
Solved and unsolved problems

Michael Th. Rassias

Probability theory is nothing but
common sense reduced to calculation.

Pierre-Simon Laplace (1749–1827)

The present column is devoted to Probability Theory and related
topics.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

237
We take for our probability space (X,m): the unit interval X =
[0, 1] equipped with the Lebesgue measure m defined on ℬ(X),
the Borel subsets of X and let (X,m, T) be an invertible measure
preserving transformation, that is T ∶ X0 → X0 is a bimeasurable
bijection of some Borel set X0 ∈ ℬ(X) of full measure so that and
m(TA) = m(T−1A) = m(A) for every A ∈ ℬ(X).

Suppose also that T is ergodic in the sense that the only
T-invariant Borel sets have either zero- or full measure (A ∈
ℬ(X), TA = A ⇒ m(A) = 0, 1).

Birkhoff’s ergodic theorem says that for every integrable func-
tion f ∶ X → ℝ,

1

n

n−1

∑
k = 0

f ∘ Tk −−−−−→
n→∞

𝔼(f) ∶= ∫
X
fdm a.s.

The present exercise is concerned with the possibility of general-
izing this. Throughout, (X,m, T) is an arbitrary ergodic, measure-
preserving transformation as above.

Warm-up 1
Show that if f ∶ X → ℝ is measurable, and

m([ lim
n→∞

|||
|

n−1

∑
k = 0

f ∘ Tk
|||
| < ∞]) > 0,

then
1

n
∑n−1

k = 0 f ∘ T
k converges in ℝ a.s.

Warm-up 1 is [1, Lemma 1]. For a multidimensional version,
see [1, Conjecture 3].

Warm-up 2
Show that if f ∶ X → ℝ is as in Warm-up 1, then ∃ g, h ∶ X → ℝ
measurable with h bounded so that f = h + g − g ∘ Tn.

Warm-up 2 is established by adapting the proof of [3, Theo-
rem A].

Problem
Show that there is a measurable function f ∶ X → ℝ satisfying
𝔼(|f |) = ∞ so that

1

n

n−1

∑
k = 0

f ∘ Tk

converges in ℝ a.s.
The existence of such f for a specially constructed ergodic

measure-preserving transformation is shown in [2, example b]. The
point here is to prove it for an arbitrary ergodic measure preserving
transformation of (X,m).
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Let (Ω,ℱ,ℙ) be a probability space and {Xn ∶ n ≥ 1} a sequence
of independent and identically distributed (i.i.d.) random variables
on Ω. Assume that there exists a sequence of positive numbers
{bn ∶ n ≥ 1} such that bn

n
≤ bn+1

n+1
for every n ≥ 1, limn→∞

bn

n
= ∞,

and ∑∞
n= 1 ℙ(|Xn| ≥ bn) < ∞. Prove that if Sn ∶= ∑n

j= 1 Xj for each
n ≥ 1, then

lim
n→∞

Sn
bn

= 0 almost surely.
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Comment. The desired statement says that if such a se-
quence {bn ∶ n ≥ 1} exists, then {Xn ∶ n ≥ 1} satisfies the (gen-
eralized) Strong Law of Large Numbers (SLLN) when averaged by

{bn ∶ n ≥ 1}. If Xn ∈ L1(ℙ) for every n ≥ 1, then the desired state-
ment follows trivially from Kolmogorov’s SLLN, since in that case,
with probability one, we have

lim
n→∞

Sn
n

= 𝔼[X1]

and hence
Sn
bn

= Sn
n

⋅ n
bn

must converge to 0 under the assumptions on {bn ∶ n ≥ 1}. There-
fore, the desired statement can be viewed as an alternative to
Kolmogorov’s SLLN for i.i.d. random variables that are not inte-
grable.

Linan Chen (McGill University, Montreal, Quebec, Canada)
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In Beetown, the bees have a strict rule: all clubs must have exactly
k membees. Clubs are not necessarily disjoint. Let b(k) be the
smallest number of clubs that it is possible for the n ≥ k2 bees to
form, such that the set of clubs has the property that no matter
how the bees divide themselves into two teams to play beeball,
there will always be a club all of whose membees are on the same
team. Prove that

2k−1 ≤ b(k) ≤ Ck2 ⋅ 2k

for some constant C > 0.

Rob Morris (IMPA, Rio de Janeiro, Brasil)
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N agents are in a room with a server, and each agent is looking
to get served, at which point the agent leaves the room. At any
discrete time-step, each agent may choose to either shout or stay
quiet, and an agent gets served in that round if (and only if) that
agent is the only one to have shouted. The agents are indistin-
guishable to each other at the start, but at each subsequent step,
every agent gets to see who has shouted and who has not. If
all the agents are required to use the same randomised strategy,
show that the minimum time expectation to clear the room is
N + (2 + o(1)) log2 N.

Bhargav Narayanan (Rutgers University, Piscataway, USA)
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Consider the following sequence of partitions of the unit interval I:
First, define 𝜋1 to be the partition of I into two intervals, a red
interval of length 1/3 and a blue one of length 2/3. Next, for any
m > 1, define 𝜋m+1 to be the partition derived from 𝜋m by splitting
all intervals of maximal length in 𝜋m, each into two intervals, a red
one of ratio 1/3 and a blue one of ratio 2/3, just as in the first step.
For example 𝜋2 consists of three intervals of lengths 1/3 (red), 2/9
(red) and 4/9 (blue), the last two are the result of splitting the blue
interval in 𝜋1. The figure below illustrates 𝜋1,…,𝜋4, from top to
bottom.

Let m ∈ ℕ and consider the m-th partition 𝜋m.

1. Choose an interval in 𝜋m uniformly at random. Let Rm be
the probability you chose a red interval, does the sequence
(Rm)m∈ℕ converge? If so, what is the limit?

2. Choose a point in I uniformly at random. Let Am be the proba-
bility that the point is colored red, does the sequence (Am)m∈ℕ

converge? If so, what is the limit?

Yotam Smilansky (Rutgers University, NJ, USA)
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Prove that there exist c < 1 and 𝜖 > 0 such that if A1,…,Ak are
increasing events of independent boolean random variables with
Pr(Ai) < 𝜖 for all i, then

Pr(exactly one of A1,…,Ak occurs) ≤ c.

(What is the smallest c that you can prove?)
Here A ⊂ {0, 1}n is an “increasing event” if whenever x ∈ A,

then the vector obtained by changing any coordinates of x from 0
to 1 still lies in A.

A useful fact is Harris inequality, which says that for increas-
ing events A and B of boolean random variables, Pr(A ∩ B) ≥
Pr(A) Pr(B).

I learned of this problem from Jeff Kahn.

Yufei Zhao (MIT, Cambridge, USA)
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II Open problems

Equidistributed orbits in 2-adic integers
by Hillel Furstenberg (Einstein Institute of Mathematics,
The Hebrew University of Jerusalem, Israel)

The Collatz problem, also known as the 3x + 1 problem is very well
known. We will formulate a general conjecture motivated by the
Collatz problem, as well as another related conjecture. Both have
to do with ordinary integer sequences which should be regarded
as subsequences of the 2-adics. First some notation. Every positive
integer can be written as x = g(x)h(x), with g(x) a power of 2,
and h(x) odd. We define a transformation on ℕ = {1, 2, 3,…} by

T(x) = h(3x + 1).

The mysterious phenomenon is that every orbit seems to reach
the fixed point 1. The Collatz problem is to prove this. Probability
enters as a heuristic explanation of why the orbit is finite, always
reaching some cycle. A more “robust” phenomenon is that for any
odd b, if we were to set

T(x) = h(3x + b),

the orbits are finite.
We point out that it is not hard to show that b can be chosen

so that the corresponding transformation has as many distinct
cycles as we like. Nevertheless it seems that all orbits are finite. We
propose a still more general conjecture which implies this. For this
we need the notion of “equidistribution in the odd 2-adics”.

If we fix a natural number k, every odd integer lies in one of
the 2(k−1) arithmetic progressions

Pj,k = j + 2kZ, j = 1, 3, 5,…, 2k − 1.

Definition. A sequence S of odd integers is equidistributed in the
odd 2-adics if for every j, k, the proportion of S in Pj,k is (1/2)(k−1).
“Proportion” means the relative density.

Now define
Ta,b(x) = h(ax + b),

where a and b are odd integers, a > 2, b > 0.

243*
Conjecture A. For any natural odd numbers a, b, x, the orbit of x
under Ta,b is either finite or equidistributed in the odd 2-adics.

Consequence: All the orbits of T3,b are finite.
To prove this one shows that the assumption of an infinite

equidistributed orbit leads to a contradiction. This follows from the
fact that on account of equidistribution, the expectation of log g(x)
is log 4. The idea now is to observe that for large x, the effect of
applying T3,b is – on the average – multiplying by 3 and dividing

by 4. This can be made precise to show that an equidistributed,
infinite orbit is an impossibility.

The next conjecture involves equidistribution in the full com-
pact group of 2-adics. Define R(x) = 3[x/2]. Here as usual [z]
denotes the largest integer less than z. We have

R(0) = R(1) = 0, R(2) = 3, R(3) = 3.

But for x > 3,
R(x) > x,

so that for x > 3, the orbit of x will be infinite.

244*
Conjecture B. For any x > 3, the orbit under R is equidistributed in
the 2-adics.

In particular, this would imply that in every such orbit, even
and odd integers appear with the same frequency. However, we
are unable to verify this for any orbit.

Here too we can consider Ra defined by

Ra(x) = a[x/2], for odd a.

We expect the same phenomenon: orbits that are either finite
or equidistributed. Little numerical work has been done on this
conjecture.

III Solutions

226
Let ℂn stand for the space of complex column n-vectors, and let
𝕄n stand for the space of complex n × n matrices.

The inner product ⟨x|y⟩ of x, y ∈ ℂn is defined as

⟨x|y⟩ = x∗y (matrix product).

Therefore ⟨x|y⟩ is linear in y and conjugate linear in x.
Let A, B be n ×m complex matrices. Write them as

A = [a1,…, am] and B = [b1,…, bm]

with aj, bj ∈ ℂn (j = 1, 2,…,m).
Then it is immediate from the definition of matrix multiplication

that
A∗B = [⟨aj|bk⟩]

m

j,k = 1
∈ 𝕄m.

Show the following relation:

AB∗ =
m

∑
j= 1

ajb
∗
j ∈ 𝕄n

where each product ajb
∗
j (j = 1,…, n) is a rank-one matrix in 𝕄n.

T. Ando (Hokkaido University, Sapporo, Japan)
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Solution by the proposer
Consider the canonical orthonormal basis in ℂn;

ej ∶= [𝛿j,k]
n

k = 1
, (j = 1, 2,…, n).

Then it suffices to prove the identity in the assertion for the case

A = [0,…, 0,
(p)
ej , 0,…, 0], ∃ 1 ≤ j ≤ n, ∃ 1 ≤ p ≤ m

and

B = [0,…, 0,
(q)
ek , 0,…, 0], ∃ 1 ≤ k ≤ n, ∃ 1 ≤ q ≤ m

In this case

AB∗ = 𝛿p,qeje∗k

while
m

∑
j= 1

ajb
∗
j = 𝛿p,qeje∗k

as expected.

Also solved by John N. Daras (Athens, Greece),
Muhammad Thoriq (Yogyakarta, Indonesia),

and Socratis Varelogiannis (France)
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Let p and q be two distinct primes with q > p and G a group of
exponent q for which the map fp ∶ G → G defined by fp(x) = xp,
for all x ∈ G, is an endomorphism. Show that G is an abelian group.

Dorin Andrica and George Cătălin Ţurcaş
(Babeş-Bolyai University, Cluj-Napoca, Romania)

Solution by the proposer
We first prove the following auxiliary result.

Claim. The map fk ∶ G → G defined by fk(x) = xk is an endomor-
phism for all k ∈ ℤ with k ≡ 1 (mod p(p − 1)).

First, it is not hard to see that (xy)p = xpyp implies that
(yx)p−1 = xp−1yp−1, for all x, y ∈ G. Then we observe that

(xy)(p−1)2 = (yp−1xp−1)p−1 = x(p−1)
2
y(p−1)

2, ∀x, y ∈ G.

It is also easy to show that

xpyp−1 = yp−1xp, ∀x, y ∈ G. (⋆)

Using the latter, we see that

(xy)p(p−1) = (xpyp)p−1 = yp(p−1)xp(p−1) = xp(p−1)yp(p−1)

for all x, y ∈ G. We just showed that fp(p−1) is an endomorphism
of G. We proceed by showing that fp2−p+1 is also an endomor-
phism.

For every x, y ∈ G, we have

(xy)p2−p+1 = (xy)p ⋅ (xy)(p−1)2 = xp ⋅ yp ⋅ x(p−1)2 ⋅ y(p−1)2.

In the above chain of equalities we just used that fp and fp(p−1)
are endomorphisms. We previously mentioned (⋆) that the middle
terms commute, which shows that fp2−p+1 is an endomorphism
of G.

Observe that for all x, y ∈ G we have

xp
2−p+1yp

2−p+1 = (xy)p2−p+1 = (xy)xp2−pyp2−p,

which implies that xp
2−py = yxp

2−p. It follows that xp
2−p belongs

to the center of G, for any x ∈ G.
We are now ready to prove our claim. Let k = 1 +mp(p − 1)

for some m ∈ ℤ. Then

(xy)k = (xy)mp(p−1) ⋅ (xy) = xp(p−1)myp(p−1)m ⋅ (xy) = xkyk.

The claim is proved.
Since gcd(q, p(p−1)) = 1, by the Chinese Remainder Theorem

we know that there is an integer n such that

{
n ≡ 1 (mod p(p − 1)),
n ≡ 2 (mod q).

We therefore have that the map fn ∶ G → G defined by fn(x) = xn

is an endormorphism. However, xn = x2 for all x ∈ G, since q is
the exponent of G. Now, since f2(x) = x2 is an endomorphism of
G, it follows that for all x, y ∈ G we have (yx)2 = y2x2 ⇔ yxyx =
y2x2 ⇔ xy = yx.

Remark. The conclusion also holds if p and q are not prime. One
just needs G to have a finite exponent q such that q and p2 − p are
coprime.

Also solved by Mihaly Bencze (Romania),
Tomek Jedrzejak (University of Szczecin, Poland),

and Efstathios S. Louridas (Athens, Greece)

228
Let (G, ⋅) be a group with the property that there is an integer
n ≥ 1 such that the map fn ∶ G → G, fn(x) = xn is injective and the
map

fn+1 ∶ G → G, fn+1(x) = xn+1

is a surjective endomorphism. Prove that G is an abelian group.

Dorin Andrica and George Cătălin Ţurcaş
(Babeş-Bolyai University, Cluj-Napoca, Romania)
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Solution by the proposer
From the second hypothesis we have

(xy)n+1 = xn+1yn+1,

which implies that

(yx)n = xnyn for all x, y ∈ G.

Using the above, we see that x(yx)n = xn+1yn for all x, y ∈ G. On
the other hand,

x(yx)n = (xy)nx = ynxn+1 for all x, y ∈ G.

We just showed that

xn+1yn = ynxn+1 for all x, y ∈ G. (⋆)

Now, using the surjectivity of fn+1 we obtain that for every z ∈ G
there is x ∈ G such that fn+1(x) = z, that is xn+1 = z. The rela-
tion (⋆) can be written as zyn = ynz, for all y, z ∈ G. From this
relation we get

y(xy)n = (xy)ny for all x, y ∈ G,

that is

y(xy)(xy)⋯(xy) = (xy)ny.

This is equivalent to

(yx)(yx)⋯(yx)y = (xy)ny,

hence (yx)n = (xy)n and the conclusion follows from the injectivity
of the map fn.

Also solved by John N. Daras (Athens, Greece),
Tomek Jedrzejak (University of Szczecin, Poland),

Muhammad Thoriq (Yogyakarta, Indonesia),
and Socratis Varelogiannis (France)
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Let A and B ∈ Matk(K) be two matrices over a field K. We say that
A and B are similar if there exists an invertible matrix C ∈ GLk(K)
such that B = C−1AC.

Let A and B ∈ GLk(ℚ) be two similar invertible matrices over
the field of rational numbers ℚ. Assume that for some integer l,
we have Al+1B = BAl. Then A and B are the identity matrices.

Andrei Jaikin-Zapirain (Departamento de Matemáticas,
Universidad Autónoma de Madrid and Instituto de Ciencias

Matemáticas, CSIC-UAM-UC3M-UCM, Spain)
and Dmitri Piontkovski (Faculty of Economic Sciences,

Moscow Higher School of Economics, Russia)

Solution by the proposer
Consider first a finite group G having three elements x, y, z satisfy-
ing

y = z−1xz and xl+1y = yxl.

Let us show that x = y = 1.
By way of contradiction we assume that the order of x is n > 1.

Since x and y are conjugate, the order of y is also n. The cases
l = 0 and l = −1 are trivial, so we assume that l ≠ 0, −1.

Let GCD(a, b) denote the greatest common divisor of two in-
tegers a and b. The order of xl is n/GCD(n, l) and the order of xl+1
is n/GCD(n, l + 1). Since xl and xl+1 are conjugate, their orders
coincide. Therefore, GCD(n, l) = GCD(n, l + 1). Thus, since l and
l + 1 are coprime, we obtain that

GCD(n, l) = GCD(n, l + 1) = 1.

This implies that there exists a natural number q > 1, which is
coprime with n and such that ql ≡ l + 1 (mod n). Note that
yxly−1 = xlq. Therefore,

xl = y−nxlyn = y−n+1xlqyn−1 = ⋯ = xlq
n.

Since the order of xl is n, n divides qn − 1. Let p be the smallest
prime divisor of n. Then the integers n and p−1 are coprime. Hence
there exist a, b ∈ ℤ such that an + b(p − 1) = 1. Observe also that

qn ≡ qp−1 ≡ 1 (mod p).

Therefore, qan+b(p−1) ≡ 1 (mod p), and so

l ≡ l ⋅ qan+b(p−1) ≡ l ⋅ q ≡ l + 1 (mod p).

We have arrived at a contradiction, which proves that x = y = 1.
Now let us come back to the original problem. Since A and

B are similar, there exists an invertible matrix C ∈ GLk(ℚ) such
that B = C−1AC. Let F be the subgroup of GLk(ℚ) generated by
A and C. Let m be such that A, A−1,C,C−1 ∈ GLk(ℤ[ 1

m
]). Then

F ≤ GLk(ℤ[ 1

m
]).
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Recall that a group H is called residually finite if for every non-
trivial element h ∈ H there exists a finite quotient G of H such that
the image of h in G is non-trivial. Observe that the group GLk(ℤ[ 1

m
]

is residually finite (consider the natural maps from GLk(ℤ[ 1

m
]) to

GLk(𝔽p), where p are prime numbers coprime with m). Therefore
we conclude that the group F is also residually finite.

If A is not the identity matrix, then there exists a finite quotient
G of F such that the image of A in G is not trivial. But this contra-
dicts what we proved at the beginning. Thus A, so also B, are the
identity matrices.

Remark. The problem is inspired by a result of Baumslag [1] where
he constructed a two-generator one-relator group having only
cyclic finite quotients. Instead of ℚ we could assume that the
matrices A and B in the problem are considered over an arbitrary
field K. In this case the problem can be solved using a theorem
of Malcev [2] where he proved that any finitely generated group
linear over a field is residually finite.

References
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Also solved by John N. Daras (Athens, Greece),
George Miliakos (Sparta, Greece),

and Moubinool Omarjee (Paris, France)
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We are trying to hang a picture on a wall. The picture has a piece
of string attached to it forming a loop, and there are 3 nails in the
wall that we can wrap the string around. We want to hang the
picture so that it does not fall down, but it will upon the removal
of any of the 3 nails.

Dawid Kielak (Mathematical Institute, University of Oxford, UK)

Solution by the proposer
Let us start with 2 nails. Wrapping a loop around two nails in some
way is equivalent to choosing an element of 𝜋1(ℂ ∖ {0, 1}). Of
course, this fundamental group is the free group F2 = F(a, b) of
rank 2, with generators corresponding to loops going around one
of the nails.

If the picture is not to fall down, we need a non-trivial element
x of F2. The condition that the picture is supposed to fall when any
of the nails is removed means that the image of x in F2/⟨⟨a⟩⟩ ≅ ℤ
and in F2/⟨⟨b⟩⟩ ≅ ℤ has to be trivial. We immediately recognise
that x = [a, b] does the trick.

For three nails, we can take

[[a, b], c] ∈ F(a, b, c) ≅ 𝜋1(ℂ ∖ {0, 1, 2}).

The solution easily generalises to n nails.

Also solved by Mihaly Bencze (Romania),
and George Miliakos (Sparta, Greece)
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Given a natural number n and a field k, let Mn(k) be the full n × n
matrix algebra over k. A matrix (aij) ∈ Mn(k) is said to be cen-
trosymmetric if

aij = an+1− i,n+1− j

for 1 ≤ i, j ≤ n. Let Cn(k) denote the set of all centrosymmetric
matrices inMn(k). Then Cn(k) is a subalgebra ofMn(k), called cen-
trosymmetric matrix algebra over k of degree n. Centrosymmetric
matrices have a long history (see [1, 5]) and applications in many
areas, such as in Markov processes, engineering problems and
quantum physics (see [2, 3, 4, 6]). In the representation theory of
algebras, a fundamental problem for a finite-dimensional algebra
is to know if it has finitely many nonisomorphic indecomposable
modules (or in other terminology, representations). In our case, the
concrete problem on Cn(k) reads as follows.

Does Cn(k) have finitely many nonisomorphic indecomposable
modules? If yes, what is the number?

Changchang Xi (School of Mathematical Sciences, Capital Normal
University, Beijing, and College of Mathematics and Information

Science, Henan Normal University, Xinxiang, China)

Solution by the proposer
Strategy. To solve the problem, we use the fact that two algebras
have the same number of nonisomorphic indecomposable modules
if their module categories are equivalent. In our case of Cn(k), a
practical way is to look for a decomposition of Cn(k) as a direct
sum of indecomposable left ideals, and then take the direct sum of
representives for each isomorphism classes of indecomposable left
ideals. The endomorphism algebra of this direct sum of represen-
tives is called the basic algebra of Cn(k), denoted B0(n, k). Then
Cn(k) and B0(n, k) have equivalent module categories, and there-
fore they have the same number of nonisomorphic indecomposable
modules.

Technique. Let In be the identity matrix in Mn(k), eij be the n × n
matrix with (i, j)-entry 1 and other entries 0, and

fi = eii + en+1− i,n+1− i for 1 ≤ i ≤ n.

Then fi ∈ Cn(k). Calculations show that, for n = 2m,

1. In = f1 +⋯ + fm, fifj = 𝛿ijfi, where 𝛿ij is the Kronecker symbol,
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2. Cn(k)f1 ≃ Cn(k)f2 ≃ ⋯ ≃ Cn(k)fm as left ideals, and
3. dimk(C2m(k) = 2m2;

and, for n = 2m + 1,

1. In = f1+⋯+fm+em+1,m+1, fifj = 𝛿ijfi, where 𝛿ij is the Kronecker
symbol, and

2. Cn(k)f1 ≃ ⋯ ≃ Cn(k)fm as left ideals, and
3. dimk(C2m+1(k) = 2m2 + 2m + 1.

Thus

B0(2m, k) = f1C2m(k)f1

and

B0(2m + 1, k) = (f1 + em+1,m+1)C2m+1(k)(f1 + em+1,m+1).

Further calculations lead to

B0(2m, k) ≃ C2(k), B0(2m + 1, k) ≃ C3(k) for all m ≥ 1.

Answer. We give quiver presentations of B0(n, k) (see [7]).
Clearly, B0(1, k) = k •. If char(k) ≠ 2, then B0(2, k) = k(• •)

and B0(3, k) ≃ k(• •). If char(k) = 2, then

C2(k) = k( • 𝛼d d )/(𝛼2), C3(k) = k( •
𝛼 / / •
𝛽
o o )/(𝛼𝛽).

From these quiver presentations of the basic algebras, we can
draw their Auslander–Reiten quivers and gain a complete answer
to the above problem.

(a) C1(k) has exactly 1 nonisomorphic indecomposable module.
(b) If ch(k) ≠ 2, then Cn(k) has exactly 2 nonisomorphic inde-

composable modules for all n ≥ 2.
(c) If ch(k) = 2, then C2m(k) has exactly 2 nonisomorphic inde-

composable modules for all m ≥ 1, and C2m+1(k) has exactly
5 nonisomorphic indecomposable modules for all m ≥ 1.
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An additional interesting problem
(not intimately connected to Algebra)
Intervals of monotonic changes in a polynomial are located be-
tween the roots of its derivative. A derivative of a polynomial is
also a polynomial, although of a lesser degree. Using these consid-
erations, construct an algorithm for calculating the real roots of
the quadratic equation. Improve it to calculate the real roots of a
polynomial of the third, fourth and generally arbitrary degree.

Igor Kostin (Moscow, Russian Federation)

Solution by the proposer
We assume that the coefficient at x2 of the square polynomial is
greater than zero. We need to find the derivative of this polynomial.

This is a linear function and we can easily find its root. Let us
denote it by xmin.

It is clear that if the value of the initial square polynomial at
xmin is greater than zero, then such a polynomial has no real roots.
Otherwise, we will look for an argument xref such that this poly-
nomial is greater than zero. An easy way to find such an argument
is to step back from xmin by some step and check the value of the
polynomial in such a step.

If the calculated value of the polynomial is greater than zero,
then the search is completed, otherwise we will continue to retreat,
each time doubling the value of the step of the retreat. Having
obtained xref, we find the root by the standard dichotomy method,
dividing in half the segment between xmin and xref.

It is convenient to end the dichotomy process when, in the
machine representation, the point dividing the segment in half
coincides with one of the ends of the original segment. Due to the
finite precision of real numbers, this will happen sooner or later on
any computer.

We repeat the above method for calculating the root twice,
departing from xmin in different directions.

It is now clear that in order to calculate the roots of a polynomial
of third degree, one must first calculate its derivative polynomial
and find the roots of this square polynomial.

These roots will determine the boundaries of the intervals of
monotonic changes in the initial polynomial of third degree. The
roots of this initial polynomial will be found by the dichotomy
method on the segments of monotonic variation calculated in this
way.

It is clear that the ladder of the described possibilities rises, in
principle, to a polynomial of an arbitrarily large degree. Of course,
the complete solution to this problem should be a computer pro-
gram that implements the verbal instructions listed here. In practice,
the capabilities of such an algorithm are limited in that the counting
time increases with the degree of the original polynomial.

Finally, we note that the xref points replacing the infinity value
for the boundaries of the segments of the monotonicity of the
polynomial can be calculated in a less primitive way than the step-
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by-step search with doubling of the step considered above. We
normalize the polynomial so that the coefficient of the highest
power of the argument is equal to one.

Let M be the largest modulo value among all its coefficients. If
the argument x of the polynomial is greater than M + 2, then the
value of the polynomial is greater than 1. To prove this, consider
the calculation of the polynomial

p(x) = xn + k[n − 1]x(n−1) +⋯ + k[1]x + k[0]

by the Horner scheme.
At the first step we calculate

p[1] = k[n − 1] + x,

and it is obvious that p[1] > 1. In fact even if k[n− 1] < 0, it does
not exceed M in absolute value.

At the second step we calculate

p[2] = k[n − 2] + xp[1],

and again it is obvious that p[2] > 1.
The same holds in the following steps.
At the last step we compute

p(x) = k[0] + xp[n − 1]

and finally obtain p(x) > 1. Thus, if one needs to set a representa-
tive value of the polynomial with an infinite value of the argument,
one should take the argument equal to M + 2.

Solution to part (a) of Open problem 137*
proposed by Ovidiu Furdui (Romania),
September 2014 Issue of the EMS Newsletter

Solution by Seán M. Stewart (Bomaderry, NSW, Australia)
Denote the integral to be found in (a) by I. In terms of known
constants its value is:

I = 8 − 𝜋 − 𝜋2

8
+ 𝜋
2
log 2 + 2(log 2)2 − 6 log 2 − 2G.

Here G is Catalan’s constant defined by ∑∞
n= 0

(−1)n

(2n+1)2
.

We first establish a number of preliminary results before evalu-
ating the integral. The nth harmonic number is defined by

Hn =
n

∑
k = 1

1
k
, n ∈ ℕ.

By convention, H0 ≡ 0. The harmonic numbers satisfy the following
recurrence relation

Hn+1 = Hn +
1

n + 1
.

In terms of the harmonic numbers the following finite sum can be
written as

n

∑
k = 1

1
2k − 1

= 1 + 1
3
+ 1
5
+⋯ + 1

2n − 1

= (1 + 1
2
+⋯ + 1

2n
) − 1

2
(1 + 1

2
+⋯ + 1

n
)

= H2n −
1
2
Hn. (1)

The harmonic numbers are related to the digamma function by
(see entry 5.4.14 in [1])

𝜓(x + 1) = −𝛾 + Hx. (2)

Here 𝛾 is the Euler–Mascheroni constant. This allows the har-
monic numbers to be analytically continued to all x ∈ ℝ, x ≠
−1, −2, −3,…. The functional relation for the digamma function is

𝜓(x + 1) = 𝜓(x) + 1
x
. (3)

For half-integer arguments the digamma function takes the values
(see entry 5.4.15 in [1])

𝜓(n + 1
2
) = −𝛾 − 2 log 2 + 2

n

∑
k = 1

1
2k − 1

. (4)

Replacing n with n + 1

2
in (2) we see that

H
n+ 1

2

= 𝜓(n + 3
2
) + 𝛾 = 𝜓(n + 1

2
) + 2

2n + 1
+ 𝛾,

where we have made use of the functional for the digamma func-
tion. In view of (4) we may rewrite this as

H
n+ 1

2

= −2 log 2+ 2
2n + 1

+2
n

∑
k = 1

1
2k − 1

= −2 log 2+2
n+1

∑
k = 1

1
2k − 1

.

By applying (1), in terms of harmonic numbers this can be expressed
as

H
n+ 1

2

= 2H2n+2 − Hn+1 − 2 log 2,

which reduces to

H
n+ 1

2

= 2H2n+1 − Hn − 2 log 2, (5)

after the recurrence relation for the harmonic numbers is applied
to each of the harmonic number terms that appear.

Two results from Cauchy products for power series will prove
useful. The first is

arctan2(x) = −
∞

∑
n= 1

(−1)n
n

(H2n −
1
2
Hn)x2n, |x| ⩽ 1. (6)

Showing this we have

arctan2(x) = (
∞

∑
n= 0

(−1)nx2n+1
2n + 1

) ⋅ (
∞

∑
n= 0

(−1)nx2n+1
2n + 1

)

= x2
∞

∑
n= 0

n

∑
k = 0

(−1)n
(2k + 1)(2n − 2k + 1)x

2n

= x2

2

∞

∑
n= 0

(−1)n
n + 1

[
n

∑
k = 0

1
2k + 1

−
n

∑
k = 0

1
2k − 2n − 1

]x2n,
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where we have made use of the partial fraction decomposition of

1
(2k + 1)(2n − 2k + 1)

= 1
2(n + 1)(2k + 1) − 1

2(n + 1)(2k − 2n − 1) .

Reindexing the second sum k ↦ n − k we have

arctan2(x) =
∞

∑
n= 0

(−1)n
n + 1

(
n

∑
k = 0

1
2k + 1

)x2n+2.

Reindexing the infinite sum n ↦ n−1 and the finite sum k ↦ k −1
yields

arctan2(x) = −
∞

∑
n= 1

(−1)n
n

(
n

∑
k = 1

1
2k − 1

)x2n,

with the desired result then following on application of (1).
The second Cauchy product for power series is

x arctan x
1 + x2

=
∞

∑
n= 1

(−1)n+1(H2n −
1
2
Hn)x2n, |x| < 1. (7)

Showing this we have

x arctan x
1 + x2

= x2(
∞

∑
n= 0

(−1)nx2n) ⋅ (
∞

∑
n= 0

(−1)nx2n
2n + 1

)

=
∞

∑
n= 0

(−1)n(
n

∑
k = 0

1
2k + 1

)x2n+2

=
∞

∑
n= 0

(−1)n(
n+1

∑
k = 1

1
2k − 1

)x2n+2

=
∞

∑
n= 0

(−1)n(H2n+2 −
1
2
Hn+1)x2n+2,

where (1) has been used. The desired result then follows after a
reindexing of n ↦ n − 1.

Turning our attention to the integral I we have

I = −∫
1

0
log(1 − x2)

∞

∑
n= 1

(−1)nx2n
n

dx

= −
∞

∑
n= 1

(−1)n
n

∫
1

0
x2n log(1 − x2) dx.

Here the interchange made between the summation and the inte-
gration is permissible due to Fubini’s theorem. Using the variable
change x ↦ √x leads to

I = −1
2

∞

∑
n= 1

(−1)n
n

∫
1

0
xn−

1

2 log(1 − x) dx. (8)

From the well-known result of (see, for example, [2, p. 2, Eq. (1.4)])

∫
1

0
xn−1 log(1 − x) dx = −Hn

n
,

replacing n with n + 1

2
we see that

∫
1

0
xn−

1

2 log(1 − x) dx = −
2H

n+ 1

2

2n + 1
,

allowing us to rewrite the integral appearing in (8) as

I =
∞

∑
n= 1

(−1)n
n

H
n+ 1

2

2n + 1
. (9)

In view of (5) this can be rewritten as

I =
∞

∑
n= 1

(−1)n
n(2n + 1)(2H2n+1 − Hn − 2 log(2)). (10)

From the partial fraction decomposition of

1
n(2n + 1) = 1

n
− 2
2n + 1

,

and the recurrence relation for the harmonic numbers, (10) may
be expressed as

I = 2
∞

∑
n= 1

(−1)n
n

(H2n −
1
2
Hn) − 4

∞

∑
n= 1

(−1)n
2n + 1

(H2n −
1
2
Hn)

+ 2(1 − log 2)
∞

∑
n= 1

(−1)n
n

+ 4(log 2 − 1)
∞

∑
n= 1

(−1)n
2n + 1

− 4
∞

∑
n= 1

(−1)n
(2n + 1)2

= 2S1 − 4S2 + 2(1 − log 2)S3 + 4(log 2 − 1)S4 − 4S5. (11)

We now find each of these five sums. For the first of these, setting
x = 1 in (6) we see that

S1 = − arctan2(1) = −𝜋
2

16
.

For the second of the sums, S2, integrating (7) with respect to x
from 0 to 1 we see that

S2 = −∫
1

0

x arctan x
1 + x2

dx.

Using the variable change x ↦ tan x before integrating by parts
produces

S2 = −𝜋
8
log 2 − ∫

𝜋
4

0
log(cos x) dx.

The integral that has now appeared can be evaluated as follows.
Recalling Euler’s famous log-sine integral

∫
𝜋
2

0
log(sin x) dx = −𝜋

2
log 2,

and let

JS = ∫
𝜋
4

0
log(sin x) dx and JC = ∫

𝜋
4

0
log(cos x) dx.

Using the variable change x ↦ 𝜋

2
− x in JC gives

JC = ∫
𝜋/2

𝜋/4
log(sin x) dx.

Thus

JS + JC = ∫
𝜋
2

0
log(sin x) dx = −𝜋

2
log 2.
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Also

JS − JC = ∫
𝜋
4

0
log(tan x) dx.

Substituting y = tan x we obtain

JS − JC = ∫
1

0

log(y)
1 + y2

dy =
∞

∑
n= 0

(−1)n ∫
1

0
y2n log(y) dy.

Integrating by parts gives

JS − JC = −
∞

∑
n= 0

(−1)n
2n + 1

∫
1

0
y2n dy = −

∞

∑
n= 0

(−1)n
(2n + 1)2 = −G,

where we used the definition of Catalan’s constant. Solving for JC
yields

JC = G
2

− 𝜋
4
log 2.

Thus
S2 = −G

2
+ 𝜋
8
log 2.

The third sum comes directly from the Maclaurin series expansion
for log(1 − x) evaluated at x = −1. Here

S3 = − log 2.

The four sum is related to the Maclaurin series expansion for
arctan x. Here

S4 = −1 +
∞

∑
n= 0

(−1)n
2n + 1

= −1 + arctan(1) = −1 + 𝜋
4
.

For the fifth and final sum

S5 = −1 +
∞

∑
n= 0

(−1)n
(2n + 1)2 = −1 +G,

where again the definition for Catalan’s constant has been used.
Combining the values found for all five sums into (11) we find

I = 8 − 𝜋 − 𝜋2

8
+ 𝜋
2
log 2 + 2(log 2)2 − 6 log 2 − 2G,

as announced.

Some comments on the general case (part (b) of the question)
Denoting the integral in (b) by In where n ⩾ 2 is an integer, follow-
ing the identical procedure that led to (9) we find

In =
∞

∑
k = 1

(−1)k
k

H
k+ 1

n

nk + 1
.

Using such an approach, the general problem therefore boils down
to expressing H

k+ 1

n

in terms of harmonic numbers whose indices

are of integer rather than fractional order before evaluating each
of the resulting series. Unfortunately, how this can be achieved for
cases when n > 2 is currently not clear to me, suggesting that to
find In, we may need a different approach from the one we used
to find I2.
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We would like to invite you to submit solutions to the proposed
problems and/or ideas on the open problems. Send your solu-
tions by email to Michael Th. Rassias, Institute of Mathematics,
University of Zürich, Switzerland, michail.rassias@math.uzh.ch.

We also solicit your new problems, together with their solu-
tions, for the next “Solved and Unsolved Problems” column, which
will be devoted to the topic of Game Theory.
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