound telescopes.
To this end, incoming wavefront data from reference guide stars
is measured by a wavefront sensor, and the reconstructed wave-
front is used to compute an appropriate shape of deformable
mirrors that are employed to correct the science images of the
telescope (Figure 6). The whole correction process involves a series
of mathematical tasks, e.g., modeling, analyzing and simulation
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Figure 6. Top: ESO’s Very Large Telescope in the Atacama desert
(Chile) using Laser guide stars for a tomography of the atmosphere
(Source: ESO). Bottom: Sketch of an AO system. The light from the
scientific object is collected by the main mirror M1 and then corrected
by the deformable mirrors DM1 and DM2.

of wavefront sensor devices, stable reconstruction of wavefronts
from measured data [11], reconstruction of the turbulence distribu-
tion above the telescope, optimal control of the correction of the
deformable mirrors and computation of the overall Point Spread
function of the observation. All the computations involved in this
process must be done in real time, as the atmosphere changes
every few milliseconds. RICAM is a partner of the European con-
sortia developing the instruments METIS and MICADO [5] for the
Extremely Large Telescope of the European Southern Observatory
(ESO), focusing on developing methods and software for its AO
systems.

More recently, AO systems have also been used for image
improvement in Ophthalmology and Microscopy. Within the afore-
mentioned SFB, the Transfer Group works, in cooperation with the
Medical University of Vienna, on the development of methods for
AO systems in ophthalmic OCT systems that achieve an improved
imaging quality of, e.g., the human retina, see Figure 7.

Figure 7. Image of the retina of the human eye: without AO (left)
and with AO based on a pyramid wavefront sensor (right), image taken
from [4].

4 Cooperations between groups

As visible from the research work presented above, RICAM is more
than just the sum of its individual work groups; cooperations
between the groups and an atmosphere of creativity and innova-
tion are among the strengths of the institute. Another is the special
mix of mathematical disciplines present at RICAM. Apart from the
groups highlighted in the previous sections, there is a group work-
ing on computational methods for PDEs, which has been led by
Ulrich Langer until this year, and which is now in a transition phase
after which it will be taken over by Langer’s successor, Herbert
Egger. The group will focus on the development, analysis, and effi-
cient realization of numerical methods for the simulation of coupled
and multiscale phenomena in physics, engineering, and material
and life sciences. Tight collaborations and synergies with several
existing RICAM groups can be expected. In particular, this group is
strongly connected to the “Geometry in Simulations” group, led
by Bert Jüttler.

What is more, in contrast to several other large mathematics in-
stitutes, RICAM has a very strong and productive group working on
symbolic computation, algebra, and combinatorics. A recent addi-
tion to the work groups is a team led by Luca Gerardo-Giorda focus-
ing on applications to the life sciences. Further teams working on
cryptography, simulation of crowded transport, and quasi-Monte
Carlo methods round off the picture.

5 Special Semesters

RICAM Special Semesters attract world leaders in their respective
research fields, and are the starting point for many international
cooperations with RICAM scientists. Furthermore, they contribute
significantly to the international visibility of the institute and to the
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Figure 8. Cooperations among the different work groups is one of the
strengths of the institute. Photo by ÖAW, Daniel Hinteramskogler.

exchange of the newest trends and developments. In general, at
least one group leader, one other member of a group, and one
member of the administrative staff are responsible for the organ-
ization of each Special Semester, frequently in cooperation with
leading scientists from international research institutions. RICAM
Special Semesters regularly attract around 200–300 guests. These
may be either short term guests, who usually attend selected work-
shops, or long-term guests staying for longer periods during the
Special Semester. The next Special Semester, “Tomography Across
the Scales”, will be held in the fall of 2022, subject to positive
developments with respect to the current global pandemic.

Figure 9. Special Semesters are the most important events organized
by RICAM. Photo by ÖAW, Daniel Hinteramskogler.
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The Bosnian Mathematical Society and the mathematical life
in Bosnia and Herzegovina

Muharem Avdispahić

The Bosnian Mathematical Society grew out of the Mathematics
Section of the Society of Mathematicians, Physicists and Astro-
nomers of Bosnia and Herzegovina. The latter was founded in
1949 during the preparation process for the First Congress of
Mathematicians and Physicists of the Federal People’s Republic of
Yugoslavia held in Slovenia that year.

As far as the earlier periods are concerned, one could say that
the presence of university level educated teachers of mathematics
in Bosnia and Herzegovina was closely related to the emergence
of secular grammar schools in the period of Austro-Hungarian
Monarchy, mainly between 1879 and 1899. (For a broader audience
it might be of interest to learn that two Nobel Prize winners of
Bosnian origin, Ivo Andrić (Literature, 1961) and Vladimir Prelog
(Chemistry, 1975) attended the First Grammar School Sarajevo.
Indeed, Ivo Andrić then enrolled in the mathematics and sciences
programme at the University of Zagreb, but soon switched to
humanities.)

A rather high level of school mathematics in Bosnia and Herze-
govina was upheld during the period of the Kingdom of Yugoslavia;
however, the number of such schools was still very limited; their
teachers were mostly receiving their degrees from abroad.

The wide spread of the upper school system after WWII and the
increased demand for qualified schoolteaching made it necessary
to establish a first Teacher Training College in Sarajevo in 1946,
followed by the creation of analogous institutions in Banja Luka,
Mostar and Tuzla. Four-year university study programmes in math-
ematics and physics opened in 1950 at the Philosophical Faculty
of the University of Sarajevo. Ten years later, the Faculty of Natural
Sciences and Mathematics was established, with a Mathematics as
one of its five departments. Soon after this, the non-educational
sector began to express the need for qualified mathematicians
as well.

As expected, the Society of Mathematicians and Physicists, its
Mathematics Section in particular, concentrated its efforts during
this phase on mathematics teaching, curricula design, organization
of seminars for teachers and popularization of mathematics. In this
period, it published a regular Bulletin containing papers related in
principle to various topics in school mathematics.

One particular activity of the Society was to search for math-
ematically gifted students. The first competition for high school
students at the level of Bosnia and Herzegovina was organized
in 1959, as a part of the rich process through which participants
were selected for the BMO (Balkan Mathematical Olympiad) and
the IMO. This tradition has remained alive ever since, becoming
enriched over time with regular participation at the JBMO, Mediter-
ranean Mathematical Competition, European Girls’ Mathematical
Olympiad, etc.

According to the report on the history of research mathematics
in Bosnia and Herzegovina presented by Academician Mahmud
Bajraktarević at the meeting in the Academy of Sciences and Arts of
Bosnia and Herzegovina in 1978, the first modern research paper
ever published by a Bosnian mathematician was the research note
by Vera Šnajder in Comptes Rendus de l’Académie des Sciences,
Paris, T. 192 (1931), 1703–1706. Mahmud Bajraktarević himself
was the first Bosnian to obtain a doctoral degree in mathematics,
with the thesis Sur certaines suites itérées which he wrote and
defended in Paris in 1953.

The opening of a postgraduate programme at the Department
of Mathematics in Sarajevo in 1966 marked a new phase in the
development of mathematics in the country.

By the time of the above-mentioned report, mathematicians
from Bosnia and Herzegovina had published around 300 papers
total, in journals covered by Mathematical Reviews, Zentralblatt
für Mathematik or Referativnij Zhurnal. The most visible results
concerned summability, Fourier analysis and functional equations,
accompanied by emerging interests in roughly twenty five other
disciplines of pure and applied mathematics and early computer
science. Until 1973, Sarajevo was the only centre of mathemat-
ical research in Bosnia and Herzegovina. The situation gradually
changed with the opening of universities in Banja Luka, Tuzla and
Mostar (between 1975 and 1977) and with some research activities
also occurring in other industrial centres such as Zenica.

The Academy of Sciences and Arts, the University of Sarajevo
Department ofMathematics and theMathematics Section of the So-
ciety of Mathematicians, Physicists and Astronomers joined efforts
to cofound the scientific journal Radovi Matematički, which in 1985
replaced an earlier publication of the Academy, Radovi Odjeljenja
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prirodnih i matematičkih nauka Bosne i Hercegovine. The decision
to found this journal reflected the growing need for an independent
mathematical journal with an international editorial policy.

The cover page of the journal was recognizable by reproducing
interesting details from the old mathematical manuscripts kept in
local libraries and museums. Multiplication table on the cover of
the very first issue stem from a unique fourteenth century transcript
dealing with elements of algebra and geometry and being kept in
the Ghazy Husrev Bey Library established in Sarajevo in 1537.

In addition to research papers, the second issue of each volume
of Radovi matematički contained a Chronicle, which served as
a useful source of information about the period that brought a sub-
stantial new quality to mathematical life in Bosnia and Herzegovina.
The Chronicle reported annually on the research publications and re-
search communications of Bosnian mathematicians, colloquia and
seminars at mathematical departments in the country, research
fellowships and visits, published books and lecture notes, and
other academic news such as data on new Ph.D.s in mathematics
and new job appointments. An increasing number of graduates
also started undertaking doctoral studies at prestigious universities
abroad, mostly in the U.S. The Society contributed a section on its
own activities, often concerning competitions and summer schools
for young mathematicians.

Figure 1. The co-edited journal and its successor

The year 1992 was a turning point with far-reaching implica-
tions. In the process of dissolution of former Yugoslavia, Bosnia
and Herzegovina gained its independence in April of that year.
War broke out on the very day the country achieved international
recognition. Sarajevo, its capital, was put under a siege that lasted
for the next 1426 days.

By keeping the academic activities alive and fighting to preserve
civilized standards under the most difficult conditions encountered

Figure 2. 1995 photo of war-torn premises at the Faculty of Natural
Sciences and Mathematics in Sarajevo

by any higher education institution in Europe in the second half of
the 20th century, the University of Sarajevo received broad interna-
tional respect. On the initiative of Professor Friedrich Hirzebruch,
the Bosnian Mathematical Society was accepted into the European
Mathematical Society at the Council meeting in Zurich in 1994.

Soon after the Dayton-Paris Peace Accord was signed in Decem-
ber 1995, the TEMPUS projects CME Information Technology De-
velopment and JEP Developing the Faculty of Science Activities
coordinated by University of Sarajevo contributed to the academic
reconstruction of studies in mathematics and natural sciences at
all public universities in Bosnia and Herzegovina.

The graduate school at the Department of Mathematics in
Sarajevo enrolled a new generation of students in 1997. Volume 8
of Radovi matematički received the timestamp 1992–1996. The
BMS continued to co-edit this journal until 2005, when the role of
Radovi matematički was taken over by its successor, the Sarajevo
Journal of Mathematics published by the Academy.

Bosnia and Herzegovina became a full member of the IMU in
2002, represented through the BMS as an adhering organization.

BMS was also a founding member of the MASSEE (Mathem-
atical Society of South Eastern Europe) in 2003. An initiative of
a BMS representative at the annual MASSEE meeting in 2008 resul-
ted in a three years TEMPUS JEP Doctoral Studies in Mathematical
Sciences in South East Europe coordinated by University of Sara-
jevo and involving a consortium of 11 institutions from five West
Balkan and three EU countries. The efforts invested towards har-
monized networking programmes up to EHEA-ERA standards are
well represented by six joint Ph.D. courses held during 2011 – the
Year of Mathematics in South East Europe (cf. also two special
issues of Mathematica Balkanica in 2010 and 2011 consisting of
contributions from SEE Young Researchers Workshops).

Young aspiring mathematicians were given numerous oppor-
tunities to upgrade their capacities through summer schools within
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a long term DAAD project under the Stability Pact for South East
Europe’s Center of Excellence for Applications of Mathematics.

Other valuable contributors to mathematical life in Bosnia and
Herzegovina are also the Bulletin and Journal of the International
Mathematical Virtual Institute, successors to the Bulletin of Society
of Mathematicians Banja Luka.

The country’s constitution, adopted as Annex IV to the Dayton
Peace Agreement, gives full responsibility in the area of education
and research to lower level administrative units. There exist can-
tonal associations of mathematicians with seats in Sarajevo, Tuzla,
Bihać, Travnik Zenica, two associations with seats in Mostar, on the
territory of the entity Federation of Bosnia and Herzegovina, and
two associations with seats in East Sarajevo and Banja Luka, on the
territory of the entity Republika Srpska. The challenges facing any
state level organization (with the exception of sports) are amply
illustrated by the fact that the state level Ministry of Justice refuses
to implement the decision of the Constitutional Court reached in
the matter of the status of the Academy of Sciences and Arts of
Bosnia and Herzegovina.

This being said, events such as the 3rd EU/US Summer School
and Workshop on Automorphic Forms and Related Topics 2016,
the BMSMathematical Conference in 2018, the Sarajevo Stochastic
Analysis Winter School in 2019, the International Conference on
Fibonacci Numbers and their Applications in 2020 and the 26th
International Conference on Difference Equations and Applica-
tions in 2021 demonstrate the level of research activities attained
nowadays.

MathSciNet reports 85 papers published by Bosnian mathem-
aticians in 2020 alone. The new areas of strength in the country
appear to lie in number theory and difference equations, with
noticeable advances in mathematical logic, associative rings and
algebras, measure and integration theory, operator theory and
general topology.

Figure 3. Flyer for SEE networking Ph.D. programme(s)

Figure 4. Major international conferences hosted over the last four years
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Her Maths Story – Sharing stories of women in mathematics in all walks of life

Joana Grah, Tamara Grossmann and Julia Kroos

Her Maths Story (hermathsstory.eu) is a platform portraying stories
of women in mathematics in all walks of life. Motivated by the
lack of women role models, Her Maths Story strives to bring light
to the variety of careers, non-linear paths and individual decision-
making processes of women mathematicians in today’s society –
mathematicians like you and me. The purpose of this platform is to
encourage and empower women to pursue studies and careers in
maths, spark their curiosity and transmit enthusiasm for technical
subjects.

Historically, representation of women in STEM and particularly
mathematics has been quite poor. While women were barred from
studying in most European countries as recently as 100 years ago,
the continuing underrepresentation of women in mathematics in
the past decades can also be partly attributed to a scarcity of role
models. The aim of Her Maths Story is to bring the existing role
models into focus and present them as a collection of different
careers and life paths – because they do exist, these women in
mathematics.

Being a young woman entering the world of academia or
industry can be quite intimidating in the beginning, and all the
more so if there is no other woman in the same professional circle
to connect with, talk to or look up to. But even well-established
women mathematicians in academia and industry share common
challenges, be it the subtleties of regularly not being listened to,
not being taken seriously, or juggling societal expectations with
a successful career.

An increasing number of organisations, universities and com-
panies are beginning to recognise that the number of women in
their institutions is low, although there is a proven benefit in having
gender-balanced teams¹. Awareness of the importance of equality
and diversity is increasing, and the path to change in the mathem-
atical workforce can in fact benefit from the experience of women.

¹ A.W. Woolley, C. F. Chabris, A. Pentland, N. Hashmi and T.W. Malone,
Evidence for a collective intelligence factor in the performance of human
groups. Science 330, 686–688 (2010)

Therefore, the motivation for Her Maths Story is twofold: Giving
women the space to share their experiences and learn from others,
and offering insights into the life of a woman mathematician to
the wider public.

The platform Her Maths Story includes both a website and
various social media channels. Each week sees the publication of
a blog entry or the personal story of a mathematician, both made
accessible to a general audience. Stories consist of a text that
can be read in 5–10 minutes describing the individual journey of
a mathematician, and include a short CV with a photo. Blog entries,
on the other hand, are longer texts that offer the opportunity to
go into more detail on specific topics. We promote these stories
and articles on our social media channels on Facebook, Instagram,
LinkedIn and Twitter to reach as wide and as diverse a target group
as possible.

We have published 33 stories since the beginning of this year.
Of these, more than half are about women from Europe. The stor-
ies are as multifaceted as the career paths themselves. We have
contributors from academia and industry, from undergraduates to
PhD students to professors, from biostatisticians at AstraZeneca to
data scientists at the energy company Enel to software developers
in Airline IT. However, in our globalised world, cooperation with
mathematicians from all countries is important, so we have made
an effort not to focus solely on Europe, but to reach out to portray
women from many different cultures and with highly varied life
paths. For example, we featured the founder of the American or-
ganisation “Mathematically Gifted and Black”, who is a professor of
mathematics, and an Argentinian professor of mathematics who is
also a fashion consultant. These stories deal not only with the com-
mon passion for mathematics, but also with personal motivations
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A screenshot of the stories section of Her Maths Story.

and societal and social hurdles, as well as the various influences in
the individual careers.

The platform thrives on each and everyone’s personal stories,
experiences and advice. It is an ever-changing collection and there
are still many more journeys to share and insights to gain.

The Her Maths Story team is always looking for new con-
tributions, so if you want to share your journey or know
someone with an inspiring, encouraging or unique maths
story, contact them via hermathsstory@gmail.com.
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subjects of AI and data science as well as science communication and
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she received her PhD in applied mathematics from the University of
Cambridge, UK, and worked as a postdoc at The Alan Turing Institute
in London, UK, and the Graz University of Technology, Austria. She is
passionate about encouraging women, equal opportunities and smashing
the patriarchy. In her free time, she loves to dance.
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Survey on Research in University Mathematics Education at ICME 14

Marianna Bosch, Reinhard Hochmuth, Oh Nam Kwon, Birgit Loch, Chris Rasmussen, Mike Thomas and María Trigueros

At the 14th International Congress on Mathematics Education,
which took place in a hybrid mode in Shanghai from July, 11 to 18,
2021, the survey team on Research in University Mathematics Edu-
cation (RUME) presented an overview of their work. As noted in
the presentation, it is an exciting time for RUME. There are now
several major conferences every year across the globe, as well as
the fairly new International Journal of Research in Undergraduate
Mathematics Education, now in its seventh year. The significant
growth in the number of researchers focused on university math-
ematics education has led to the development of research groups
and the consolidation of a diverse academic community; RUME is
coming to age as a field of research that is beginning to coalesce
and develop an identity.

To explore this identity, we surveyed 218 RUME scholars across
the world, both well-established scholars and rising stars. We
invited these scholars to respond to the following prompt:

What do you see as the most significant advances, changes,
and/or gaps in the field of research in university mathematics
education? These advances, changes, or gaps might relate to
theory, methodology, classroom practices, curricular changes,
digital environments, purposes and roles of universities,
social policies, preparation of university teachers, etc. Please
elaborate on just one or two advances, changes, or gaps most
relevant to your experience and expertise.

We received 119 responses. Our next step was to conduct
a thematic analysis¹, which led to the identification of five areas in
which there has been considerable progress (Theoretical Perspect-
ives, Instructional Practices, Professional Development of University
Teachers, Digital Technology, and Service-Courses in University
Mathematics Education) and seven, non-disjoint areas in need
of further research (Theories and Methods, Linking Research and
Practice, Professional Development of University Teachers, Digital
Technology, Curriculum, Higher Years, and Interdisciplinarity). We
then conducted a literature review, guided by the identified themes.

¹ Special thanks to Antonio Martinez and Talia LaTona-Tequida, graduate
students at San Diego State University, for their help in this analysis.

We hope that this brief report offers those less familiar with RUME
an overview of the progress to date and spurs interest in areas in
which the reader might want to contribute to the knowledge base.

One of the field’s major advances is that we now have a pleth-
ora of theoretical perspectives, and hence tensions among them
can sharpen their constructs and methodologies and open the
possibility of finding commonalities. This diversification has con-
tributed to the development of new methods, research topics, and
the development and research on theory-based teaching experi-
ences. Recent years have seen the emergence of an interdisciplinary
group of scholars interested in using a variety of approaches (lo-
gical, cognitive, historical, philosophical, etc.) to address questions
which have always been of interest to RUME. Another theoretical
advance that is of growing interest is the use of theories that enable
insights into the interrelatedness of knowledge, identity, power,
and social discourses [1]. While there is still much research that is
needed here, we see this new direction as an important advance
for the field of university mathematics education research.

The research of instructional practices at university level is an-
other rapidly developing area of research. Much of the research
on this topic relates to active or inquiry-based mathematics edu-
cation [2, 6]. Given the myriad calls for instructional reform in
university mathematics classrooms, researchers and educators have
challenged conventional lecture-based instruction by conducting
studies that have provided evidence for the positive effects of
innovative student-centered instructions on students’ cognitive
and affective development. Active learning, broadly defined as
classroom practices that engage students in activities such as
reading, writing, discussing, or problem solving, that promote
higher-order thinking, has repeatedly been shown to improve
student success and to reduce the equity gap for women and
underrepresented students [3,7]. For example, a meta-analysis of
225 studies that compared student success in traditional lecture
versus active learning in postsecondary science, engineering, and
mathematics courses and found that average examination scores
improved by about 6% in active learning sections, and that stu-
dents in classes with traditional lecturing were 1.5 times more
likely to fail than were students in classes with active learning;
further, the effectiveness of active learning was found across all
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class sizes [3]. On the other hand, RUME has only just begun to
deeply explore the culture, experiences, and gendered/racialized
interactions in these classes, and how those social factors may be
obstructing the students’ opportunities to learn [4].

Another area in need of research is on the learning and teach-
ing of advanced mathematics. Historically, the work of Felix Klein
is most relevant here. Core parts of his “Elementary Mathemat-
ics from a Higher Standpoint” [5] actually refer to mathematics
that many of today’s future teachers do not even get to know in
the course of their academic studies. This applies, for example, to
knowledge of Fourier analysis that goes beyond the basics, but
especially also to knowledge of function theory, e.g. Riemann sur-
faces and value assignment theorems. Even when students hear
about function theory, for example, they usually do not get as far
as understanding what Felix Klein considered, more than a cen-
tury ago, appropriate knowledge for prospective teachers. Klein
considered this knowledge appropriate because it explains why,
for example, certain elementary operations have to be restricted in
certain ways for mathematical reasons (and not just for didactic
reasons of reduction!), and related curricular decisions.

Also ripe for further investigation is the cooperation with math-
ematicians, engineers, economists, psychologists, etc. For many
years, there have been many different kinds of cooperation, for
example, agreements between faculties with regard to teaching.
What does not seem to exist so far is, among other things, sys-
tematic research on these cooperations. What are the benefits of
these? How do they take shape? How do they function? Possibilit-
ies, limits, etc.? Related to these cooperations is the relationship
of mathematics to other sciences or the use of mathematics in
other sciences. There are several places, such as philosophy or
the history of science, in which such connections are examined
and the question of what distinguishes mathematics itself and its
respective role in other sciences is explored. Research on this is
dependent on the respective ideological assumptions, and accord-
ingly there are no unambiguous and generally accepted answers
here. From the point of view of didactics, however, clarifications
in this regard could certainly be regarded as desirable, since they
would be of great help in answering the question of which goals,
and how mathematicians and even more engineers, economists,
psychologists, etc., are to be taught.

Last but not least are questions concerning mathematics itself.
Mathematics, too, changes its inherent orientation, and to some
extent its character, over time. New fields, such as Big Data and
Data Science, are continually emerging. Correspondingly, there are
new fields of application in other sciences, such as discrete math-
ematics in electrical engineering, numerical methods in psychology,
etc. This leads directly to questions of what should be taught in
service courses.

The video of the oral ICME presentation on the survey can
be found here: https://drive.google.com/file/d/1LTBDl_KNZ371SL5
ahvN2x_TA09PQQRlB/view?usp=sharing.

As we noted at the start of this brief overview, there is now
much research-based wisdom, while at the same time there are
exciting opportunities for new research. In particular, research
mathematicians are welcome to join the systematic reflection and
empirical investigation of university mathematics teaching.
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ERME column

regularly presented by Jason Cooper and Frode Rønning

In this issue, with a contribution by
Michèle Artigue

The Covid-19 pandemic: Challenging times for the mathematics
education community

The Covid-19 pandemic started almost two years ago, turning our
personal and professional lives upside down. As I wrote together
with Ingrid Daubechies, former president of the International Math-
ematical Union, in the presentation of the plenary panel we coordin-
ated at ICME-14 last July¹, this pandemic has brought mathematics
to the forefront, in particular through the mathematical models
used for understanding the course of the pandemic, and anticipat-
ing and weighting the possible consequences of different policy
decisions. This has created a special responsibility for all those,
mathematicians, mathematics educators and teachers, who play
a role in helping students and the general public make sense of
these models and their uses, and to understand more broadly what
mathematical modelling is about, with all of its potential and its
limitations. In his contribution to the panel, the Fields medallist
Timothy Gowers stressed the importance of this mediating role ac-
cepted by many mathematicians beyond those directly involved in
epidemiologic research, such as the South African mathematician
Jean Lubuma, who also took part in the panel session.

Mathematics teachers and didacticians have endorsed this
role, and they were certainly helped by the increasing import-
ance given to modelling in mathematics curricula and educational
research. However, for them, with the sudden transition to dis-
tance and online teaching, the pandemic represented first and
foremost a disruption to the usual forms of teaching and interac-
tion with their pupils and students. This disruption has dramatically
exacerbated already existing educational inequalities, and Nelly
León, a Venezuelan mathematics educator, especially developed
this point during the panel session. But she also emphasized some
positive dynamics generated by the pandemic: a radical evolution
in the relationship with digital technologies; the production of
a multitude of resources; new relationships between parents, stu-
dents and teachers, and new solidarities. The responses to the call

¹ Plenary panel 3 entitled Pandemic times: Challenges, responsibilities
and roles for mathematics and mathematics education communities
(www.icme14.org)

for papers launched by the journal Educational Studies in Math-
ematics in March 2020 also testify to the exceptional mobilization
of teachers and researchers. The fourth contributor to the panel,
David Wagner, who coordinated this editorial project with Man
Ching Esther Chan and Christina Sabena, spoke of receiving 161
contributions from 36 countries; two special issues of the journal
will soon be published (see [2] for a global view).

Teachers’ testimonies and research studies show just how little
we were prepared for this massive disruption. They allow us to
identify research needs, for example the imperative need for re-
search on online or hybrid teaching at all educational levels, not
only at the levels of university and teacher education on which it
has focused until now. Beyond that, there is a need for conceptual
constructs allowing us to better approach the increasing complexity
of human-digital artefacts relationships, as proposed by Borba [1].
This pandemic experience also prompts us to question our research
priorities, to ask ourselves what place we desire to give to the
question of educational inequalities and to the study of the new or
underestimated expressions of these inequalities that the pandemic
has brought to light, and to question how, beyond simply bringing
understanding, didactic research can actually support action more
effectively than it has done so far.

As has been repeatedly emphasized, the pandemic is not an
isolated crisis. At a time when, thanks to vaccination, we seem
more able to control the pandemic evolution, schools and univer-
sities have reopened, and people plan to meet again face-to-face
at conferences such as the forthcoming CERME next February, we
must not forget this. Other crises are looming, undoubtedly much
more complex, dangerous and lasting ones. To understand this
complexity and contribute to the public debate on the political
decisions envisaged or taken, quality mathematics education for
all is more necessary than ever. Beyond the epidemiological mod-
elling highlighted by the pandemic, there is an increasing need
for probabilistic and statistical education including risk issues [3].
This education should enable students to question the “format-
ting” role played by mathematics in our societies, as called for by
critical mathematics education [4]. At a time when mathematics
curricula are increasingly opening up to algorithmic and computa-
tional thinking, we cannot avoid thinking about how mathematical
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algorithms shape our world, for better or for worse. To face these
challenges, collaboration between the mathematics and didactic
communities is more important than ever, and in the panel session,
Ingrid and I expressed our hope that this crisis situation would
strengthen synergies between communities.
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The “Jahrbuch über die Fortschritte der Mathematik” as a part of zbMATH Open

Olaf Teschke

2021 marks the 150th anniversary of the publication of the first
volume of the “Jahrbuch über die Fortschritte der Mathematik”
(JFM), as well as the transition of zbMATH to an open service
90 years after its founding. Initially digitised in the ERAM Project
1998–2004, JFM data have benefitted significantly from the sub-
sequent integration into zbMATH, and are now available in a much
enhanced form. We describe the improvements of the digital JFM
version during the last decade, which are now available both as
Open Access Database and Open Data.

1 Pieces of JFM history

According tomost sources, Carl Ohrtmann and Felix Müller founded
JFM at the end of 1868 with the aim of collecting, indexing, and
reviewing the global mathematical literature in annual volumes. It
followed the ideas of already established review journals like Phar-
maceutisches Central-Blatt (later Chemisches Zentralblatt, founded
in 1830), or Fortschritte der Physik (founded in 1847). The first JFM
volume, covering 838 publications from 1868, was published in
February 1871 – even in the beginning, the ideal of a complete and
classified collection could only be achieved by a considerable delay.

Similar initiatives were at this time Boncompagni’s Bullettino di
bibliografia e di storia delle scienze matematiche e fisiche (1868),
Darboux’s Bulletin des sciences mathématiques et astronomique
(1870) and the Dutch Revue semestrielle des publications mathé-
matiques (1896), but JFM prevailed due to its broad community of
expert reviewers, supported by the leading role of German math-
ematicians at that time. Until WWI, JFM defined the standard to
judge contemporaneous research, and shaped both scope and
classification of mathematics. The setback of the war, however,
could never be regained: the admired comprehensiveness and the
detailed knowledge of the organisation became a liability, leading
to growing delays of up to seven years. Moreover, German was
no longer the primary language of math publications, calling into
question the existence of German-language-only reviews. In this
critical situation, additional resources for JFM provided by the Prus-
sian Academy since 1930 turned out to be double-edged: though
they helped with the catching up, they forced JFM to follow its

Figure 1. The first page of the first JFM volume

rather conservative politics, pursuing the ultimately infeasible aim
of restoring JFM’s pre-WWI status in a changed environment. This
inflexibility intensified the decline of JFM, which ultimately deteri-
orated due to the outcomes of Nazi politics (the details of decline
and fall of JFM are investigated in [7]). The Zentralblatt für Mathe-
matik und ihre Grenzgebiete (ZfM, now zbMATH Open), founded
in 1931 by Otto Neugebauer with the focus on timeliness instead
of systematic comprehensive annual volumes, which assembled
a new generation of a global community providing multilingual re-
views, soon replaced JFM as the primary source of current research
information, with the average review becoming available only after
an impressive 0.58 years. After Neugebauer’s emigration to the
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U.S., the second journal he founded, Mathematical Reviews (MR)
took the lead following similar principles, leaving JFM only the role
of a well-organised collection of historical interest. Consequently,
attempts to revive JFM after WWII failed, resulting in volume 67
of 1942 being the last one ever published – though former JFM
staff members played a crucial role in the successful resurrection
of Zentralblatt after the war.

2 JFM digitisation

Still after its end, JFM was used as a standard reference by MR
and ZfM for earlier literature. Hence, at the dawn of math digit-
isation, it was natural to include information from JFM covering
publications from 1868 through 1942. Initially suggested by then-
EiCs of MR and ZfM Keith Dennis and Bernd Wegner as a joint
National Science Foundation (NSF) and Deutsche Forschungsge-
meinschaft (DFG) project in 1997, JFM was digitised as a part of
the Electronic Research Archive for Mathematics (ERAM) project
(1998–2002) funded by DFG and conducted by TU Berlin, Göttin-
gen State and University Library (SUB) Göttingen and FIZ Karlsruhe.
Along with the digitisation of important historical mathematical
sources at SUB, JFM data were seen as a building block of the
World Digital Mathematics Library initiative championed by the
International Mathematics Union (IMU). Although clearly German
funds alone could not be sufficient to achieve all these desirable
objectives, significant results were obtained: all volumes of JFM
were transformed into LATEX and made freely available in a database,
allowing for a search distinguishing author and reviewer names,
titles, and review texts. At that time, it was likely the largest free
LATEX transcription project to have ever existed, and beyond its
actual output, it provided some insights into feasible procedures.
The combination of OCR techniques and manual transcription of
formulae proved to be a manageable approach, although there
was a relatively significant spread in the error rates of the various
companies given the initial samples. Fortunately, DFG funds made
it possible to choose the companies with the lowest error rates for
the remaining parts; though some of the numerous errors com-
ing from the initial low-cost alternatives can still be found in the
data, and represent challenges both to the reader and for derived
information like author disambiguation. As a collection, the LATEX
transcription of the Jahrbuch also provides a good gold data for
next-level digitisation approaches like those outlined in [2].

3 Integration of JFM into zbMATH

The results of the digitisation project were made freely available
after its ending in the JFM database, but a lot of work remained to
be done (apart from a good compilation of earlier publications on
JFM, one can find in [4] an account of the missed objectives within

the ERAM project). Among the desirable features which were goals
of the project that were not attained were: the standardisation of
journals, author disambiguation, and interlinking with full-texts.
Since these projects were being undertaken at the same time on
a broader scale in the zbMATH database, JFM stakeholders allowed
for the integration of the project data into zbMATH under the
condition of providing resources for their enhancement. About
a decade ago, this column [3] described the status at the start of
the integration process. Since then, vast improvements have been
achieved. The bibliographical sources, initially just a string, which
could vary for a single journal from, say, Clebsch Annalen to Klein
Annalen to Mathematische Annalen, with different abbreviations
and mixed Arabic and Roman volume numbers. They have now
not only been standardised, but have evolved into a full-scale
journal database facilitating faceted searches including granular
information such as titles, publishers, ISSN, main subjects, time
periods, countries, languages or Open Access information and
issue-level browsing. Thanks to these assignments, automated
generation of full-text links is now possible. While the first JFM
database did not contain a single DOI, these are now available
for more than 20% of the 223,276 JFM documents, along with
19,015 links to free EuDML entries, 8,587 to Gallica, and many to
a number of other free digital libraries.

Author disambiguation has been particularly challenging for
JFM entries: first names were usually abbreviated or completely
missing, and typos from the chunks digitised with lower quality
complicated the situation further. Approaches which work well for
modern publications such as analysis of coauthor and reference
networks fail due to the lack of reference data and the fact that at
that time most publications were single-authored. Thus, progress
depended on purely human checking of authorship assignments;
fortunately this has now been done for a large part of the JFM
data. As a result, JFM authorship data now contribute to compre-
hensive author profiles for mathematicians of three centuries. The
situation is, however, less ideal for reviewer information: reviewer
signatures mostly lack first names, which makes their identification
very complicated¹. A precise disambiguation and integration into
person profiles remains to be done.

Likewise, the integration of JFM into zbMATH has led to its
extension to a citation database. Not only could citation data be
added for more than 6,000 JFM documents, but references from
later publications to JFM could be matched within the integrated
corpus. The resulting dataset provided the opportunity for unique
analysis of long-term citation behaviour in mathematics, part of
which was reported in this column [1].

¹ This is also likely the reason why the number of reviews for prominent
mathematicians in earlier publications turn out to be frequently incorrect.
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4 JFM as part of zbMATH Open

One major drawback, however, was that these improvements –
facilitated by zbMATH resources – were only available within the
commercial zbMATH database, and hence only partially access-
ible. Although limited to subscribers (except for the reduced free
results), the improved functions led to a gradual shift in usage
from the free project version of JFM to the zbMATH subset. In
2020, JFM documents were > 20 times more often accessed in
their zbMATH version compared to the old JFM database. The
transition of zbMATH to the zbMATH Open service at the begin-
ning of 2021 [5] resolved this dilemma: the enhanced JFM data
within zbMATH now became completely free, and also provides
all the information of the old JFM database as a subset². In fact,
this transition achieved even more: the EMS, named by the pro-
ject partners as the holder of the JFM data, agreed to make it
available under a CC-BY-SA 4.0 data. In particular, this dataset is
completely available via the zbMATH Open API introduced earlier
in this column [6]. However, there still remains a great deal to do.
As mentioned above, reviewer disambiguation is lacking. There is
a small overlap for the years of 1931–1945 when JFM and zbMATH
were published in parallel; corresponding items should ideally be
merged. Furthermore, many comments from the mathematics his-
tory community have been collected during the project; they are
not in publishable condition, however, due to their heterogeneous
nature. Perhaps most importantly, the digitisation of historical full-
texts may benefit greatly from recent technological developments,
and their integration would facilitate additional functions like full-
text or formula search for mathematical content over a period of
150 years.

² This also allowed to discontinue the technically outdated old JFM
interface. Note that search results in zbMATH Open can be filtered to JFM
documents by adding “dt:JFM” to a query.
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Book reviews

Algebraic Combinatorics by Eiichi Bannai, Etsuko Bannai,
Tatsuro Ito and Rie Tanaka

Reviewed by Tullio Ceccherini-Silberstein

The book under review is a most welcome,
completely revised, widely expanded, and
updated version of the celebrated andmost
influential book Algebraic Combinatorics I;
Association Schemes [2] by Eiichi Bannai
and Tatsuro Ito, published in 1984.

According to these authors, Algeb-
raic Combinatorics is “the approach to
combinatorics which was formulated in
P. Delsarte’s monumental thesis [3] in 1973,

enabling us to look at a wide range of combinatorial problems
from a unified viewpoint”. As stated immediately thereafter, “the
origins of this approach can be found in the previous work on
character theory of finite groups and permutation group theory
by I. Schur, G. F. Frobenius, and W. Burnside as well as in that on
experimental designs and association schemes by R. C. Bose”. This
unified approach intertwines algebraic aspects of graph theory,
coding theory, design theory, and finite geometries, with methods
of Schur rings and of intersection matrices in permutation group
theory. All this said, one may define Algebraic Combinatorics as
“a group theory without groups”! To justify this statement and,
possibly, give the reader a taste of the mathematics involved, we
limit ourselves to present the definition of the central and unifying
concept of the theory, namely of an association scheme, together
with a couple of examples.

An association scheme is a pair 𝔛 = (X,ℛ) where X is a finite
set andℛ= (Rj)Nj=0 is a partition of X×X, where the sets Rj, called
the associate classes, satisfy the following properties:
(1) R0 = {(x, x) ∶ x ∈ X} is the diagonal;
(2) for each j = 1,2,…,N, there exists 1≤ j∗ ≤ N such that Rj∗ =

{(y, x) ∈ X× X ∶ (x, y) ∈ Rj};
(3) there exist nonnegative integers pk

i, j, i, j, k = 0, 1,…,N, called
the parameters, such that |{z∈ X ∶ (x, z) ∈ Ri, (z,y) ∈ Rj}| =
pk
i, j for all (x, y) ∈ Rk.

An association scheme 𝔛 is said to be commutative (resp. symmet-
ric) provided that pk

i, j = pk
j, i (resp. Rj = Rj∗) for all 0 ≤ i, j, k ≤ N.

Note that symmetry implies commutativity. The matrices Aj =
(Aj(x, y))x,y∈X, j = 0, 1,…,N, defined by setting

Aj(x, y) ≔
⎧
⎨
⎩

1 if (x, y) ∈ Rj,

0 otherwise,

generate a subalgebra 𝒜 ⊆ End(ℂ[X]), called the adjacency al-
gebra (or Bose–Mesner algebrawhen it is commutative) associated
with 𝔛.

Let us give a few examples. Let G be a finite group. Then setting
Rg ≔{(x,y)∈G×G ∶ x−1y= g} for all g∈G yields an association
scheme whose associated adjacency algebra is isomorphic to the
group algebra ℂ[G] of G. Also, if K ≤ G is a subgroup, then G acts
transitively on the coset space X = G/K yielding an association
scheme 𝔛 whose associated classes are the G-orbits on X × X
and whose adjacency algebra is isomorphic to the subalgebra
of bi-K-invariant functions in ℂ[G]; moreover, 𝔛 is commutative
exactly if (G, K) is a Gelfand pair (this is an important notion in
Harmonic Analysis: it was used by Diaconis in his applications
of Representation Theory to Probability and Statistics [4]). Finally,
a finite regular undirected graph 𝒢 = (X, E) with no loops is called
distance-regular if there exist two sequences of constants, called
the parameters, (b0,b1,…,bN) and (c0, c1,…, cN), where N is the
diameter of 𝒢, such that, for any pair of vertices x, y ∈ X with
graph distance d(x, y) = i one has

|{z ∈ X ∶ d(x, z) = 1, d(y, z) = i+ 1}| = bi,

|{z ∈ X ∶ d(x, z) = 1, d(y, z) = i− 1}| = ci

for all i= 0,1,…,N. Setting Ri ≔ {(x,y) ∈ X× X ∶ d(x,y) = i}, for
i = 0, 1,…,N, yields a symmetric association scheme. The corres-
ponding Bose–Mesner algebra is singly-generated by A1; in fact,
for every i = 0, 1,…,N there exists a polynomial pi ∈ ℝ[t] of de-
gree i such that Ai = pi(A1). This is a prototype of a so-called
P-polynomial scheme.

The history of this monograph is, briefly, as follows. The original
project of “Algebraic Combinatorics” as the first comprehensive
and foundational treatment of the theory, consisted of two parts:
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the first one [2], on “Association Schemes” – lecture notes based
on graduate courses given by Eiichi Bannai during his professorship
at The Ohio State University (1978–1982) and arranged in collab-
oration with Tatsuro Ito – included: (1) Representations of finite
groups, (2) Association schemes, and (3) Distance-regular graphs,
and P- and Q-polynomial association schemes. A second part, on
“Delsarte Theory, Codes and Designs”, should have been published
a couple of years later, but – “as the developments seemed not
sufficient to complete a book and, at the same time, the range of
mathematical objects they were interested in had expanded too
widely to be handled” – it has never come to light. However, in
1999 the first two named authors published (in Japanese) Algeb-
raic Combinatorics on Spheres [1] which was not translated into
English, as the original plan to write the sequel to [2] was still alive.

The present book under review is the English translation, with
the cooperation of Rie Tanaka – herself a mathematician working
on association schemes – of the book Introduction to Algebraic
Combinatorics by the first three named authors, published in Ja-
panese in 2016. As we have mentioned at the beginning, it is not
a sequel to [2] but, rather, a completely revised, widely expanded,
and updated version of it, serving – this is the clear intent of the
authors – as a “preparation for a second part to be hopefully accom-
plished by the younger generations of algebraic combinatorialists”
coming from the flourishing school the authors have initiated in the
US, in Japan, and in China during their life carriers (according to the
Mathematics Genealogy Project, just Eiichi Bannai has 31 students
and 60 descendants).

The contents of the book, according to its subdivision into
chapters, are as follows:
(1) Classical design theory and classical coding theory (including

an introduction to graph theory);
(2) Association schemes, Bose–Mesner algebras, and Terwilliger

algebras;
(3) Codes and designs in association schemes (Delsarte theory on

association schemes);
(4) Codes and designs in association schemes (continued);
(5) Algebraic combinatorics on spheres and general remarks on

algebraic combinatorics;
(6) P- and Q-polynomial schemes.
The writing is very elegant, both in the style of the authors and in
the graphic design of De Gruyter, the exposition is crystal clear – the
proofs are carefully detailed, and plenty of worked-out examples,
often described by beautiful pictures, friendly turn the reader famil-
iar with the concepts gradually introduced – reflecting at the same
time the deepest and masterful knowledge of the subject by the au-
thors as well as their long didactic experience. For this reason, the
book may be used as an excellent text for advanced undergraduate
and graduate courses on Algebraic Combinatorics, and, at the same
time, may also serve as a most precious reference for the more
advanced and mature mathematician. The authors clearly enjoyed
writing it: I am sure that all readers will enjoy reading it as well.
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Understanding Numbers in Elementary School Mathematics
by Hung-Hsi Wu

Reviewed by António de Bivar Weinholtz

For over half a century, the teaching of
Mathematics in elementary, middle and
high school has been the subject of intense
debate among educators, mathematicians
and politicians around the world. Dramatic
changes have been introduced throughout
the past decades in maths curricula and
teaching methods in many countries and,
taking into account the consequences of
these policies, it has become clearer and

clearer how some of their main features may have had a strongly
negative impact on the ability of students to learn real mathem-
atics, exactly as predicted by certain critics. The fact that this is
still non-consensual, mainly among math educators and politicians,
and that in some countries we can still witness successive contra-
dictory movements in the area of math education, shows just how
important it is to have at our disposal works of unquestionable
quality devoted to that beautiful part of Mathematics that can and
should be taught to students in the pre-university grades.
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Prof. Hung-Hsi Wu has been one of the main members of the
mathematical community to devote years of professional activity to
the improvement of the teaching of pre-university mathematics. He
was the coordinator and one of the main authors of the Common
Core Mathematics Standard, a milestone in the rebirth of a sound
K-12 curriculum for American schools, that has served as an inspir-
ation to similar movements in many other countries. For the past
decade, he has committed himself to write a series of volumes cov-
ering this curriculum, starting with the present one, which covers
the most substantial part of the K-6 curriculum, namely numbers
and operations.

The book is written for elementary school teachers, as a funda-
mental instrument for their mathematical education both during
pre-service years and for their professional development. It also
aims to provide a much needed resource for authors of textbooks.
As the author points out, it was written after more than ten years of
experimentation, in an effort to teach mathematics to elementary
and middle school teachers. As it is clear that teachers should be
able to go beyond what they have to teach in their understanding
of school mathematics, the book also contains some topics that
could be considered more appropriate for grades 7 or 8.

The book is written with the assumption, whose validity the
author does an excellent job of explaining to the reader, that
school mathematics is not a set of trivial topics that could be
served to students with some degree of carelessness regarding the
systematic and comprehensive approach that any mathematical
theory requires, under the illusion that it is enough to comply
with some more or less widely accepted, although rather arguable,
pedagogical principles. On the contrary, to cite the author:

“If we want a coherent curriculum and a coherent progression
of mathematics learning, we must have at least one
default model of a logical, coherent presentation of
school mathematics which respects students’ learning
trajectory. It is unfortunately the case that, for a long
time, such a presentation has not been readily available.
The mathematical community has been derelict in meeting
this particular social obligation.”

With these principles in mind, it is not difficult to guess that the
reading of this volume can be a delight to anyone with the ability
to appreciate the beauty of the use of human reasoning in our
quest to understand the world around us. The set of its potential
readers should thus surely not be restricted to those for whom it
was primarily intended, but should include anyone with the basic
capacity and will to make the necessary effort required here, as for
any other really worthwhile enterprise.

In principle, reading this book requires no previous mathemat-
ical knowledge, as should be clear by the fact that the first section
of Chapter 1 of Part 1 is entitled “How to Count”. From there
on, the author uses precise definitions and logical reasoning to

treat all subsequent topics; but this means that while one can find
everything one needs to follow these developments inside the
book, the successive steps do require a serious effort. In practice,
as the author points out, “it can be too much of a challenge if you
are unfamiliar with the procedural aspect of elementary school
mathematics”.

The precise content of the book has been carefully chosen
to cover all the required topics while simultaneously allowing for
a systematic mathematical development suitable as a background
to organize the teaching of numbers and operations to K-6 stu-
dents. Although one could devise approaches that differ in some
details, this is not a field where too much can be left to the imagin-
ation of too many members of the educational community. A deep
knowledge of mathematics is required, but also a deep respect
for what past generations can teach us on these subjects, since
in the case of basic mathematics one can benefit from literally
hundreds, and in some cases thousands of years of a successful
chain of transmission of knowledge from generation to gener-
ation. Thus, not only does this work fill a long standing gap in
the school mathematics literature, but it does so in a basically
unavoidable way.

After a first part on the introduction of whole numbers, includ-
ing operations and algorithms, one finds perhaps the core of the
book and of the whole of the K-6 curriculum, which is the second
part, devoted to fractions. Generations of students have been de-
prived of the possibility of attaining a minimal understanding of
this topic by the mistreatment of the subject in schools around
the world; it is sad to verify that even where some efforts have
already been made to correct this situation, there have been recent
educational policies reversing these corrections. The author not
only explains what lies behind these mistreatments, but sets out to
establish a sound and detailed basis for a correct way to teach this
central subject throughout the years of elementary school. Three
more parts follow, on rational (relative) numbers, some elementary
beautiful and basic topics of number theory and decimal expan-
sions. On each topic the author provides the reader with numerous
illuminating activities whose solutions can be found online, and an
excellent choice of a wide range of exercises.

Hung-Hsi Wu, Understanding Numbers in Elementary School
Mathematics. American Mathematical Society, 2011, 551 pages,
Hardback ISBN 978-0-8218-5260-6, eBook ISBN 978-1-4704-1210-4.

António de Bivar Weinholtz is a retired associate professor of
Mathematics of the University of Lisbon Faculty of Science, where
he taught from 1975 to 2009. He was a member of the scientific
coordination committee of the new curricula of Mathematics for all
the Portuguese pre-university grades (2012–2014).

abivar@sapo.pt
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An Introduction to the Numerical Simulation of
Stochastic Differential Equations by Desmond J. Higham
and Peter E. Kloeden

Reviewed by David Cohen

The aim of the book under review is to
“provide a lively, accessible introduction to
the numerical solution of stochastic differ-
ential equations (SDEs)” (taken from the
first sentence of the preface). Knowing the
scientific expertise of the two authors of
this book as well as their communication
skills, it was clear to me from the start that
this aim would be reached. I hope that my
review will illustrate this fact.

SDEs and their numerical simulations are indispensable tools in
a multitude of disciplines. They have been used in various ap-
plication areas such as chemical kinetics, engineering, epidemic
modeling, financial mathematics, neuroscience, physics, social sci-
ences, etc. To understand these models and simulate solutions to
SDEs efficiently requires advanced knowledge in probability the-
ory, stochastic analysis, as well as numerical analysis. However, to
understand the main ideas and concepts of SDEs and their numer-
ical simulations using this book, it is enough to start with a good
knowledge of algebra, calculus and some familiarity with numerical
analysis and probability theory.

By reading this book (and doing the exercises!), the reader
will develop an intuitive feeling for the main ideas around SDEs,
learn to implement first numerical methods to efficiently simulate
SDEs in various applications, and get ideas of the proofs of some
of the fundamental theorems in numerics for SDEs. All this is ac-
complished thanks to a constant focus on the essential (avoiding
technicalities), an engaging and pedagogical way of presenting
the necessary material, and appropriate use of well-chosen (com-
putational) examples and inviting (theoretical and computational)
exercises.

The book under review is not a rigorous text in mathematics,
and the authors acknowledge this in many places. The interested
reader is often referred to the more advanced and technical lit-
erature on the subject. For more rigorous and advanced books
on the numerical treatment of SDEs, one could consult for in-
stance: Numerical Solution of Stochastic Differential Equations by
Kloeden, Platen, or Stochastic Numerics for Mathematical Phys-
ics by Milstein, Tretyakov, or Numerical solution of SDE through
computer experiments by Kloeden, Platen, Schurz.

The present book contains 20 chapters, ordered in a very di-
dactic manner in increasing order of difficulty (at least according
to me). Each chapter starts with a compact outline in bullet points,
a small picture reflecting the content of the chapter, and a clear and
concise statement of motivation, and each one is illustrated with

several accessible (computational) examples. Every chapter ends
with notes and references (e.g. for further advanced reading), a list
of both theoretical and computational exercises (with solutions
available at the publisher’s website), and most importantly, some
funny quotes! At the end, the book provides a list of symbols, an
index and an extensive bibliography.

Let me now give a brief description of the content of each
chapter. The first chapter presents (discrete and continuous) ran-
dom variables and related topics. Chapter 2 introduces basic com-
putational concepts to simulate random variables. The third chapter
contains the heart of the theory of SDEs, namely Brownian motion
and its main properties. Chapter 4 deals with (mostly Itô) stochastic
integrals. These four chapters provide all the tools required to
define scalar SDEs, which are duly presented in Chapter 5, along
with many examples from the domains of application. One par-
ticularly important tool, namely the Itô formula, is described in
Chapter 6. The goal of Chapter 7 is to give a brief overview of the
Stratonovich form of an SDE. Chapter 8 deals with the simplest
and most used numerical scheme for SDEs: the Euler–Maruyama
scheme. Chapters 9 and 10 give a sketch of the proofs of weak
and strong convergence of the Euler–Maruyama scheme. From this
point on, my impression is that the chapters begin touching on
more advanced topics. Chapter 11 investigates the mean-square
and asymptotic stability of the stochastic θ-method. The aim of
Chapter 12 is to use numerical methods in a Monte Carlo setting to
compute mean exit times in several applications. Chapter 13 deals
with a typical area of application of SDEs: computing various finan-
cial quantities. Chapter 14 investigates long-time properties of SDEs
and steady states. Chapter 15 presents the multilevel Monte Carlo
technique to reduce the computational cost of the classical Monte
Carlo method. Chapter 16 introduces SDEs with jumps. Chapter 17
presents a derivation of high-order numerical methods for SDEs
(based on stochastic Taylor expansions). Chapters 18 and 19 extend
the main concepts seen so far to systems of SDEs. Finally, the last
chapter of the book deals with stochastic modeling and simulation
of chemical reactions.

The book under review is very well written, accessible, enjoy-
able to read, not too long, and offers heuristic explanations to key
concepts and results on SDEs and their numerical discretisations.
It is an ideal book for undergraduate and graduate students in
mathematics and statistics, as well as interested students from
computer science, engineering, finance, life sciences, or physics,
for instance. This book is also recommended for more “senior”
scientists who would like to learn the “basics” about numerics for
SDEs, for example to give an introductory lecture on the subject.

Desmond J. Higham and Peter E. Kloeden, An Introduction to the
Numerical Simulation of Stochastic Differential Equations. SIAM, 2012,
293 pages, Hardback ISBN 978-1-6119-7642-7.
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David Cohen is professor of mathematics at Chalmers University
of Technology. When not teaching or racking his brains investigating
numerical methods for stochastic partial differential equations,
David enjoys riding his bikes in the forests and roads around Gothenburg
and in the Swiss Alps (with a helmet of course!).

david.cohen@chalmers.se
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Announcement of the next meeting of the EMS Council
Bled, Slovenia, 25th and 26th June 2022

The EMS Council meets every second year. The next meeting will
be held in Bled, Slovenia, 25th and 26th June 2022, at Rikli
Balance Hotel (www.sava-hotels-resorts.com/en/sava-hoteli-bled).
Registration will be held on 25th June between 12:00 and 13:45.
The Council meeting begins on 25th June at 14:00 and ends on
26th June at 12:00.

Delegates

Delegates to the Council shall be elected for a period of four years.
A delegate may be re-elected provided that consecutive service in
the same capacity does not exceed eight years. Delegates will be
elected by the following categories of members.

(a) Full members
Full members are national mathematical societies, which elect 1, 2,
3, or 4 delegates according to their membership class. The Council
decides the membership class and societies are invited to apply for
the class upgrade. However, the current membership class of the
society determines the number of delegates for the 2022 Council.

Each society is responsible for the election of its delegates. To
be eligible to nominate its delegates the society must have paid
the corporate membership fee for the year 2021 and/or 2022. It
is not compulsory but is highly appreciated that the full member
delegates join the EMS as individual members.

The link to the online nomination form for delegates of full
members is below. The deadline for nominations for delegates of
full members is 4th April 2022.

(b) Associate members
Delegates representing associate members shall be elected by a bal-
lot organized by the Executive Committee from a list of candidates
who have been nominated and seconded by associate members,
and have agreed to serve. In October 2021, there were three asso-
ciate members and, according to our statutes, (up to) one delegate
may represent these members. Associate members delegates must

themselves be members of the EMS and have paid the individual
membership fees for the year 2021 and/or 2022. The associate
member delegate Susanne Ditlevsen can be re-elected for the
second term 2022–2025.

The link to the online nomination form for delegates of associ-
ate members (including the ones eligible for re-election) is below.
The deadline for nominations for delegates of individual members
is 28th February 2022.

(c) Institutional members
Delegates representing institutional members shall be elected by
a ballot organized by the Executive Committee from a list of can-
didates who have been nominated and seconded by institutional
members, and have agreed to serve. In October 2021, there were
48 institutional members and, according to our statutes, (up to)
four delegates may represent these members. Institutional mem-
ber delegates must themselves be individual members of the EMS
and have paid the individual membership fees for the year 2021
and/or 2022. The delegate whose term includes 2022 is Klavdija
Kutnar. The institutional member delegates who can be re-elected
for the second term 2022–2025 are David Abrahams, Alex Mielke
and Luis Vega.

The link to the online nomination form for delegates of insti-
tutional members (including the ones eligible for re-election) is
below. The deadline for nominations for delegates of institutional
members is 28th February 2022.

(d) Individual members
Delegates representing individual members shall be elected by
a ballot organized by the Executive Committee from a list of can-
didates who have been nominated and seconded, and have agreed
to serve. These delegates must themselves be individual members
of the European Mathematical Society and have paid the individual
membership fees for the year 2021 and/or 2022.

In October 2021 there were 3143 individual members and,
according to our statutes, these members may be represented by
(up to) 32 delegates.
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Here is a list of the current delegates of individual members
whose term includes 2022:

Luis Alseda
Antonio Campillo
Carles Casacuberta
Fernando da Costa
Heike Faßbender
Olga Gil-Medrano
Thierry Horsin
Kenji Iohara
Christian Kassel
Hrvoje Kraljević

Pierangelo Marcati
Wacław Marzantowicz
Vicente Muñoz
Piotr Oprocha
Joaquín Pérez
Carlo Petronio
Jasna Prezelj
Armen Sergeev
Juan Soler

Here is a list of the delegates of individual members who could be
re-elected for the second term 2022–2025:

Jean-Marc Deshouillers
Alice Fialowski
Jan Pospíšil
Primož Potočnik
Muhammed Uludag

The link to the online nomination form for delegates of individual
members (including the ones eligible for re-election) is below. The
deadline for nominations for delegates of individual members is
28th February 2022.

Agenda

The Executive Committee is responsible for preparing the matters
to be discussed at Council meetings. Items for the agenda of this
meeting of the Council should be sent as soon as possible, and
no later than 25th April 2022, to the EMS Secretary Jiří Rákosník
(rakosnik@math.cas.cz).

© Jošt Gantar, www.slovenia.info

Executive Committee

The Council is responsible for electing the President, Vice-Presidents,
Secretary, Treasurer and other members of the Executive Commit-
tee. The present membership of the Executive Committee, together
with their individual terms of office, is as follows:
President: Volker Mehrmann (2019–2022)
Vice-Presidents: Betül Tanbay (2019–2022)

Jorge Buescu (2021–2024)
Secretary: Jiří Rákosník (2021–2024)
Treasurer: Mats Gyllenberg (2019–2022)
Members: Frédéric Hélein (2021–2024)

Barbara Kaltenbacher (2021–2024)
Luis Narváez Macarro (2021–2024)
Beatrice Pelloni (2017–2024)
Susanna Terracini (2021–2024)

Members of the Executive Committee are elected for a period
of four years. The President can only serve one term. Committee
members may be re-elected, provided that consecutive service shall
not exceed eight years.

The Council may, at its meeting, add to the nominations re-
ceived and set up a Nominations Committee, disjoint from the
Executive Committee, to consider all candidates. After hearing the
report by the Chair of the Nominations Committee (if one has been
set up), the Council will proceed to the elections to the Executive
Committee posts.

All these arrangements are as required in the Statutes and By-
laws, which can be found here together with the web page for the
Council: http://euromathsoc.org

The online nomination form for full member delegates:

https://elomake.helsinki.fi/lomakkeet/114719/lomake.html

The deadline for nominations is 4th April 2022.

The nomination form for institutional, associate and individual
member delegates:

https://elomake.helsinki.fi/lomakkeet/114718/lomake.html

The deadline for nominations is 28th February 2022.

Secretary: Jiří Rákosník (rakosnik@math.cas.cz)
Secretariat: ems-office@helsinki.fi
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European Mathematical Society

EMS executive committee

President

Volker Mehrmann (2019–2022)
Technische Universität Berlin, Germany
mehrmann@math.tu-berlin.de

Vice presidents

Betül Tanbay (2019–2022)
Bogazici University, Istanbul, Turkey
tanbay@boun.edu.tr

Jorge Buescu (2021–2024)
University of Lisbon, Portugal
jbuescu@gmail.com

Treasurer

Mats Gyllenberg (2015–2022)
University of Helsinki, Finland
mats.gyllenberg@helsinki.fi

Secretary

Jiří Rákosník (2021–2024)
Czech Academy of Sciences, Praha, Czech Republic
rakosnik@math.cas.cz

Members

Frédéric Hélein (2021–2024)
Université de Paris, France
helein@math.univ-paris-diderot.fr

Barbara Kaltenbacher (2021–2024)
Universität Klagenfurt, Austria
barbara.kaltenbacher@aau.at

Luis Narváez Macarro (2021–2024)
Universidad de Sevilla, Spain
narvaez@us.es

Beatrice Pelloni (2017–2024)
Heriot-Watt University, Edinburgh, UK
b.pelloni@hw.ac.uk

Susanna Terracini (2021–2024)
Universita di Torino, Italy
susanna.terracini@unito.it

EMS publicity officer

Richard H. Elwes
University of Leeds, UK
r.h.elwes@leeds.ac.uk

EMS secretariat

Elvira Hyvönen
Department of Mathematics and Statistics
P.O. Box 68
00014 University of Helsinki, Finland
ems-office@helsinki.fi

Join the EMS

You can join the EMS or renew your membership online at
euromathsoc.org/individual-members.

Individual membership benefits

Printed version of the EMS Magazine, published four times a year
for no extra charge
Free access to the online version of the Journal of the European
Mathematical Society published by EMS Press
Reduced registration fees for the European Congresses
Reduced registration fee for some EMS co-sponsored meetings
20% discount on books published by EMS Press
(via orders@ems.press)*
Discount on subscriptions to journals published by EMS Press
(via subscriptions@ems.press)*
Reciprocity memberships available at the American, Australian,
Canadian and Japanese Mathematical Societies

* These discounts extend to members of national societies that are
members of the EMS or with whom the EMS has a reciprocity
agreement.

Membership options

25 € for persons belonging to a corporate EMS member society
(full members and associate members)
37 € for persons belonging to a society, which has a reciprocity
agreement with the EMS (American, Australian, Canadian and Japanese
Mathematical societies)
50 € for persons not belonging to any EMS corporate member
A particular reduced fee of 5 € can be applied for by mathematicians
who reside in a developing country (the list is specified by the EMS
CDC).
Anyone who is a student at the time of becoming an individual EMS
member, whether PhD or in a more junior category, shall enjoy
a three-year introductory period with membership fees waived.
Lifetime membership for the members over 60 years old.
Option to join the EMS as reviewer of zbMATH Open.
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A CONVERSATION ON 
PROFESSIONAL NORMS  
IN MATHEMATICS
Edited by Mathilde Gerbelli-Gauthier,  
Institute for Advanced Study, Princeton et al
The articles in this volume grew out of a 2019 
workshop, held at Johns Hopkins University, 
that was inspired by a belief that when 
mathematicians take time to reflect on the 
social forces involved in the production of 
mathematics, actionable insights result. Topics 
range from mechanisms that lead to an inclusion-
exclusion dichotomy within mathematics to 
common pitfalls and better alternatives to how 
mathematicians approach teaching, mentoring 
and communicating mathematical ideas. 
Dec 2021 157pp 9781470467135  
Paperback €58.00 

INTRODUCTION TO 
DIFFERENTIAL EQUATIONS
Second Edition
Michael E. Taylor, University of North Carolina
Introduces students to the theory and practice 
of differential equations, which are fundamental 
to the mathematical formulation of problems in 
physics, chemistry, biology, economics, and other 
sciences. This second edition incorporates much 
new material, including sections on the Laplace 
transform and the matrix Laplace transform, 
a section devoted to Bessel's equation, and 
sections on applications of variational methods to 
geodesics and to rigid body motion. 

Pure and Applied Undergraduate Texts, Vol. 52
Jan 2022 388pp 9781470467623  
Paperback €86.00 

PERVERSE SHEAVES 
AND APPLICATIONS TO 
REPRESENTATION THEORY
Pramod N. Achar, Louisiana State University
Since its inception around 1980, the theory 
of perverse sheaves has been a vital tool 
of fundamental importance in geometric 
representation theory. This book gives a 
comprehensive account of constructible and 
perverse sheaves on complex algebraic varieties, 
and show how to put this to work in the context of 
geometric representation theory.

Mathematical Surveys and Monographs, Vol. 258
Dec 2021 562pp 9781470455972  
Paperback €120.00 

PUTTING TWO AND TWO 
TOGETHER
Selections from the Mathologer Files
Burkard Polster, Monash University &  
Marty Ross, Monash University
A humorous and quirky collection of unusual, 
ingenious, and beautiful morsels of mathematics. 
Authors Burkard Polster (YouTube's Mathologer) 
and Marty Ross delve into mathematical puzzles 
and phenomena in engaging stories featuring 
current events, sports, and history, many flavoured 
with a distinctive bit of Australiana.
Jan 2022 270pp 9781470460112  
Paperback €38.00 

FURTHER INFORMATION:
Tel: +44 (0)20 7240 0856
Fax: +44 (0)20 7379 0609
Email: info@eurospan.co.uk

Free delivery at eurospanbookstore.com/ams

CUSTOMER SERVICES:
Tel: +44 (0)1767 604972
Fax: +44 (0)1767 601640
Email: eurospan@turpin-distribution.com

AMS is distributed by

Prices do not include local taxes.
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 Handbook of  
Automata Theory
Volume I 
Theoretical Foundations

Edited by Jean-Éric Pin
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e I

Jean-Éric Pin (Ed.)

20  % discount on any book purchases for individual members 
of the EMS, member societies or societies with a reciprocity 
 agreement when ordering directly from EMS Press.

*

 Handbook of  
Automata Theory
Volume II 
Automata in Mathematics and Selected Applications

Edited by Jean-Éric Pin
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Jean-Éric Pin (Ed.)

New EMS Press title

EMS Press is an imprint of the  
European Mathematical Society – EMS – Publishing House GmbH 
Straße des 17. Juni 136 | 10623 Berlin | Germany

https://ems.press | orders@ems.press

Handbook of Automata Theory

edited by Jean-Éric Pin

isbn 978-3-98547-006-8. eisbn 978-3-98547-506-3 
2021. Hardcover. Two volumes. 1608 pages. € 199.00*

Automata theory is a subject of study at the crossroads of  mathematics, 
theoretical computer science, and applications. In its core it deals with 
 abstract models of systems whose behaviour is based on transitions 
 between states, and it develops methods for the description, classification, 
analysis, and design of such systems.

The Handbook of Automata Theory gives a comprehensive overview of 
current research in automata theory, and is aimed at a broad readership of 
researchers and graduate students in mathematics and computer science.

Volume I is divided into three parts. The first part presents various types 
of automata: automata on words, on infinite words, on finite and infinite 
trees, weighted and maxplus automata, transducers, and two-dimensional 
models. Complexity aspects are discussed in the second part. Algebraic and 
topological aspects of automata theory are covered in the third part.

Volume II consists of two parts. The first part is dedicated to applications 
of automata in mathematics: group theory, number theory, symbolic 
 dynamics, logic, and real functions. The second part presents a series of 
further applications of automata theory such as message-passing systems, 
symbolic methods, synthesis, timed automata, verification of higher-order 
programs, analysis of probabilistic processes, natural language processing, 
formal verification of programs and quantum computing.

The two volumes comprise a total of thirty-nine chapters, with extensive 
references and individual tables of contents for each one, as well as a 
 detailed subject index.


