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In this survey, I discuss some recent developments at the cross-
roads of arithmetic geometry and the Langlands programme. The
emphasis is on recent progress on the Ramanujan–Petersson and
Sato–Tate conjectures. This relies on new results about Shimura va-
rieties and torsion in the cohomology of locally symmetric spaces.

The Langlands programme is a “grand unified theory” of mathe-
matics: a vast network of conjectures that connect number theory
to other areas of pure mathematics, such as representation theory,
algebraic geometry, and harmonic analysis.

One of the fundamental principles underlying the Langlands
conjectures is reciprocity, which can be thought of as a magical
bridge that connects different mathematical worlds. This principle
goes back centuries to the foundational work of Euler, Legendre
and Gauss on the law of quadratic reciprocity. A celebrated modern
instance of reciprocity is the correspondence between modular
forms and rational elliptic curves, which played a key role in Wiles’s
proof of Fermat’s Last Theorem [46] and which relied on the fa-
mous Taylor–Wiles method for proving modularity [43]. Recently,
the search for new reciprocity laws has begun to expand the scope
of the Langlands programme.

The Ramanujan–Petersson conjecture is an important con-
sequence of the Langlands programme, which goes back to a
prediction Ramanujan made a century ago about the size of the
Fourier coefficients of a certain modular form Δ, a highly symmetric
function on the upper half plane. The Sato–Tate conjecture is an
equidistribution result about the number of points of a given elliptic
curve modulo varying primes, formulated half a century ago. It
is also a consequence of the Langlands programme. In Section 1,
I survey progress on these conjectures in two fundamentally dif-
ferent settings: one setting in which there is a direct connection
to algebraic geometry (modular curves) and one setting in which
such a connection is missing (arithmetic hyperbolic 3-manifolds, or
Bianchi manifolds).

Shimura varieties are certain highly symmetric algebraic vari-
eties that generalise modular curves and that provide, in many
cases, a geometric realisation of Langlands reciprocity. In Sec-
tion 2, I explain a new tool for understanding Shimura varieties

called the Hodge–Tate period morphism. This was introduced by
Scholze in [35] and refined in my joint work with Scholze [16]. I
then discuss vanishing theorems for the cohomology of Shimura
varieties proved using the geometry of the Hodge–Tate period
morphism [16, 17].

The Calegari–Geraghty method [11] vastly extends the scope
of the Taylor–Wiles method, though it is conjectural on an exten-
sion of the Langlands programme to incorporate torsion in the
cohomology of locally symmetric spaces. In Section 3, I discuss
joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton,
Scholze, Taylor, and Thorne [1], where we implement the Calegari–
Geraghty method unconditionally over CM fields, an important
class of number fields that contains imaginary quadratic fields as
well as cyclotomic fields. This work relies crucially on one of the
vanishing theorems mentioned above [17], and has applications
to both the Ramanujan–Petersson and the Sato–Tate conjectures
over CM fields.

Remark 1. The Langlands programme is a beautiful but technical
subject, with roots in many different areas of mathematics. For a
general mathematician, Section 1 is the most accessible, as it high-
lights two concrete consequences of the Langlands conjectures.
The later Sections 2 and 3 assume more background in algebraic
geometry and number theory.

I have prioritised references to well-written surveys above refer-
ences to the original papers. I particularly recommend [21] for a his-
torical account of Langlands reciprocity, [41] for more background
on the Langlands correspondence, and [36] for a cutting-edge
account of the deep connections between arithmetic geometry
and the Langlands programme.

1 The Ramanujan and Sato–Tate conjectures

1.1 Modular curves and Bianchi manifolds
The goal of this section is to discuss two fundamental examples of
locally symmetric spaces: modular curves, which have an algebraic
structure, and Bianchi manifolds, which do not. This dichotomy
underlies the fundamental difference between reciprocity laws over
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Figure 1. A fundamental domain for SL2(ℤ) acting on ℍ2

the field of rational numbers ℚ (and over real quadratic fields such
as ℚ(√5)), and reciprocity laws over imaginary quadratic fields
such as ℚ(i).

Let G be a connected reductive group defined over ℚ, for
example SLn, GLn or Sp2n. We can then consider an associated sym-
metric space X, endowed with an action of the real points G(ℝ).
This is roughly identified with G(ℝ)/K∞, where K∞ ⊂ G(ℝ) is a
maximal compact subgroup. We then want to consider the action
of certain arithmetic groups on X: more precisely we want to re-
strict to finite index subgroups Γ ⊂ G(ℤ) cut out by congruence
conditions. If Γ is sufficiently small, we can form the quotient Γ\X
and obtain a smooth orientable Riemannian manifold, which is a
locally symmetric space for G.

Example 2. If G = SL2/ℚ, the corresponding symmetric space is
the upper-half plane

SL2(ℝ)/SO2(ℝ) ≃ ℍ2 ∶= {z ∈ ℂ ∣ Im z > 0}

endowed with the hyperbolic metric. The action of SL2(ℝ) on ℍ2

is by Möbius transformations:

z ↦ az + b
cz + d

for (
a b
c d

) ∈ SL2(ℝ).

For Γ ⊂ SL2(ℤ) a finite index congruence subgroup (that is as-
sumed sufficiently small), the quotients Γ\ℍ2 are Riemann surfaces.
These Riemann surfaces come from algebraic curves XΓ defined
over ℚ (or over finite extensions of ℚ) called modular curves. A
fundamental domain for a proper subgroup Γ ⊂ SL2(ℤ) acting on
ℍ2 is a finite union of translates of the fundamental domain in
Figure 1.

Example 3. If G = SL2/F, where F is an imaginary quadratic field1,
the corresponding symmetric space is 3-dimensional hyperbolic

space

SL2(ℂ)/SU2(ℝ) ≃ ℍ3

and the locally symmetric spaces are called Bianchi manifolds.
These are arithmetic hyperbolic 3-manifolds and, since their real
dimension is odd, they do not admit a complex or algebraic struc-
ture.

The locally symmetric spaces for a group G are important in
what follows because they give a way to access automorphic rep-
resentations of G, the central objects of study in the Langlands
programme. This is explained more in Section 2. For example,mod-
ular forms2, which are holomorphic functions on ℍ2 that satisfy a
transformation relation under some Γ, contribute to the first Betti
cohomology of modular curves (with possibly twisted coefficients).

Some locally symmetric spaces have an algebraic structure. If
this happens, they in fact come from smooth, quasi-projective va-
rieties XΓ defined over number fields, which are called Shimura
varieties. The geometry of Shimura varieties is a rich and fascinating
subject in itself, that we discuss more in Section 2. On the other
hand, the Langlands programme is much more mysterious beyond
the setting of Shimura varieties, because there is no obvious con-
nection to algebraic geometry or arithmetic. We discuss this more
in Section 3.

1.2 The Ramanujan conjecture
A famous example of a modular form is Ramanujan’s Δ function.
If z is the variable on the upper-half plane ℍ2 and q = e2𝜋iz, Δ is
given by the Fourier series expansion

Δ(z) = q
∞∏

n= 1

(1 − qn)24 = ∑
n> 0

𝜏(n)qn.

1 This can be viewed as a connected reductive group over ℚ using a technical notion called the Weil restriction of scalars.
2 These give rise to automorphic representations for the group SL2/ℚ.

EMS MAGAZINE 119 (2021) 9



In 1916, Ramanujan made three predictions about the behaviour
of the Fourier coefficients 𝜏(n). The first two of these were imme-
diately proved by Mordell by studying the action on Δ of certain
Hecke operators, that we return to in Section 2. The Ramanu-
jan conjecture, which resisted attempts at proof for much longer,
bounds the absolute value of the Fourier coefficients: it states that
|𝜏(p)| ≤ 2p11/2 for all primes p.

Deligne finally established this bound in the early 1970’s, and
this was one of the reasons for which he was awarded a Fields
Medal in 1978. While the bound on the Fourier coefficients is
purely a statement within harmonic analysis, the proof used the
bridge of Langlands reciprocity and was ultimately obtained from a
statement in arithmetic geometry. More precisely, Deligne’s proof
of the Ramanujan conjecture went via the étale cohomology of
modular curves, obtaining the desired bound as a consequence of
his proof of the Weil conjectures for smooth projective varieties
over finite fields.

The generalised Ramanujan–Petersson conjecture is a vast
extension of the above statement, with numerous applications
across mathematics and computer science. See, for example, the
survey [31] for its applications to extremal combinatorial objects
called Ramanujan graphs. This more general conjecture, which is
part of Arthur’s conjectures on the automorphic spectrum of GLn
(see also the survey [34]), predicts that the local components at
finite places of cuspidal automorphic representations of GLn are
tempered.

Temperedness means roughly that the matrix coefficients of
the representation are in L2+𝜖 for all 𝜖 > 0. This singles out the
building blocks of the category of irreducible admissible repre-
sentations of p-adic groups, such as GLn(ℚp), in the sense that
everything else can be constructed from tempered representations
of smaller groups. Tempered representations also play an impor-
tant role in the local Langlands conjecture, which relates them
to arithmetic objects, essentially representations of local Galois
groups. For the group GLn, local Langlands is a theorem, proved by
Harris–Taylor and Henniart in the early 2000’s, and later reproved
by Scholze.

For certain cuspidal automorphic representations of GLn, which
are global objects built from the irreducible admissible representa-
tions mentioned above, one can try to follow Deligne’s approach
to the Ramanujan conjecture using the étale cohomology of higher-
dimensional Shimura varieties. When these varieties have singular
reduction, the arithmetic counterpart of the Ramanujan–Petersson
conjecture is Deligne’s weight-monodromy conjecture. This goes
beyond the Weil conjectures to predict that the étale cohomology
of smooth projective varieties over p-adic fields has a remarkably
elegant shape, even in the case of singular reduction.

In [12], building on [18, 39, 44] and [25], I follow Deligne’s
approach and complete the proof of the following result.

Theorem 4. Let F be a CM field and let 𝜋 be a regular algebraic,
self-dual cuspidal automorphic representation of GLn/F. Then 𝜋
satisfies the generalised Ramanujan–Petersson conjecture.

The global Langlands correspondence relates automorphic rep-
resentations to global Galois representations. The direction from
automorphic to Galois is best understood in the setting of The-
orem 4, which is the so-called “self-dual case”. This has been a
milestone achievement in the field: it required the combined effort
of many people over several decades, including Kottwitz, Clozel,
Harris, Taylor, Shin, and Chenevier, and was built on fundamental
contributions by Arthur, Laumon, Ngô andWaldspurger. In [12, 13],
I also complete the proof that the associated Galois representations
are compatible with local Langlands3, by establishing new instances
of the weight-monodromy conjecture for Shimura varieties.

More recently, in joint work with Allen, Calegari, Gee, Helm, Le
Hung, Newton, Scholze, Taylor, and Thorne, I obtained an applica-
tion to the Ramanujan–Petersson conjecture beyond the self-dual
case. This is the first instance where this conjecture is not deduced
from the Weil conjectures, but rather by an approximation of the
very different strategy outlined by Langlands in [30].

Theorem 5 ([1]). Let F be a CM field and 𝜋 be a cuspidal automor-
phic representation of GL2/F of parallel weight 2. Then 𝜋 satisfies
the generalised Ramanujan–Petersson conjecture.

The condition on the weight means that 𝜋 contributes to the
Betti cohomology with constant coefficients of the relevant locally
symmetric space, which is for example a Bianchi manifold. These
locally symmetric spaces do not have an algebraic structure, so one
cannot appeal directly to arithmetic geometry. We come back to
discuss the strategy for the proof of Theorem 5 in Section 3.

1.3 The Sato–Tate conjecture
An elliptic curve is a smooth, projective curve of genus one to-
gether with a specified point. If F is a number field, an elliptic curve
defined over F can be described as a plane curve, given by (the
homogenisation of) a cubic equation of the form y2 = x3 + ax + b
with a, b ∈ F.

Such an elliptic curve E/F, if it does not have complex multipli-
cation, is expected to satisfy the Sato–Tate conjecture. When 𝔭 is a
prime of F over which E has good reduction, the number

1 + q𝔭 − #E(k(𝔭))
2√q𝔭

3 Local-global compatibility is a crucial property one expects from the Langlands correspondence, which generalises the compatibility between local and global class
field theory.
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(where k(𝔭) denotes the residue field at 𝔭, of cardinality q𝔭) is con-
tained in the interval [−1, 1] by a result of Hasse; this is also a
special case of Deligne’s result on the Weil conjectures. The Sato–
Tate conjecture, formulated in the 1960’s, states that, as 𝔭 runs
over all the primes of F over which E has good reduction, these
numbers become equidistributed in [−1, 1] with respect to the
semicircle probability measure

2

𝜋
√1 − x2dx.

Remark 6. The condition for an elliptic curve to have complex
multiplication is very special, and in that case the probability distri-
bution is different and well-understood. See [40] for a survey on
Sato–Tate-type conjectures, which explains the expected distribu-
tions, and [26] for the more general conceptual framework that
underlies this conjecture.

According to the Langlands reciprocity conjecture, any elliptic
curve E/F is also expected to come from an automorphic repre-
sentation of GL2 over F. If this is the case, we say that E is au-
tomorphic. The precise relationship between elliptic curves and
automorphic representations can be expressed as an equality of the
two L-functions associated to them. L-functions are complex ana-
lytic functions that generalise the Riemann zeta function and that
remember deep arithmetic information about the original objects.

For example, the L-functions of all elliptic curves defined over ℚ
are known to come from modular forms, by work of Breuil–
Conrad–Diamond–Taylor [9] building on [46] and [43]. The anal-
ogous result for elliptic curves defined over real quadratic fields
was later proved by Freitas–Le Hung–Siksek [22]. The L-functions
of elliptic curves over imaginary quadratic fields are expected to
come from classes in the cohomology of Bianchi manifolds, but
this case has historically been much more mysterious.

Soon after the Sato–Tate conjecture was formulated, Serre and
Tate discovered that the correct distribution would follow from the
expected analytic properties of the symmetric power L-functions of
E. In turn, these analytic properties would follow if one knew the
automorphy of E and all its symmetric powers. This argument is
explained in [37] and uses Tauberian theorems in analytic number
theory: the techniques are essentially those that led to the proof
of the prime number theorem. In fact, to establish the correct
distribution, it suffices to know that E and its symmetric powers
are potentially automorphic: this means they become automorphic
after base change to some Galois field extension F′ of F.

The Sato–Tate conjecture for elliptic curves defined over totally
real fields was proved in most cases by Clozel, Harris, Shepherd-
Barron, and Taylor [19, 24, 42], and completed in work of Barnet-
Lamb–Geraghty–Harris–Taylor around 2010 [4]. This relied on the
potential automorphy of symmetric powers, which could be estab-
lished in the self-dual setting using a generalisation of the Taylor–
Wiles method. However, the method broke down for elliptic curves
defined over imaginary quadratic fields or more general CM fields.
In Section 3, we explain how to overcome the barrier to treating

elliptic curves defined over CM fields and obtain the following
result.

Theorem 7 ([1]). Let F be a CM field and E/F be an elliptic curve
that does not have complex multiplication. Then E is potentially
automorphic and satisfies the Sato–Tate conjecture.

Remark 8. Both Theorems 5 and 7 rely crucially on the vanishing
theorem for Shimura varieties proved in [17], which is discussed
in Section 2.

Remark 9. The beautiful work of Boxer–Calegari–Gee–Pilloni [7],
completed at the same time as [1], proves the potential automor-
phy of elliptic curves in Theorem 7 independently, and they are
even able to show the potential automorphy of abelian surfaces
over totally real fields. Moreover, in the recent paper [2], Allen–
Khare–Thorne establish actual automorphy of elliptic curves in
certain cases (rather than potential automorphy). All of this is hope-
fully only the beginning of a fascinating story over CM fields!

2 Vanishing theorems for Shimura varieties with torsion
coefficients

2.1 Shimura varieties
Recall that, if the locally symmetric spaces for a group G/ℚ have an
algebraic structure, they in fact come from smooth, quasi-projective
varieties XΓ defined over number fields, which are called Shimura
varieties.

The pair (G,X) must satisfy certain axioms in order for the
corresponding locally symmetric spaces to come from Shimura vari-
eties. The key point is for the symmetric space X to be a Hermitian
symmetric domain (or a finite disjoint union thereof). There is a
complete classification of groups G for which this holds. For exam-
ple, the symplectic group Sp2n and the unitary group U(n, n) give
rise to Shimura varieties, which can be described in terms of moduli
spaces of abelian varieties equipped with additional structures.

Remark 10. Some locally symmetric spaces that are not Shimura
varieties can still be studied by relating them to Shimura varieties.
For example, Bianchi manifolds can be realised in the boundary
of certain compactifications of Shimura varieties attached to the
unitary group U(2, 2). We come back to this in Section 3.

Recall also that the locally symmetric spaces for a group G give
a way to access automorphic representations of G. More precisely,
as the congruence subgroup Γ ⊂ G(ℤ) varies, we have a tower
of locally symmetric spaces. The symmetries of this tower induce
correspondences on each individual space Γ\X called Hecke opera-
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tors4. Keeping track of the various Hecke operators, we obtain an
action of a commutative Hecke algebra 𝕋 on the Betti cohomology
Hi(Γ\X,ℂ). The work of Matsushima, Franke and others shows
that the systems of eigenvalues of 𝕋 that occur in Hi(Γ\X,ℂ) come
from certain automorphic representations of G.

In addition to the Hecke symmetry, the cohomology of Shimura
varieties also has a Galois symmetry, because Shimura varieties are
defined over number fields. Because of these two kinds of symme-
tries, Shimura varieties give, in many cases, a geometric realisation
of the global Langlands correspondence between automorphic
and Galois representations.

One can ask a more precise question, about the range of de-
grees of cohomology to which any particular automorphic rep-
resentation can contribute. Assume, for simplicity, that XΓ(ℂ) is
a compact Shimura variety. Then Borel–Wallach [6] show that, if
𝜋 is an automorphic representation whose component at ∞ is a
tempered representation of G(ℝ), then 𝜋 can only contribute to
Hi(XΓ(ℂ),ℂ) in the middle degree i = dimℂ XΓ. This result, like the
Ramanujan–Petersson conjecture, also fits within the framework
of Arthur’s conjectures [3].

Question 11. The upshot of the Borel–Wallach result is that the
cohomology of a Shimura variety XΓ with ℂ-coefficients is some-
how degenerate outside the middle degree. Can we extend this to
torsion coefficients, such as Hi(XΓ(ℂ),𝔽ℓ)?

More precise versions of this question are formulated as conjec-
tures in [11] and [20]. These aremotivated by the Calegari–Geraghty
method, which is discussed in Section 3, and by the search for
a mod ℓ analogue of Arthur’s conjectures. In the next two sub-
sections, we explain a new tool that can be used to compute
Hi(XΓ(ℂ),𝔽ℓ) and discuss our results towards Question 11.

2.2 The Hodge–Tate period morphism
This morphism was introduced by Scholze in his breakthrough pa-
per [35] and gives a completely new way to access the geometry
and cohomology of Shimura varieties.

In the case of the modular curve, the Hodge–Tate period mor-
phism is a p-adic analogue of the following complex picture, where
the map on the right is the standard holomorphic embedding of
the upper-half plane ℍ2 into the Riemann sphere ℙ1(ℂ):

ℍ2

||

� q

𝜋dR, SL2(ℝ)-equivariant

##

XΓ(ℂ) Γ\ℍ2 ℙ1(ℂ).

This picture has the following moduli interpretation. First, XΓ is
a moduli space of elliptic curves equipped with some additional
structures (determined by Γ). The upper-half plane ℍ2 is the uni-
versal cover of XΓ(ℂ) = Γ\ℍ2; it parametrises (positive) complex
structures one can put on a two-dimensional real vector space.
This amounts to parameterising Hodge structures of elliptic curves,
i.e. direct sum decompositions:

ℂ2 = H1(E(ℂ),ℂ) ≃ H0(E,Ω1
E) ⊕ H1(E,𝒪E)

with H1(E,𝒪E) = H0(E,Ω1
E). The morphism 𝜋dR sends the Hodge

decomposition to the associated Hodge filtration

H0(E,Ω1
E) ⊂ H1(E(ℂ),ℂ) = ℂ2.

This is an example of a period morphism. One can construct such
a diagram for higher-dimensional Shimura varieties as well, and
this has played an important role in studying automorphic forms
on Shimura varieties from a geometric point of view.

The Hodge–Tate period morphism is based on the Hodge–Tate
filtration on étale cohomology, tracing back to foundational work
in p-adic Hodge theory by Tate and Faltings. Let p be a prime and
let C be the p-adic completion of an algebraic closure of ℚp, which
will play a role analogous to that of ℂ in what follows. If E/C is an
elliptic curve, its étale cohomology admits a Hodge–Tate filtration:

0 → H1(E,𝒪E) → H1
et(E,ℤp) ⊗ℤp

C → H0(E,Ω1
E)(−1) → 0.

See Bhatt’s article in [5] for an excellent survey on p-adic Hodge
theory and more details on the Hodge–Tate filtration. Instead of
viewing the curve XΓ as a Riemann surface, we view it as an adic
space 𝒳Γ, a kind of p-adic analytic space introduced by Huber.
Then there exists a diagram

𝒳Γ(p∞)

| |

𝜋HT, SL2(ℚp)-equivariant

# #

𝒳Γ ℙ1,ad
ℚp

,

where 𝒳Γ(p∞), which is roughly the inverse limit of modular curves
𝒳Γ(pn) with increasing level at p, is a perfectoid space. Over a point
of 𝒳Γ(p∞) corresponding to an elliptic curve E/C, we have a trivial-
isation of H1

et(E,ℤp) ≃ ℤ2
p. This point gets sent under 𝜋HT to the

line
H1(E,𝒪E) ⊂ H1

et(E,ℤp) ⊗ℤp
C ≃ C2.

For higher-dimensional Shimura varieties, the following result de-
scribes the geometry of the Hodge–Tate period morphism in detail.
While the statement of Theorem 12 involves much non-trivial arith-
metic geometry, it has applications to Theorems 16 and 17 below,
whose statements are substantially more elementary.

4 To discuss Hecke operators rigorously, we should use the adelic perspective on locally symmetric spaces and Shimura varieties. The resulting spaces would be disjoint
unions of finitely many copies of Γ\X. We ignore this subtlety here and later on in the text.
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Theorem 12 ([35, 16]). Let XΓ be a Shimura variety of Hodge type
associated to a connected reductive group G. Let 𝜇 denote the
conjugacy class of Hodge cocharacters and let ℱℓG,𝜇 ∶= G/P𝜇 de-
note the corresponding flag variety, considered as an adic space
over a p-adic completion of the reflex field.

1. There exists a unique perfectoid space 𝒳Γ(p∞) which can be
identified with the inverse limit of the adic spaces (𝒳Γ(pn))n.

2. There exists a Hodge–Tate period morphism

𝜋HT ∶ 𝒳Γ(p∞) → ℱℓG,𝜇,

which is G(ℚp)-equivariant.
3. There exists a Newton stratification

ℱℓG,𝜇 =
⨆

b ∈ B(G,𝜇)
ℱℓbG,𝜇

into locally closed strata.
4. If 𝒳Γ is compact and of PEL type, and ̄x is a geometric point

of the Newton stratum ℱℓbG,𝜇, we identify the fiber 𝜋−1
HT( ̄x) with

a “perfectoid” version of an Igusa variety Igb.

Remark 13. The first two parts of Theorem 12 are due to Scholze5

and play the lead role in his breakthrough construction of Galois
representations for torsion in the cohomology of locally symmetric
spaces. There are many surveys of this result; see for example [33]
or [45]. For more details on the Hodge–Tate period morphism, see
also the last article in [5].

Remark 14. Igusa varieties were introduced by Harris–Taylor as
part of their proof of local Langlands for GLn, and generalised by
Mantovan. Rapoport–Zink spaces are local analogues of Shimura
varieties, which provide a geometric realisation of the local Lang-
lands correspondence. The computation of the fibers of 𝜋HT suffices
for applications to Theorems 16 and 17 below, but in [16], we go
further and prove a conceptually cleaner version of Mantovan’s
product formula [32], which relates Shimura varieties, Igusa vari-
eties and Rapoport–Zink spaces.

Remark 15. In [17] we extend part (4) of Theorem 12 to U(n, n)-
Shimura varieties, which are non-compact. We compute the fibers
of 𝜋HT for both the minimal and toroidal compactifications of these
Shimura varieties, and relate them to partial minimal and toroidal
compactifications of Igusa varieties.

2.3 Vanishing theorems
In order to address Question 11, wewould like to compute the local-
isation H∗(𝒳Γ,𝔽ℓ)𝔪, where the maximal ideal𝔪 ⊂ 𝕋 is equivalent

to a mod ℓ system of Hecke eigenvalues. Using the Hodge–Tate
period morphism at an auxiliary prime p ≠ ℓ6, we obtain an action
of 𝕋 on the complex of sheaves R𝜋HT∗𝔽ℓ living over ℱℓG,𝜇, and
we are reduced to understanding the localisation (R𝜋HT∗𝔽ℓ)𝔪. By
the properties of 𝜋HT, this behaves similarly to a perverse sheaf,
which is the key to controlling the degrees in which (R𝜋HT∗𝔽ℓ)𝔪
can have non-zero cohomology. We make these ideas rigorous
in [16, 17] for unitary Shimura varieties, under some mild technical
assumptions.

Let F = F+ ⋅ E be a CM field, with maximal totally real field
F+ ≠ ℚ and E imaginary quadratic. Let G be a unitary group pre-
serving a skew-Hermitian form on Fm. Assume that G is quasi-split
at all finite places. Let 𝔪 ⊂ 𝕋 be a system of Hecke eigenvalues
that occurs in Hi(XΓ,𝔽ℓ). Assume𝔪 is generic at an auxiliary prime
p ≠ ℓ7. This condition guarantees that all lifts of𝔪 to characteristic
0 are as simple as possible at p, from a representation-theoretic
point of view: they are generic principal series representations of
G(ℚp).

Theorem 16 ([16]). If 𝒳Γ is compact and 𝔪 is generic, then
Hi(XΓ(ℂ),𝔽ℓ)𝔪 is concentrated in the middle degree i = dimℂ XΓ.

In the non-compact case, genericity, which is a local condi-
tion at an auxiliary prime p ≠ ℓ, is not enough. We also need a
global condition to control the boundary of the Shimura variety.
To formulate the global condition, we consider the semi-simple
Galois representation ̄𝜌𝔪 associated to the system of eigenvalues𝔪
by [35]; the existence of ̄𝜌𝔪 is an instance of the global Langlands
correspondence in the torsion setting. We want to assume that ̄𝜌𝔪
is not too degenerate; this amounts to bounding the number of
its absolutely irreducible factors.

Theorem 17 ([17]). If XΓ is a U(n, n)-Shimura variety (som is even
and G is quasi-split at the infinite places as well), 𝔪 is generic, and
̄𝜌𝔪 has at most two absolutely irreducible factors, then:

1. Hi
c(XΓ(ℂ),𝔽ℓ)𝔪 is concentrated in degrees i ≤ dimℂ XΓ, and

2. Hi(XΓ(ℂ),𝔽ℓ)𝔪 is concentrated in degrees i ≥ dimℂ XΓ.

Remark 18. There are previous results in this direction, due to Dim-
itrov, Shin, Emerton–Gee, and especially Lan–Suh [28, 29]. Com-
pared to previous work, our result is sharper and better adapted
to applications. There is also intriguing ongoing work of Boyer [8],
which proves a stronger result in the special case of Harris–Taylor
Shimura varieties: he goes beyond genericity and investigates the
distribution of non-generic systems of Hecke eigenvalues.

5 Up to the precise identification of the target of the Hodge–Tate period morphism as the flag variety ℱℓG,𝜇 in all cases, which is done in [16].
6 Here, we assume that the Hecke operators in 𝕋 are all supported at primes different from p.
7 See [17, Theorem 1.1] for the precise condition, which is technical, but explicit. This condition should be thought of as a mod ℓ analogue of temperedness.
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Remark 19. The idea of the proof in the compact case is the follow-
ing: start with a top-dimensional Newton stratum ℱℓbG,𝜇 ⊂ ℱℓG,𝜇
in the support of (R𝜋HT, ∗𝔽ℓ)𝔪. Since the complex (R𝜋HT, ∗𝔽ℓ)𝔪 be-
haves like a perverse sheaf, its restriction to ℱℓbG,𝜇 is concentrated
in one degree. Therefore, (R𝜋HT, ∗ℚℓ)𝔪 is also concentrated in one
degree over ℱℓbG,𝜇. On the other hand, we can compute the al-
ternating sum of cohomology groups of Igb with ℚℓ-coefficients,
using the trace formula and work of Shin [38]. In the end, the
genericity condition is contradicted unless b corresponds to the
zero-dimensional ordinary stratum. The upshot is that (R𝜋HT, ∗𝔽ℓ)𝔪
is concentrated in one degree over a zero-dimensional stratum!

Remark 20. In parallel to Question 11, one can also study the
cohomology of locally symmetric spaces with torsion coefficients
and with increasing level at p. The resulting structure is called com-
pleted cohomology and was introduced by Emerton as a general
framework for studying congruences modulo pk between auto-
morphic forms. Motivated by heuristics coming from the p-adic
Langlands programme, Calegari–Emerton [10] formulated a van-
ishing conjecture for completed cohomology. For most Shimura
varieties, the Calegari–Emerton conjecture is now a theorem due
to Scholze and Hansen–Johansson.

In [14, 15], we prove a vanishing result for the compactly sup-
ported cohomology of Shimura varieties of Hodge type with unipo-
tent level at p. The only assumption is that the group G giving rise
to the Shimura variety is split over ℚp. This result is stronger than
what Calegari–Emerton conjectured, and it also points towards
analogues of Theorems 16 and 17 for ℓ = p, with generic replaced
by ordinary in the sense of Hida.

3 Potential automorphy over CM fields

Theorem 5 on the Ramanujan–Petersson conjecture and Theorem 7
on the Sato–Tate conjecture would follow if we knew that all the
symmetric powers of the associated Galois representations were
automorphic, or even just potentially automorphic. The original
method developed by Taylor–Wiles is a powerful technique for
proving automorphy, but it is restricted to settings where a certain
numerical criterion holds: these are roughly the settings where
the objects on the automorphic side arise from the middle degree
cohomology of a Shimura variety.

When F is a number field, the locally symmetric spaces for
GLn/F, such as the Bianchi manifolds discussed in Example 3, do not
have an algebraic structure (outside very special cases). Calegari–
Geraghty [11] proposed an extension of the Taylor–Wiles method
to general number fields F, conjectural on a precise understanding
of the cohomology of locally symmetric spaces for GLn/F. Part of
their insight was to realise the central role played by torsion classes
in the cohomology of these locally symmetric spaces, which should
be thought of as modulo pk versions of automorphic forms and

treated on equal footing with their characteristic 0 counterparts.
Another part of their insight was to reinterpret the failure of the
Taylor–Wiles numerical criterion in terms of certain non-negative
integers q0, l0 seen on the automorphic side.

The Calegari–Geraghty method gives an automorphy lifting
result for GLn/F as long as the following prerequisites are in place:

1. The construction of Galois representations associated to classes
in the cohomology with ℤp coefficients of the locally symmetric
spaces for GLn/F.

2. Local-global compatibility for these Galois representations at all
primes of F, including at primes above p.

3. A vanishing conjecture for the cohomology with ℤp coefficients
outside the range of degrees [q0, q0+ l0], under an appropriate
non-degeneracy condition.

Remark 21. For Shimura varieties, the third problem is closely
related to Theorems 16 and 17, since in that case q0 is the mid-
dle degree of cohomology and l0 = 0. For 3-dimensional Bianchi
manifolds, the third problem says that the non-degenerate part
of cohomology is concentrated in degrees 1 and 2; this can be
checked by hand. For general locally symmetric spaces that do not
have an algebraic structure, this problem most likely lies deeper
than the first two.

When F is a CM field, the first problem was solved by
Scholze in [35], strengthening previous results of Harris–
Lan–Taylor–Thorne [23] for characteristic 0 coefficients. After com-
pleting [16], it became clear to Scholze and me that a non-compact
version of Theorem 16 would give a strategy to attack the second
(rather than the third!) problem over CM fields. In joint work with
Scholze, I set out to prove Theorem 17 and, in November 2016,
I co-organised with Taylor an “emerging topics” working group
at the IAS, whose goal was to explore this strategy and its conse-
quences. The working group was a resounding success and it led to
the paper [1], where we implement the Calegari–Geraghty method
in arbitrary dimension for the first time and obtain as consequences
Theorems 5 and 7.

The solution to the first problem above, i.e., the construction
of Galois representations, is much more subtle than in the self-dual
case, because one cannot directly use the étale cohomology of
Shimura varieties. Instead, the starting point for both [23] and [35]
is to realise the locally symmetric spaces for GLn/F in the boundary
of the Borel–Serre compactification of U(n, n)-Shimura varieties.
The Borel–Serre compactification is a real manifold with corners,
which is homotopy equivalent to the original U(n, n)-Shimura va-
riety. In the torsion setting, Scholze constructs the desired Galois
representations by congruences, using the Hodge–Tate period mor-
phism for the U(n, n)-Shimura variety. This increases the level at
primes of F dividing p, and makes the second problem, local-global
compatibility, particularly tricky at these primes.
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In [1], we begin to solve the second problem, by establishing
the first instances of local-global compatibility at primes of F divid-
ing p. We need a delicate argument to understand the boundary of
the Borel–Serre compactification, which combines algebraic topol-
ogy and modular representation theory. In addition, Theorem 17
is the crucial new ingredient: in the middle degree, it implies that
classes from the boundary lift to the cohomology of a U(n, n)-
Shimura variety with ℚp-coefficients, while remembering the level
and weight at primes of F dividing p.

The proofs of Theorems 5 and 7 use the Calegari–Geraghty
method, together with solutions to the first two problems discussed
above. The third problem was not solved with ℤp coefficients. By
an insight of Khare–Thorne [27], this problem could be replaced
by its ℚp coefficient analogue in certain settings. One of the main
challenges in [1] was to make this insight compatible with other
techniques in automorphy lifting, which rely on reduction modulo
p. We resolve this challenge by considering reduction modulo p
from a derived perspective. Outside low-dimensional cases, such as
Bianchi manifolds, or Shimura varieties, the third problem remains
open for ℤp coefficients.
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