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Surfaces are some of the simplest yet geometrically rich manifolds.
Geometric structures on surfaces illuminate their topology and are
useful for studying dynamical systems on surfaces. We illustrate
below how some of these concepts blend together, and relate
them to algebraic geometry.

1 Geometry of surfaces

In this section we give a brief overview of some geometric facts re-
garding Riemann surfaces and K3 surfaces. Although both are
called “surfaces”, Riemann surfaces are examples of algebraic
curves, while K3 surfaces are genuine algebraic surfaces. This
means that considering the complex points, Riemann surfaces
are complex 1-dimensional while K3 surfaces are complex 2-
dimensional. We will give some explicit examples and then describe
geometric structures that live on these surfaces. In the Riemann
case we are concerned with flat geometry (with singularities) while
in the K3 case we consider Ricci-flat Kähler metrics. Moduli spaces
of these geometric structures play an important role in the results
of Section 2 below.

Riemann surfaces. One can describe a compact Riemann surface
by giving the algebraic equations that cut it out in some ambient
space. For example, consider

X ∶ y2 = x(x5 − 1), Ω = dx
y
. (1)

The locus X(ℂ) of points satisfying this equation in ℂ2 is a real
2-dimensional surface of genus 2 (with two points at infinity added
to X). The 1-formΩ from (1) is the unique (up to scale) holomorphic
1-form vanishing at the two points at infinity.

Flat geometry. There is an alternative way to describe the pair
(X,Ω). Take the regular decagon in the plane and glue its opposite
and parallel edges to form a surface of genus 2, with two marked
points given by the vertices. If we identify the plane with ℂ, then
the 1-form Ω̃ = dz will be invariant under the translations used

to glue opposite edges and will descend to a 1-form Ω on the
new surface. This construction gives back the same pair (X,Ω) as
described in (1), although this is by no means obvious. For more
on the algebraic curve in (1), see [26, §5]. (A question for experts:
what is the area of the decagon under this identification?)

This construction is quite general: starting from a pair (X,Ω)
consisting of a compact Riemann surface and a holomorphic
1-form, one can associate to it a polygon in the plane by cut-
ting the surface X and mapping it to the plane in such a way that
in local charts the 1-formΩ becomes dz. Equivalently, one can give
charts to ℂ near a point p0 ∈ X by p ↦ ∫p

p0
Ω, and the transition

maps between charts are translations in ℂ. Conversely, given a
polygon in the plane (possibly disconnected), with side identifica-
tions given by translations, one can reconstruct a Riemann surface
with a holomorphic 1-form using the converse to the above recipe.

Action of GL2(ℝ). A polygon is determined by its sides, which
are vectors in ℝ2⟶̃ℂ. The group GL2(ℝ) acts on polygons, keep-
ing parallel sides parallel, so if we have a polygonal description of
(X,Ω) then we obtain a new pair g ⋅ (X,Ω) = (X ′,Ω′). One can
also express the action intrinsically on the surface, by letting a ma-
trix act on the real and imaginary parts of Ω, viewed as differential
1-forms on X:

[
ReΩ′

ImΩ′] = [
a b
c d

] ⋅ [
ReΩ
ImΩ].

Note that the holomorphic structure on X ′ is usually different from
the one on X. Furthermore, even if explicit algebraic equations are
given for X, it is typically not possible to describe the equations
cutting out X ′. The sides of the polygons describing the surfaces are
computed by taking integrals of Ω on paths in X, and the passage
from algebraic equations to integrals and back is by no means
explicit.

Moduli spaces of Riemann surfaces. Because algebraic equations
have finitely many coefficients, one can consider full parameter
spaces, or moduli spaces, of algebraic manifolds defined by the
same type of equations. For Riemann surfaces we will be inter-
ested in the space ℋ(𝜅) of pairs (X,Ω) where X is a compact
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Riemann surface and Ω is a holomorphic 1-form with 𝜅 describing
the multiplicities of the zeros of Ω. The process described above of
obtaining a new pair (X,Ω) using a real matrix gives an action of
GL2(ℝ) on ℋ(𝜅). This action, however, is not via polynomial or
even holomorphic automorphisms. In Section 2 we will see, how-
ever, that there are some relations between the GL2(ℝ)-action
and the algebraic equations defining Riemann surfaces.

For more on the GL2(ℝ)-action on ℋ(𝜅), see the surveys of
Zorich [36] for an introduction as well as numerous motivations and
applications, as well as the more recent surveys of Forni–Matheus
[20] and Wright [33].

K3 surfaces. We now switch gears and consider algebraic sur-
faces, such as those given by the equation

X = {(1 + x2)(1 + y2)(1 + z2) − 16xyz = 4}, (2)

Ω =
dx ∧ dy

z(1 + x2)(1 + y2) − 8xy
. (3)

The 2-form Ω is nowhere-vanishing on X and is computed via a
residue construction (take the residue of

dx∧dy∧dz

F
along F = 0). It

is interesting to consider both the complex and the real solutions of
this equation, denoted X(ℂ) and X(ℝ) respectively. See Figure 2
for an example of real solutions. Algebraic curves (i.e., Riemann sur-
faces), such as those described in (1), have only finite automorphism
groups as soon as the genus is at least two, but algebraic surfaces
such as the one in (2) have dynamically interesting automorphisms
such as

(x, y, z)
𝜍x−−→ (

16yz
(1 + y2)(1 + z2) − x, y, z) (4)

as well as their analogues 𝜎y,𝜎z in which the roles of the coor-
dinates are permuted. The formula for the automorphism 𝜎x is
obtained by “freezing” the y and z variables, viewing (2) as a
quadratic equation for x, and exchanging the two solutions of the

quadratic. In particular applying 𝜎x twice gives back the identity
transformation: 𝜎x ∘ 𝜎x = 1X .

Kähler geometry. The complex solutions of algebraic equations
such as the ones above yield projective algebraic manifolds. These
admit Kähler metrics, special kinds of Riemannian metrics adapted
to the complex structure. For Kähler metrics, the Riemannian vol-
ume of an algebraic submanifold is determined by its homology
class alone.

Specializing further, if the algebraic manifold admits an alge-
braic volume form, such as Ω from (3), then Yau’s solution of the
Calabi conjecture [34] gives canonical Kähler metrics whose Ricci
curvature vanishes. To construct such metrics, one needs to solve a
nonlinear PDE of Monge–Ampère type and there is no “hands-on”
description of such metrics as in Figure 1.

Moduli spaces of K3 surfaces. Moving to algebraic manifolds of
higher dimensions, additional data needs to be specified in order
to have well-behaved moduli spaces. For us, the most relevant will
be the space 𝒦ℰ of Ricci-flat metrics on the manifold underlying a
complex K3 surface. The abbreviation 𝒦ℰ is for Kähler–Einstein,
since Ricci-flat metrics satisfy the Einstein equation Ricij = 𝜆gij with
𝜆 = 0. These moduli spaces play an essential role in the study
of K3 surfaces and have the remarkable feature that they are (es-
sentially) homogeneous spaces for appropriate Lie groups. For an
introduction to the geometry of K3 surfaces, see the collection of
notes [2] and the more recent monograph of Huybrechts [22].

2 Dynamics on moduli spaces

This section describes results on the dynamics of group actions
in the moduli space of Riemann and K3 surfaces equipped with
appropriate flat, or Ricci-flat, metrics.

Figure 1. Left: Real solutions of y2 = x(x5 − 1). Right: Decagon with opposite sides identified,
and a straight line on the surface connecting the two singularities
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Figure 2. The real solutions of (2), intersected
with the plane x = 1 to obtain an elliptic curve

Dynamics on moduli spaces of flat surfaces. The action of the
group GL2(ℝ) on the moduli space ℋ(𝜅) of Riemann surfaces
with a holomorphic 1-form satisfies rigidity properties akin to those
for unipotent flows in homogeneous dynamics developed by Rat-
ner [30, 31], Margulis [24] and many others. The following results
were established by Eskin, Mirzakhani, and Mohammadi:

Theorem 1 ([10, 11]). For any pair (X,Ω) ∈ ℋ(𝜅), the orbit clo-
sure ℳ ∶= GL2(ℝ) ⋅ (X,Ω) is a submanifold of ℋ(𝜅), described
in local coordinates by linear relations among the sides of the
polygons used to parametrize surfaces. Furthermore,1 any SL2(ℝ)-
invariant ergodic probability measure must be Lebesgue supported
on such a manifold.

Going back to the algebraic description of Riemann surfaces,
we saw that except in special symmetric situations, it is not pos-
sible in general to relate the algebraic equations to the polygonal
description of the surface. In the case of GL2(ℝ)-orbit closures,
it is possible to give an alternative, purely algebraic description
of their geometry. Specifically, recall that the Jacobian Jac(X) as-
sociated to a genus g Riemann surface X is the complex torus
defined as H0(X; KX)∨/H1(X;ℤ), where H0(X; KX) denotes the
complex g-dimensional space of holomorphic 1-forms on X, ∨
denotes the dual, and the first homology group H1(X;ℤ) em-
beds in the dual by integration along cycles. Alternatively, the
Jacobian is the moduli space of holomorphic degree 0 line bun-
dles on X and this description provides a link between the al-
gebraic and analytic structures on a Riemann surface. Although
the automorphism group of a genus g ≥ 2 Riemann surface
is finite, the endomorphism group of its Jacobian can be much

larger (real or complex multiplication give examples of such sym-
metries).

Theorem 2 ([14, 13]). Orbit closures ℳ as in Theorem 1
parametrize Riemann surfaces whose Jacobians have additional
endomorphisms a specific kind (such as real multiplication). Fur-
thermore, specific combinations of the zeros of the distinguished
1-form yield torsion points on the Jacobian.

These conditions characterize ℳ as a locus inside ℋ(𝜅).

Additional finiteness results for orbit closures are established
in [6], jointly with Eskin and Wright.

The relation between the GL2(ℝ)-action and real multiplica-
tion on Jacobians was discovered by McMullen [25], who also
established most of the above-mentioned results in the case of
genus 2 Riemann surfaces [27]. Möller introduced the tools of
Hodge theory to the subject [29, 28] which were used to con-
nect the algebraic and combinatorial descriptions of holomorphic
1-forms on Riemann surfaces.

Billiards. Fix a polygon and consider the dynamical system con-
sisting of a billiard ball bouncing off the sides in the customary
way, with the angle of incidence equal to the angle of reflection.
By studying billiards in regular n-gons, Veech discovered the first
instances of nontrivial orbit closures for the GL2(ℝ)-action and
established along the way:

Theorem 3 ([32, Thm. 1.5]). For a regular n-gon, the number of
closed billiard trajectories of length at most L grows like cnL

2 for
a constant cn.

1 The switch from GL2 to SL2 is done to exclude the scaling action.
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This is in analogy with the Gauss circle problem of counting
lattice points in the plane, which corresponds to playing billiards on
a square. The deeper study of the dynamics of billiards on surfaces,
and polygons with rational angles, ties in with the study of the
GL2(ℝ)-action on the moduli space ℋ(𝜅), and this is the key to
Veech’s result and many others.

An analogue for K3 surfaces. Billiard trajectories are locally given
by straight lines. Besides the characterization of straight lines as
giving the shortest path between points, they have the following
alternative description. Take the 1-form Ω = dz = dx +√−1dy in
the plane. A straight line is a curve 𝛾 such that l(𝛾) =

||
|∫𝛾Ω

||
| where

l(𝛾) is the Euclidean length of 𝛾. Note that for an arbitrary curve 𝛾
we have the inequality

l(𝛾) ≥
||||
|
∫
𝛾
Ω
||||
|

which, in differential-geometric language, says that the 1-form Ω
calibrates the straight lines.

This last point of view generalizes to K3 surfaces, where the
analogue of closed billiard trajectories are special Lagrangian tori.
These are real 2-dimensional tori inside a K3 surface with a Ricci-
flat Kähler metric which, among many other properties, minimize
volume in their homology class.

Theorem 4 ([17, Thm. C]). Under appropriate assumptions on
the Ricci-flat metric on a K3 surface, the number of such special
Lagrangian tori, of volume bounded by V , is asymptotic to cV20,
for an explicit constant c > 0.

It is possible to make the above counting effective and give an
error term of order V20−𝜀, for 𝜀 > 0, which was estimated effec-
tively by Bergeron–Matheus in the appendix to [17]. Analogously
to the counting result for Riemann surfaces, this one is established
by studying the dynamics in the full moduli space 𝒦ℰ of Ricci-flat
metrics. Although we are asking a question about a specific one, it
proves useful to study the space of all possible metrics. The idea of
using dynamics on homogeneous spaces for counting results goes
back to Eskin and McMullen [9].

3 Dynamics on K3 surfaces

In this section we describe some results on individual automor-
phisms of K3 surfaces. Again, a key role in the proofs is played by
Ricci-flat metrics and their moduli space on a fixed K3 surface.

Entropy. Suppose for a moment that (X, d) is a compact metric
space and f ∶ X → X is a continuous map. Define a new distance
function by dn(x, y) ∶= max0≤ i≤ n d(f i(x), f i(y)), so two points

are at dn-distance at least 𝜀 if along their f -orbits, they have sepa-
rated at some time at distance 𝜀. Let now S(dn, 𝜀) be the maximal
number of 𝜀-separated points in X, i.e., any two are at dn-distance
at least 𝜀. This is the number of essentially distinct trajectories,
up to time n, when observing the system with accuracy 𝜀. The
topological entropy htop(f) is the exponential growth rate in n of
S(dn, 𝜀):

htop(f) ∶= lim
𝜀→ 0

lim sup
n→+∞

1
n
log S(dn, 𝜀).

There is also an associated notion of measure-theoretic entropy.
Recall that an f -invariant measure 𝜇must satisfy 𝜇(f−1(A)) = 𝜇(A)
for any measurable subset A ⊂ X. To define the entropy of 𝜇, par-
tition X into disjoint measurable sets X1,…,Xk. Then an orbit of a
point gives rise to a sequence of elements that it visits, encoded as
a sequence in {1,…, k}ℕ. The number of such distinct sequences,
weighted appropriately by 𝜇, grows exponentially, and the expo-
nential growth rate is called the entropy (after taking a supremum
over all finite partitions of X).

Yomdin and Gromov theorems. Suppose now that X is a smooth
manifold and f is a smooth diffeomorphism. Then the pullback f ∗

acts on the cohomology groups H•(X;ℝ) and we consider its
spectral radius 𝜌(f) (viewed as a linear transformation). Settling a
conjecture of Shub, Yomdin proved the following:

Theorem 5 ([35]). The topological entropy of f satisfies

htop(f) ≥ log 𝜌(f).

Thus topological complexity implies dynamical complexity.
When X is a complex manifold admitting a Kähler metric, and
f is a holomorphic automorphism, Gromov [21] established the
reverse upper bound

htop(f) ≤ 𝜌(f) and so htop(f) = 𝜌(f).

Gromov’s proof is based on the special feature of Kähler metrics
that the Riemannian volume of complex submanifolds is deter-
mined by their homology class (they are calibrated submanifolds,
just like the special Lagrangians in Theorem 4).

Measures on K3 surfaces. Suppose now that X is a K3 surface
and f is an automorphism of positive topological entropy. The sur-
face in (2) works, and a composition of automorphisms like the
one in (4), one for each coordinate, gives an example. Cantat [4]
showed that there exists a unique f -invariant measure 𝜇 which
maximizes entropy, i.e., h𝜇(f) = log 𝜌(f). But the holomorphic
2-form Ω induces another measure Ω∧Ω on X, which is canonical
and invariant under the dynamics. It is then natural to ask: what is
the relationship between the two measures? This was answered
by Cantat–Dupont [5] and later, using different techniques, in [19]:
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Theorem 6. With notation as above, suppose that the measure
of maximal entropy 𝜇 is absolutely continuous with respect to
Lebesgue measure on X. Then X is a “Kummer surface”, i.e., ob-
tained from a complex torus A = ℂ2/Λ by a quotient A → A/± 1
and desingularization, and the automorphism f comes by the same
construction from a linear automorphism of the torus.

The proof in [19] uses Ricci-flat metrics on K3 surfaces and
their compatibility with the volume form Ω ∧Ω. Indeed, the Käh-
ler form 𝜔 associated to a Ricci-flat metric satisfies the identity
𝜔 ∧ 𝜔 = Ω ∧Ω (as volume forms on X) and this poses constraints
on the dynamical invariants, such as Lyapunov exponents.

Rough currents. A pseudo-Anosov homeomorphism of a real
2-dimensional surface expands/contracts a pair of measured folia-
tions on the surface. This is a basic result of Thurston’s analysis of
mapping class group elements. Analogous objects, called closed
positive currents, have been constructed by Cantat on K3 sur-
faces [4], and earlier for polynomial maps of the plane by Bedford–
Lyubich–Smillie [3]. Theorem 6 implies that if a K3 surface is not
Kummer and admits a positive entropy automorphism, then the
measure of maximal entropy is singular for Lebesgue measure. Gen-
eral dynamical considerations imply that its Hausdorff dimension is
strictly below the maximal one, and thus the closed positive cur-
rents defined above must also have less than maximal Hausdorff
dimension, see [18].

4 An overview

The geometry and topology of surfaces is a subject with a long his-
tory. Many fundamental topics have been omitted in the above dis-
cussion, yet they all play a role in motivating constructions and for-
mulating questions in the subject. For example, although Riemann
surfaces do not admit infinite-order holomorphic automorphisms
in genus at least two, the study of topological automorphisms
(homeomorphism and diffeomorphisms) is essential for much of
low-dimensional topology in the form of the Nielsen–Thurston the-
ory of the classification of mapping class group elements (see the
monographs of Farb–Margalit [12] and the collection of articles [1]).
This leads to the study of measured foliations on surfaces, and their
analogues on algebraic surfaces that become closed positive cur-
rents. The geometry of these last objects is far less understood
than that of surface foliations.

In all instances, moduli spaces of geometric structures play a
crucial role. The Teichmüller and moduli spaces of Riemann sur-
faces are essential for understanding the topology of surfaces, and
in the case of algebraic surfaces, moduli spaces of metrics play a
similar role. In the case of K3 surfaces, the moduli spaces turn out
to be locally homogeneous, and this makes available all the tools
of homogeneous dynamics.

Finally, understanding the dynamics in moduli spaces requires
one to understand dynamical invariants called Lyapunov exponents,
which play a role similar to entropy. The tools of complex geometry
and Hodge theory turned out to be crucial in gaining control over
these otherwise elusive dynamical invariants, and these techniques

Table 1. Parallels between the geometry of Riemann and K3 surfaces

Riemann surfaces K3 surfaces

Mapping classes of diffeomorphisms:
pseudo-Anosov, reducible, periodic

Holomorphic automorphisms:
hyperbolic, parabolic, elliptic

Entropy, action on curves Entropy, action on H2

Stable and unstable foliations Stable and unstable currents

Teichmüller space Period Domain(s)

Flat metrics Ricci-flat metrics

Holomorphic 1-form Holomorphic 2-form

Straight lines for flat metric Special Lagrangians

Periodic trajectories Special Lagrangian tori

Completely Periodic Foliations Torus Fibrations

𝕊1: directions for straight lines 𝕊2: twistor rotation

Lyapunov exponents for families
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are behind many of the theorems described above. This connection
was originally made by Kontsevich [23], see also [8, 7, 16, 15] for
further developments related to Lyapunov exponents and Hodge
theory.

We end with a summary of the above parallels between the
geometry of Riemann and K3 surfaces in Table 1.
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