
Solved and unsolved problems

Michael Th. Rassias

The present column is devoted to Game Theory.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.
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We consider a setting where there is a set of m candidates

C = {c1,…, cm}, m ≥ 2,

and a set of n voters [n]={1,…,n}. Each voter ranks all candidates
from the most preferred one to the least preferred one; we write
a ≻i b if voter i prefers candidate a to candidate b. A collection
of all voters’ rankings is called a preference profile. We say that
a preference profile is single-peaked if there is a total order ⊲
on the candidates (called the axis) such that for each voter i the
following holds: if i’s most preferred candidate is c and a ⊲ b ⊲ c
or c ⊲ b⊲ a, then b≻i a. That is, each ranking has a single ‘peak’,
and then ‘declines’ in either direction from that peak.

(i) In general, if we aggregate voters’ preferences over candidates,
the resulting majority relation may have cycles: e.g., if a ≻1 b≻1 c,
b≻2 c≻2 a and c≻3 a≻3 b, then a strict majority (2 out of 3) voters
prefer a to b, a strict majority prefer b to c, yet a strict majority
prefer c to a. Argue that this cannot happen if the preference profile
is single-peaked. That is, prove that if a profile is single-peaked,
a strict majority of voters prefer a to b, and a strict majority of
voters prefer b to c, then a strict majority of voters prefer a to c.

(ii) Suppose that n is odd and voters’ preferences are known to be
single-peaked with respect to an axis ⊲. Consider the following
voting rule: we ask each voter i to report their top candidate t(i),
find a median voter i∗, i.e.

|{i ∶ t(i) ⊲ t(i∗)}| < n
2

and |{i ∶ t(i∗) ⊲ t(i)}| < n
2
,

and output t(i∗). Argue that under this voting rule no voter can
benefit from voting dishonestly, if a voter i reports some candidate

a ≠ t(i) instead of t(i), this either does not change the outcome
or results in an outcome that i likes less than the outcome of the
truthful voting.

(iii) We say that a preference profile is 1D-Euclidean if each can-
didate cj and each voter i can be associated with a point in ℝ so
that the preferences are determined by distances, i.e. there is an
embedding x ∶ C ∪ [n] → ℝ such that for all a,b ∈ C and i ∈ [n]
we have a ≻i b if and only if |x(i) − x(a)| < |x(i) − x(b)|. Argue
that a 1D-Euclidean profile is necessarily single-peaked. Show that
the converse is not true, i.e. there exists a single-peaked profile
that is not 1D-Euclidean.

(iv) Let P be a single-peaked profile, and let L be the set of candid-
ates ranked last by at least one voter. Prove that |L| ≤ 2.

(v) Consider an axis c1 ⊲ ⋯ ⊲ cm. Prove that there are exactly
2m−1 distinct votes that are single-peaked with respect to this
axis. Explain how to sample from the uniform distribution over
these votes.

These problems are based on references [4] (parts (i) and (ii)), [2]
(part (iii)) and [1, 5] (part (v)); part (iv) is folklore. See also the
survey [3].
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Consider a standard prisoners’ dilemma game described by the
following strategic form, with δ > β > 0 > γ:

C D

C
β δ

β γ

D
γ 0

δ 0

Assume that any given agent either plays C or D and that agents
reproduce at a rate determined by their payoff from the strategic
form of the game plus a constant f. Suppose that members of an
infinite population are assorted into finite groups of size n. Let q
denote the proportion of agents playing strategy C (“altruists”) in
the population as a whole and qi denote the proportion of agents
playing C in group i. We assume that currently q ∈ (0, 1).

The process of assortment is abstract, but we assume that it has
finite expectation E[qi] = q and variance Var[qi] = σ2. Members
within each group are then randomly paired off to play one iteration
of the prisoners’ dilemma against another member of their group.
All agents then return to the overall population.
(a) Find a condition relating q, σ2, β, γ, δ and n under which

the proportion of altruists in the overall population rises after
a round of play.

(b) Now interpret this game as one where each player can confer
a benefit b upon the other player by individually incurring
a cost c, with b > c > 0, so that β = b− c, δ = b and γ = −c.
Prove that, as long as (i) there is some positive assortment in
group formation and (ii) the ratio c

b is low enough, then the
proportion of altruists in the overall population will rise after
a round of play.
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Consider a village consisting of n farmers who live along a circle
of length n. The farmers live at positions 1, 2,…,n. Each of them
is friends with the person to the left and right of them, and each
friendship has capacitym wherem is a non-negative integer. At the
end of the year, each farmer does either well (her wealth is +1
dollars) or not well (her wealth is−1 dollars) with equal probability.
Farmers’ wealth realizations are independent of each other. Hence,
for a large circle the share of farmers in each state is on average 1.

The farmers share risk by transferring money to their direct
neighbors. The goal of risk-sharing is to create as many farmers
with OK wealth (0 dollars) as possible. Transfers have to be in
integer dollars and cannot exceed the capacity of each link (which
is m).

A few examples with a village of size n = 4 serve to illustrate
risk-sharing.
• Consider the case where farmers 1 to 4 have wealth

(+1,−1,+1,−1).

In that case, we can share risk completely with farmer 1 sending
a dollar to agent 2 and farmer 3 sending a dollar to farmer 4.
This works for any m ≥ 1.

• Consider the case where farmers 1 to 4 have wealth

(+1,+1,−1,−1).

In that case, we can share risk completely with farmer 1 sending
a dollar to farmer 2, farmer 2 sending two dollars to farmer 3
and farmer 3 sending one dollar to farmer 4. In this case, we
need m ≥ 2. If m = 1, we can only share risk among half the
people in the village.

Show that for any wealth realization an optimal risk-sharing ar-
rangement can be found as the solution to a maximum flow
problem.

Tanya Rosenblat (School of Information and Department
of Economics, University of Michigan, USA)
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This exercise is a continuation of Problem 247 where we stud-
ied risk-sharing among farmers who live on a circle village and
are friends with their direct neighbors to the left and right with
friendships of a certain capacity. Assume that for any realization
of wealth levels the best possible risk-sharing arrangement is im-
plemented and denote the expected share of unmatched farmers
with U(n,m). Show that U(n,m) → 1

2m+1 as n → ∞.

Tanya Rosenblat (School of Information and Department
of Economics, University of Michigan, USA)

EMS MAGAZINE 121 (2021) 59



249
In a combinatorial auction there are m items for sale to n buyers.
Each buyer i has some valuation function vi(⋅) which takes as input
a set S of items and outputs that bidder’s value for that set. These
functions will always be monotone (vi(S∪ T) ≥ vi(S) for all S, T),
and satisfy vi(∅) = 0.

Definition 1 (Walrasian equilibrium). A price vector p⃗ ∈ ℝm
≥0 and

a list B1,…,Bn of subsets of [m] form a Walrasian equilbrium for
v1,…, vn if the following two properties hold:
• Each Bi ∈ argmaxS{vi(S) −∑j∈ S pj}.
• The sets Bi are disjoint, and ⋃i Bi = [m].

Prove that a Walrasian equilibrium exists for v1,…, vn if and
only if there exists an integral¹ optimum to the following linear
program:

maximize ∑
i
∑
S

vi(S) ⋅ xi,S

such that, for all i, ∑
S

xi,S = 1,

for all j, ∑
S∋ j

∑
i

xi,S ≤ 1,

for all i, S, xi,S ≥ 0.

Hint. Take the dual, and start from there.

Matt Weinberg (Computer Science, Princeton University, USA)
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Consider a game played on a network and a finite set of players
𝒩 = {1, 2,…,n}. Each node in the network represents a player
and edges capture their relationships. We use G = (gi j)1≤ i, j≤n

to represent the adjacency matrix of a undirected graph/network,
i.e. gi j = gj i ∈{0,1}. We assume gi i = 0. Thus,G is a zero-diagonal,
squared and symmetric matrix. Each player, indexed by i, chooses
an action xi ∈ ℝ and obtains the following payoff:

πi(x1, x2,…, xn) = xi −
1
2
x2i + δ ∑

j∈𝒩
gi jxixj.

The parameter δ > 0 captures the strength of the direct links
between different players. For simplicity, we assume 0 < δ < 1

n−1 .
A Nash equilibrium is a profile x∗ = (x∗

1 ,…, x∗
n ) such that, for

any i = 1,…,n,

πi(x∗1 ,…, x∗n ) ≥ πi(x∗1 ,…, x∗i−1, xi, x
∗
i+1,…, x∗n ) for any xi ∈ ℝ.

In other words, at a Nash equilibrium, there is no profitable devi-
ation for any player i choosing x∗

i .

¹ That is, a point such that each xi,S ∈ {0, 1}.

Let w = (w1,w2,…,wn)′, wi > 0 for all i (the transpose of
a vector w is denoted by w′), and In the n × n identity matrix.
Define the weighted Katz–Bonacich centrality vector as

b(G,w) = [In − δG]−1w.

HereM≔ [I− δG]−1 denote the inverse Leontief matrix associated
with network G, while mi j denote its i j entry, which is equal to
the discounted number of walks from i to j with decay factor δ.
Let 1n = (1, 1,…, 1)′ be a vector of 1s. Then the unweighted
Katz–Bonacich centrality vector can be defined as

b(G,1) = [I− δG]−11n.

1. Show that this network game has a unique Nash equilibrium
x∗(G). Can you link this equilibrium to the Katz–Bonacich
centrality vector defined above?

2. Let x∗(G) = ∑n
i=1 x

∗
i (G) denote the sum of actions (total

activity) at the unique Nash equilibrium in part 1. Now suppose
that you can remove a single node, say i, from the network.
Which node do you want to remove such that the sum of effort
at the new Nash equilibrium is reduced the most? (Note that,
after the deletion of node i, we remove all the links of node i,
and the remaining network, denoted by G−i, can be obtained
by deleting the i-th row and i-th column of G.)
Mathematically, you need to solve the key player problem

max
i∈𝒩

(x∗(G) − x∗(G−i)).

In other words, you want to find a player who, once removed,
leads to the highest reduction in total action in the remaining
network.
Hint. You may come up with an index ci for each i such that
the key player is the one with the highest ci. This ci should be
expressed using the Katz–Bonacich centrality vector defined
above.

3. Now instead of deleting a single node, we can delete any pair
of nodes from the network. Can you identify the key pair, that
is, the pair of nodes that, once removed, reduces total activity
the most?
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II Open problem

Equilibrium in Quitting Games
by Eilon Solan (School of Mathematical Sciences,
Tel Aviv University, Israel)²

Alaya, Black, and Catherine are involved in an endurance match,
where each player has to decide if and when to quit, and the
outcome depends on the set of players whose choice is larger
than the minimum of the three choices. Formally, each of the
three has to select an element of ℕ ∪ {∞}: the choice ∞ cor-
responds to the decision to never quit, and the choice n ∈ ℕ
corresponds to the decision to quit the match in round n. Denote
by nA (resp. nB, nC) Alaya’s (resp. Black’s, Catherine’s) choice, and by
n∗ ≔min{nA,nB,nC}. As a result of their choices, the players receive
payoffs, which are determined by the set {i ∈ {A,B,C}∶ ni > n∗}
and on whether n∗ < ∞. As a concrete example, suppose that if
n∗ = ∞, the payoff of each player is 0, and if n∗ < ∞, the payoffs
are given by the table in Figure 1.

Each entry in the figure represents one possible outcome. For
example, when n∗ = nA = nB < nC, the payoffs of the three players
are (1, 0, 1): the left-most number in each entry is the payoff to
Alaya, the middle number is the payoff to Black, and the right-most
number is the payoff to Catherine. This game is an instance of
a class of games that are known as quitting games.

How should the players act in this game? To provide an answer,
we formalize the concepts of strategy and equilibrium. As the
choice of each participant may be random, a strategy for a player is
a probability distribution overℕ∪{∞}. Denote a strategy of Alaya
(resp. Black, Catherine) by σA (resp. σB, σC), and by γi(σA,σB,σC)
the expected payoff to player i under the vector of strategies
(σA,σB,σC). A vector of strategies (σ∗

A ,σ
∗
B ,σ

∗
C ) is an equilibrium

if no player can increase her or his expected payoff by adopting
another strategy while the other two stick to their strategies:

γA(σ∗
A ,σ

∗
B ,σ

∗
C ) ≥ γA(σA,σ∗

B ,σ
∗
C )

for every strategy σA of Alaya, and analogous inequalities hold for
Black and Catherine.

The three-player quitting game with payoffs as described above
was studied by Flesch, Thuijsman, and Vrieze [2] who proved that
the following vector of strategies (σ∗

A ,σ
∗
B ,σ

∗
C ) is an equilibrium:

1 2 3 4 5 6 7 8 9 … ∞
σ∗
A ∶ 1

2 0 0 1
4 0 0 1

8 0 0 … 0
σ∗
B ∶ 0 1

2 0 0 1
4 0 0 1

8 0 … 0
σ∗
C ∶ 0 0 1

2 0 0 1
4 0 0 1

8 … 0

² The author thanks János Flesch, Ehud Lehrer, and Abraham Neyman
for commenting on earlier versions of the text, and acknowledges the
support of the Israel Science Foundation, Grant #217/17.

Under (σ∗
A , σ

∗
B , σ

∗
C ), with probability 1 the minimum n∗ is the

choice of exactly one player: n∗ = nA with probability
4
7 , n∗ = nB

with probability 2
7 , and n∗ = nC with probability

1
7 . It follows that

the vector of expected payoffs under (σ∗
A ,σ

∗
B ,σ

∗
C ) is

γ(σ∗
A ,σ

∗
B ,σ

∗
C ) =

4
7
⋅ (1, 3, 0) + 2

7
⋅ (0, 1, 3) + 1

7
⋅ (3, 0, 1)

= (1, 2, 1).

Can a player profit by adopting a strategy different than σ∗
A , σ

∗
B ,

or σ∗
C , assuming the other two stick to their prescribed strategies?

It is a bit tedious, but not too difficult, to verify that this is not the
case, hence (σ∗

A ,σ
∗
B ,σ

∗
C ) is indeed an equilibrium.

In fact, Flesch, Thuijsman, and Vrieze [2] proved that under
all equilibria of the game, with probability 1 the minimum n∗ co-
incides with the choice of exactly one player. Moreover, a vector
of strategies is an equilibrium if and only if the set ℕ can be par-
titioned into blocks of consecutive numbers, and up to circular
permutations of the players, the support of the strategy of Alaya
(which is a probability distribution over ℕ∪ {∞}) is contained in
blocks number 1, 4, 7,…, and the total probability that nA is in
block 3k − 2 is 1

2k (for each k ∈ ℕ), the support of the strategy
of Black (resp. Catherine) is contained in blocks number 2, 5, 8,…
(resp. 3, 6, 9,…), and the total probability that nB (resp. nC) is in
block 3k− 1 (resp. 3k) is 1

2k (for each k ∈ ℕ).
Does an equilibrium exist if the payoffs are not given by the

table in Figure 1, but rather by other numbers? Solan [6] showed
that this is not the case. He studied a three-player quitting game
that differs from the game of [2] in three payoffs:
• the payoffs in the entry n∗ = nA = nB < nC are (1+ η, 0, 1),
• the payoffs in the entry n∗ = nA = nC < nB are (0, 1, 1+ η),
• the payoffs in the entry n∗ = nB = nC < nA are (1, 1+ η, 0);
and showed that provided η is sufficiently small, the game has
no equilibrium. For example, the strategy vector (σ∗

A ,σ
∗
B ,σ

∗
C ) de-

scribed above is no longer an equilibrium, because Catherine is
better off selecting nC = 1 with probability 1, thereby obtaining
expected payoff 1

2 ⋅ 1+ 1
2 ⋅ (1+ η) = 1+ η

2 , which is higher than
her expected payoff under (σ∗

A ,σ
∗
B ,σ

∗
C ) (that is still 1).

Yet in Solan’s variation [6], for every ε > 0 there is an ε-equi-
librium: a vector of strategies such that no player can profit more
than ε by deviating to another strategy, in other words,

γA(σ∗
A ,σ

∗
B ,σ

∗
C ) ≥ γA(σA,σ∗

B ,σ
∗
C ) − ε,

for every strategy σA of Alaya, and analogous inequalities hold
for Black and Catherine. Indeed, given a positive integer m, con-
sider the following variation of (σ∗

A ,σ
∗
B ,σ

∗
C ), denoted ( ̂σA, ̂σB, ̂σC),

where the set ℕ is partitioned into blocks of size m: block k con-
tains the integers {(k− 1)m+ 1, (k− 1)m+ 2,…, km}, for each
k∈ℕ. ̂σA is the probability distribution that assigns to each integer
in block 3k− 2 the probability 1

m⋅2k , for every k ∈ ℕ. Similarly, ̂σB
(resp. ̂σC) is the probability distribution that assigns to each integer
in block 3k− 1 (resp. 3k) the probability 1

m⋅2k , for every k ∈ ℕ. As
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Black’s choice nB > n∗ nB = n∗ nB > n∗ nB = n∗

Alaya’s choice
nA > n∗ 0,1,3 nA > n∗ 3,0,1 1,1,0

nA = n∗ 1,3,0 1,0,1 nA = n∗ 0,1,1 0,0,0

Catherine’s choice nC > n∗ nC = n∗

Figure 1. The payoffs to the players in the game when n∗ <∞. In red, purple, and green the choices and payoffs
of respectively Alaya, Black, and Catherine. Alaya chooses a row, Black a column, and Catherine a matrix.

mentioned above, the strategy vector ( ̂σA, ̂σB, ̂σC) is an equilibrium
of the game whose payoff function is given in Figure 1, and one
can verify that provided m ≥ 1

ε , it is an ε-equilibrium of Solan’s
variation [6].

It follows from [5] that an ε-equilibrium exists in every three-
player quitting game, for every ε > 0, regardless of the payoffs.
One of the most challenging problems in game theory to date is
the following.

251*
Does an ε-equilibrium exist in quitting games that include more
than three players, for every ε > 0?

For partial results, see [1,3,4,7–9], which use different tools
to study the problem: dynamical systems, algebraic topology, and
linear complementarity problems. The open problem is a step in
solving several other well-known open problems in game theory:
the existence of ε-equilibria in stopping games, the existence of uni-
form equilibria in stochastic games, and the existence of ε-equilibria
in repeated games with Borel-measurable payoffs.

It is interesting to note that if we defined

n∗ ≔ max{1{nA<∞} ⋅ nA,1{nB<∞} ⋅ nB,1{nC<∞} ⋅ nC},

then an ε-equilibrium need not exist for small ε > 0. Indeed, with
this definition, the three-player game in which the payoff of player i
is 1 if ∞ > ni = n∗ > nj for each j ≠ i, and 0 otherwise, has no
ε-equilibrium for ε ∈ (0, 23 ).
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III Solutions

237
We take for our probability space (X,m): the unit interval X=[0,1]
equipped with Lebesgue measure m defined on ℬ(X), the Borel
subsets of X and let (X,m, T) be an invertible measure preserving
transformation, that is T ∶ X0 → X0 is a bimeasurable bijection of
some Borel set X0 ∈ ℬ(X) of full measure so that and m(TA) =
m(T−1A) = m(A) for every A ∈ ℬ(X).

Suppose also that T is ergodic in the sense that the only T-
invariant Borel sets have either zero- or full measure (A ∈ ℬ(X),
TA = A ⇒ m(A) = 0, 1).

Birkhoff’s ergodic theorem says that for every integrable func-
tion f ∶ X → ℝ,

1
n

n−1

∑
k=0

f ∘ T k −−−→
n→∞

𝔼(f) ≔ ∫
X
f dm a.s.

The present exercise is concerned with the possibility of general-
izing this. Throughout, (X,m, T) is an arbitrary ergodic, measure
preserving transformation as above.

Warm-up 1. Show that if f ∶ X → ℝ is measurable, and

m([ lim
n→∞

|
n−1

∑
k=0

f ∘ T k| < ∞]) > 0,

then 1
n ∑

n−1
k=0 f ∘ T k converges in ℝ a.s.

Warm-up 1 is [1, Lemma 1]. For a multidimensional version, see [1,
Conjecture 3].

Warm-up 2. Show that if f∶ X →ℝ is as in Warm-up 1, there exist
g,h∶ X→ℝmeasurable with h bounded so that f= h+ g− g∘ T n.

Warm-up 2 is established by adapting the proof of [3, Theorem A].
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Problem. Show that there is a measurable function f ∶ X → ℝ
satisfying 𝔼(|f|) = ∞ so that

1
n

n−1

∑
k=0

f ∘ T k

converges in ℝ a.s.

The existence of such f for a specially constructed ergodic
measure preserving transformation is shown in [2, Example b]. The
point here is to prove it for an arbitrary ergodic measure preserving
transformation of (X,m).

Jon Aaronson (Tel Aviv University, Israel)

Solution by the proposer
We’ll fix sequences εk,Mk > 0, Nk ∈ ℕ (k ≥ 1). For each ε,M > 0,
N ≥ 1, we’ll construct a small coboundary f (ε,M,N). The desired
function will be of the form F ≔ ∑k≥1 f

(εk,Mk,Nk) for a suitable
choice of εk,Mk > 0, Nk ∈ ℕ (k ≥ 1).

To construct f (ε,M,N), choose, using Rokhlin’s lemma, a set
B∈ℬ such that {T kB ∶ |k| ≤ 2N} are disjoint andm(A) = ε where
A ≔ ⨃|k|≤2N T

kB. Let

f = f (ε,M,N) ≔ M
2N

∑
k=1

(−1)k1TkB.

It follows that

Snf(x) ∈ {0,M,−M} for all n ≥ 1, x ∈ X;

Snf(x) = 0 for all 1 ≤ n ≤ N, x ∉ A;

E(|f|) = Mm(
2N

⨃
j=1

T jB) = Mε2N
4N+ 1

> Mε
3

.

Set εk ≔ 1
5k ,Mk = 6k, Nk = 7k, and define F (k) ≔ f (εk,Mk,Nk) as above.

Since

∑
k≥1

m([F(k) ≠ 0]) ≤ ∑
k≥1

εk < ∞,

this is a finite sum and so

F ≔ ∑
k≥1

F(k) ∶ X → ℝ.

Proof that E(|F|) = ∞. For each K ≥ 1,

|F| ≥ |F(K) + ∑
1≤ j≤K−1

F(j)|1[F(k) =0 ∀ k>K]

≥ (|F(K)| − ∑
1≤ j≤K−1

|F(j)|)1[F(k) =0 ∀ k>K]

≥ (MK − ∑
1≤ j≤K−1

Mj)1[F(K) ≠0 & F(k) =0 ∀ k>K]

≥ 4
5
MK1[F(K) ≠0 & F(k) =0 ∀ k>K]

and

E(|F|) ≥ 4
5
MKm([F(K) ≠ 0 & F(k) = 0 ∀ k > K]).

Next,

ℰK ≔ [F(k) = 0 ∀ k > K]c = ⋃
k≥K+1

⋃
1≤ j≤2Nk

T kBk

whence

m(ℰK) ≤ ∑
k≥K+1

εk
2

= 1
2 ∑

k≥K+1

1
5k

= εK
40

.

It follows that

m([F(K) ≠ 0] ⧵ℰK) = m(
2NK

⨃
j=1

T jBK ⧵ℰK) > εK
3

− εK
40

= 37εK
120

,

whence

E(|F|) ≥ 4
5
MKm([F(K) ≠ 0] ⧵ℰK) >

37εKMK

150
−−−→
K→∞

∞.

Proof that SnF = o(n) a.s. There is a function κ ∶ X → ℕ so that
for a.s. x ∈ X, x ∈ Ac

k for all k ≥ κ(x). Suppose that k ≥ κ(x) and
2Nk ≤ n < 2Nk+1, then

|SnF(x)| = |
k

∑
j=1

SnF(j)(x)| ≤
k

∑
j=1

Mj <
6
5
⋅ (6

7
)
k
⋅ Nk

and
|SnF(x)|

n
−−−→
n→∞

0 a.s.
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Let (Ω,ℱ,ℙ) be a probability space and {Xn ∶ n≥ 1} be a sequence
of independent and identically distributed (i.i.d.) random variables
on Ω. Assume that there exists a sequence of positive numbers
{bn ∶ n ≥ 1} such that bn

n ≤ bn+1
n+1 for every n ≥ 1, limn→∞

bn
n = ∞,

and∑∞
n=1ℙ(|Xn| ≥ bn) < ∞. Prove that, if Sn ≔ ∑n

j=1 Xj for each
n ≥ 1, then

lim
n→∞

Sn
bn

= 0 almost surely.

Comment. The desired statement says that, if such a sequence {bn ∶
n ≥ 1} exists, then {Xn ∶ n ≥ 1} satisfies the (generalized) Strong
Law of Large Numbers (SLLN) when averaged by {bn ∶ n ≥ 1}.
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If Xn ∈ L1(ℙ) for every n ≥ 1, then the desired statement fol-
lows trivially from Kolmogorov’s SLLN, since in which case, with
probability one,

lim
n→∞

Sn
n

= 𝔼[X1],

and hence

Sn
bn

= Sn
n

⋅ n
bn

must converge to 0 under the assumptions on {bn ∶ n ≥ 1}. There-
fore, the desired statement can be viewed as an alternative to
Kolmogorov’s SLLN for i.i.d. random variables that are not integ-
rable.

Linan Chen (McGill University, Montreal, Quebec, Canada)

Solution by the proposer
As explained above, we will need to prove the desired statement
without assuming integrability of Xn’s. For every n≥ 1, we truncate
Xn at the level bn by defining Yn = Xn if |Xn| < bn, and Yn = 0 if
|Xn| ≥ bn. Then, {Yn ∶ n ≥ 1} is again a sequence of independent
random variables. It follows from the assumption on {bn ∶ n ≥ 1}
that

∞

∑
n=1

ℙ(Xn ≠ Yn) =
∞

∑
n=1

ℙ(|Xn| ≥ bn) < ∞,

which, by the Borel–Cantelli lemma, implies that the sequence of
the truncated random variables {Yn ∶ n ≥ 1} is equivalent to the
original sequence {Xn ∶ n ≥ 1} in the sense that

ℙ(Xn ≠ Yn infinitely often) = 0, or equivalently,

ℙ(Xn = Yn eventually always) = 1.
(1)

Next, by setting b0 = 0, we have that
∞

∑
n=1

ℙ(|Xn| ≥ bn) =
∞

∑
n=1

∞

∑
k=n+1

ℙ(bk−1 ≤ |X1| < bk)

=
∞

∑
k=2

k−1

∑
n=1

ℙ(bk−1 ≤ |X1| < bk)

=
∞

∑
k=2

(k− 1)ℙ(bk−1 ≤ |X1| < bk)

=
∞

∑
k=1

kℙ(bk−1 ≤ |X1| < bk) − 1,

and hence the assumption on {bn ∶ n ≥ 1} implies that
∞

∑
k=1

kℙ(bk−1 ≤ |X1| < bk) < ∞. (2)

Our next goal is to establish the desired SLLN statement for
{Yn ∶ n ≥ 1}. To be specific, we want to show that if Tn ≔ ∑n

j=1 Yj

for each n ≥ 1, then limn→∞
Tn
bn

= 0 almost surely. We will achieve
this goal in two steps.

Step 1 is to treat the convergence of 𝔼[Tn]
bn

. To this end, we
derive an upper bound for this term as

𝔼[|Tn|]
bn

≤ 1
bn

n

∑
j=1

𝔼[|Yj|] =
1
bn

n

∑
j=1

∫
{|X1|<bj}

|X1|dℙ

= 1
bn

n

∑
j=1

j

∑
k=1

∫
{bk−1≤|X1|<bk}

|X1|dℙ

≤ 1
bn

n

∑
k=1

(n− k+ 1)bkℙ(bk−1 ≤ |X1| < bk)

≤ 2n
bn

n

∑
k=1

bkℙ(bk−1 ≤ |X1| < bk).

Then (2) implies that
∞

∑
k=1

bkℙ(bk−1 ≤ |X1| < bk)
(bk/k)

=
∞

∑
k=1

kℙ(bk−1 ≤ |X1| < bk) < ∞,

which, by Kronecker’s lemma, leads to

lim
n→∞

n
bn

n

∑
k=1

bkℙ(bk−1 ≤ |X1| < bk) = 0.

Hence, we conclude that limn→∞
𝔼[|Tn|]

bn
= 0.

Step 2 is to establish the convergence of Tn−𝔼[Tn]
bn

, for which
we will use a martingale convergence argument. We note that if

Mn ≔
n

∑
j=1

Yj −𝔼[Yj]
bj

for each n ≥ 1, then {Mn ∶ n ≥ 1} is a martingale (with respect to
the natural filtration) and for each n ≥ 1,

𝔼[M2
n] ≤

n

∑
j=1

𝔼[Y2
j ]

b2j
=

n

∑
j=1

1
b2j

∫
{|X1|<bj}

X2
1 dℙ

≤
n

∑
j=1

j

∑
k=1

b2k
b2j

ℙ(bk−1 ≤ |X1| < bk)

≤
n

∑
k=1

(
n

∑
j= k

1
j2
)k2ℙ(bk−1 ≤ |X1| < bk)

≤ C
n

∑
k=1

kℙ(bk−1 ≤ |X1| < bk),

where the second last inequality follows from the assumption that
bn
n is increasing in n, and the last inequality is due to the fact
that there exists constant C > 0 such that ∑∞

j= k
1
j2 ≤ C

k for every
k ≥ 1. Hence, (2) implies that {Mn ∶ n ≥ 1} is bounded in L2(ℙ).
A standard martingale convergence result implies that limn→∞Mn

exists in ℝ almost surely³, which, by Kronecker’s lemma again,
leads to

lim
n→∞

Tn −𝔼[Tn]
bn

= 0 almost surely.

³One can also use Kolmogorov’s maximal inequality to prove the almost
sure existence of the limit of Mn.
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Finally, we write Sn
bn
as

Sn
bn

= Sn − Tn
bn

+ Tn −𝔼[Tn]
bn

+ 𝔼[Tn]
bn

,

where the last two terms have been proven to converge to 0 almost
surely, and (1) implies that, with probability one, the limit of the
first term is also 0. We have completed the proof.

239
In Beetown, the bees have a strict rule: all clubs must have exactly
k members. Clubs are not necessarily disjoint. Let b(k) be the
smallest number of clubs that the n ≥ k2 bees can form, such
that no matter how they divide themselves into two teams to play
beeball, there will always be a club all of whose membees are on
the same team. Prove that

2k−1 ≤ b(k) ≤ Ck2 ⋅ 2k

for some constant C > 0.
Rob Morris (IMPA, Rio de Janeiro, Brasil)

Solution by the proposer
This is an old result of Erdős, and a classic application of the prob-
abilistic method. Let us think of the two teams as being red and
blue, so that a club is ‘monochromatic’ if all of its membees are on
the same team.

First, for the lower bound, we need to show that if m < 2k−1,
then for any collection of m clubs there exists a colouring with no
monochromatic club. To do so, we choose the teams randomly,
and observe that the expected number of monochromatic clubs
is less than 1. To be precise, let Pr(b is red) = 1

2 , independently
for each bee b, and let S count the number of monochromatic
clubs. Then, by linearity of expectation, 𝔼[S] = m ⋅ 2−k+1 < 1,
since each club is monochromatic with probability exactly 2−k+1.
But this implies that Pr(S = 0) > 0, so there exists a colouring with
no monochromatic club, as required.

For the upper bound, we choose the clubs randomly. To be
precise, choose N = k2 bees, and choose each club uniformly
and independently from the k-subsets of these N bees. The idea
is that, for any colouring of the bees, the expected number of
monochromatic clubs is at least k2, so the probability of having
no monochromatic club should be at most e−k2. Since there are
2k

2
colourings of these bees, the expected number of colourings

with no monochromatic clubs is less than 1, so there must exist
a choice for which it is zero.

To spell out the details, fix a colouring, and suppose that x of
the N chosen bees are red. The probability that a random club is
monochromatic is

((x
k
)+ (N− x

k
))(N

k
)
−1

≥ 2 ⋅ (N/2
k

)(N
k
)
−1

≥ 2−k−c

for some constant c > 0, where in the final inequality we used the
fact that N ≥ k2.

Now, let T count the number of colourings of the N bees with
no monochromatic club, and observe that if there are m = k22k+c

clubs, then

𝔼[T] ≤ ∑
colourings

of the N bees

(1− 2−k−c)m ≤ 2k
2
e−k2 < 1.

It follows that there exists a choice of m clubs such that T = 0, as
required.

240
N agents are in a room with a server, and each agent is looking
to get served, at which point the agent leaves the room. At any
discrete time step, each agent may choose to either shout or stay
quiet, and an agent gets served in that round if (and only if) that
agent is the only one to have shouted. The agents are indistin-
guishable to each other at the start, but at each subsequent step,
every agent gets to see who has shouted and who has not. If
all the agents are required to use the same randomised strategy,
show that the minimum time to clear the room in expectation is
N+ (2+ o(1)) log2 N.

Bhargav Narayanan (Rutgers University, Piscataway, USA)

Solution by the proposer
Here is a simple strategy that works in expected time N + (2+
o(1)) log2 N. The agents all toss independent fair coins to decide
whether to shout or not in each of the first k = (2+ o(1)) log2 N
rounds. It is easy to see that with high probability, after these k
rounds, every agent (still in the room) has a unique ‘history’, i.e. no
two agents have the exact same sequence of turns (shouting/
staying quiet). Now the agents are all distinguishable, and we are
done in N more steps; for example, the agents can interpret each
others histories as numbers in binary, and can get served in increas-
ing order. Below, we show that no strategy can do significantly
better.

At any time, we can partition all the agents into clusters based
on their history so far: two agents go into the same cluster if they
have chosen to do the same thing in all previous rounds. By the
requirement that the agents all have the same randomised strategy,
we know that at any time, all the agents in the same cluster must
have the same strategy. Let X be the number of times an agent
from a cluster of size at least 2 gets served and leaves the room,
and let Y be the number of times either
1. exactly two agents from the same cluster, and nobody else, ask

to be served, or
2. nobody asks to be served at all.
An easy computation shows that

ℙ(Bin(m,p) = 1) ≤ ℙ(Bin(m,p) = 0) + ℙ(Bin(m,p) = 2)
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for all m > 1 and any 0 ≤ p ≤ 1; consequently, it is easy to see
that Y stochastically dominates X. So, if for some strategy,

ℙ(X > 2(log2 N)2) > 1
log2 N

,

then the expected time to clear the room, which is at least N+ Y,
is at least N + 2 log2 N in expectation. So we may assume that
X < 2(log2 N)2 with high probability for any strategy under con-
sideration.

Let S be the set of agents who leave the room only when they
belong to their own singleton cluster. As we just observed, the
number of such agents |S| =M = N− X may be assumed to be at
least N− 2(log2N)2. The key observation is this: if someone leaves
the room in a particular step, the cluster structure of S does not
change in that step. To see this, note that when an agent not from
S leaves the room, that agent shouts and everyone in S does not,
so there is no change to the cluster structure of S. On the other
hand, when an agent from S leaves the room, that agent is, by
definition, already in their own singleton cluster, and every other
agent in S does not shout in this step; again, there is no change in
the cluster structure of S.

But we know that at the end of the process, which let us say
takes N+Δ rounds, S has been split from a single cluster into M
singleton clusters. Nothing changes in the cluster structure of S in
the N rounds when someone leaves the room, so S gets broken
down into singleton clusters in the remaining Δ steps.

Consider these Δ steps where nobody leaves the room. Determ-
inistically, in the first log2M− 1 of these steps, we can produce
at most M

2 singletons in S. The remaining M
2 agents in S are all in

clusters of size at least 2. Divide all these cluster into sub-clusters
each of size 2 (by ignoring agents if necessary). The result is at
least M

6 2-clusters that we still need to break down into singletons
(the worst case being when the M

2 agents are each in a cluster
of size 3). The probability that a 2-cluster breaks down into two
singletons at any given time step, with any strategy, is at most 1

2 .
So in any strategy, we need at least another log2M− log2 log2M
time steps, say, for all these 2-clusters to separate into singletons.
Thus, Δ≥ 2 log2M− log2 log2M with high probability, which with
our previous bound on M, tells us that any strategy takes at least
N+ (2− o(1)) log2 N steps to clear the room.
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Consider the following sequence of partitions of the unit interval
I: First, define π1 to be the partition of I into two intervals, a red
interval of length 1

3 and a blue one of length
2
3 . Next, for anym> 1,

define πm+1 to be the partition derived from πm by splitting all
intervals of maximal length in πm, each into two intervals, a red
one of ratio 1

3 and a blue one of ratio 2
3 , just as in the first step.

For example π2 consists of three intervals of lengths 1
3 (red), 2

9
(red) and 4

9 (blue), the last two are the result of splitting the blue

interval in π1. The figure above illustrates π1,…,π4, from top to
bottom.

Let m ∈ ℕ and consider the m-th partition πm.
1. Choose an interval in πm uniformly at random. Let Rm be

the probability you chose a red interval. Does the sequence
(Rm)m∈ℕ converge? If so, what is the limit?

2. Choose a point in I uniformly at random. Let Am be the probab-
ility that the point is colored red. Does the sequence (Am)m∈ℕ

converge? If so, what is the limit?
Yotam Smilansky (Rutgers University, NJ, USA)

Solution by the proposer
The proposed solution is based on path counting results [1] on
an appropriately defined graph, and can be generalized to higher
dimensions and to more complicated sequences of partitions [2].

LetG be a weighted graph with a single vertex and two directed
loops: a red one of length − log( 13 ) and a blue one of length
− log( 23 ), and consider directed walks along the edges of G that
originate at the vertex and terminate on a point of a colored loop.
The first important observation is that there is a 1-1 correspondence
between colored intervals in πm and walks of length ℓm on G,
where (ℓm)m∈ℕ is the increasing sequence of lengths of closed
orbits on G. In the following illustration, the top is partition π1 and
the corresponding two walks of length ℓ1 = − log( 23 ), and the
bottom is partition π2 and the corresponding three walks of length
ℓ2 = −2 log( 23 ).

In general, a splitting of an interval corresponds to an extension
of a walk that terminates at the vertex to two new walks, one that
extends onto the red loop and the other onto the blue. Therefore,
Rm is the relative part of walks of length ℓm that terminate on
the red loop. For Am, consider random walks on G and prescribe
probabilities to the two outgoing loops: a walk along G is extended
onto the red loop when reaching the vertex with probability 1

3 , and
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onto the blue loop with probability 2
3 . These are chosen because

1
3 of a split interval is colored red and 2

3 colored blue. It follows
that Am is the probability that a walker is located on the red loop
after walking a walk of length ℓm.

The second observation is that in order to compute the asymp-
totic behavior of Rm and Am, one can apply the well-knownWiener–
Ikehara theorem, originally devised to approach the prime number
theorem. The theorem states that if there exists λ∈ℝ for which the
Laplace transform of a counting function is analytic for ℜ(s) > λ,
has a simple pole at s = λ and no other singular points on the
vertical line ℜ(s) = λ, then the main term of the growth rate is
ceλx, with c the residue of the Laplace transform at s = λ.

A direct computation shows that the Laplace transform for the
number of walks that terminate on the red loop is

1
s
⋅

1− ( 1
3)

s

1− ( 1
3)

s − ( 2
3)

s .

Inspecting the term 1−( 1
3)

s −( 2
3)

s one sees that s= 1 is a simple
root of maximal real part, and so to apply the Wiener–Ikehara
theorem it suffices to establish that there are no other roots of the
form 1+ i t. Indeed, a careful but elementary inspection shows
that otherwise, the loops of G must have commensurable lengths,
or equivalently log2 3 ∈ ℚ, which is of course false. The Laplace
transform of the total number of walks is similar but has numerator
2− ( 1

3)
s − ( 2

3)
s, and so Rm tends to the ratio of the residues of

these two transforms at s = 1, that is, limm→∞ Rm = 2
3 . Similarly,

the Laplace transform for Am is
1
3

s
⋅

1− ( 1
3)

s

1− ( 1
3)

s+1 − ( 2
3)

s+1 ,

with the same poles but shifted by−1. It follows that Am converges
to the residue at s = 0, namely

lim
m→∞

Am =
− 1

3 log
1
3

− 1
3 log

1
3 − 2

3 log
2
3

.

Note that the limit of Rm is simply the length of the blue interval
in π1, and the limit of Am can be viewed as the relative contribution
of the red interval to the partition entropy of π1. This interpretation
leads me to suspect that there may exist a more direct and illumin-
ating approach to these problems, possibly based on tools from
probability and dynamics, and I would be very happy to discuss
any ideas or suggestions.
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Prove that there exist c < 1 and ε > 0 such that if A1,…,Ak are
increasing events of independent boolean random variables with
Pr(Ai) < ε for all i, then

Pr(exactly one of A1,…,Ak occurs) ≤ c.

(What is the smallest c that you can prove?)
Here A ⊂ {0, 1}n is an “increasing event” if whenever x ∈ A,

then the vector obtained by changing any coordinates of x from 0
to 1 still lies in A.

A useful fact is the Harris inequality, which states that for in-
creasing events A and B of boolean random variables, Pr(A∩ B) ≥
Pr(A) Pr(B).

I learned of this problem from Jeff Kahn.
Yufei Zhao (MIT, Cambridge, USA)

Solution by the proposer
We will show that the claim is true for every ε > 0 and c = 1+ε

2 .
If Pr(A1 ∪⋯∪ Ak) ≤ c, then the conclusion is automatic. So

let us assume that Pr(A1 ∪⋯∪Ak) > c. Since Pr(Ai) < ε for each i,
there exists some j such that Pr(A1 ∪⋯∪ Aj) lies within ε

2 of 1
2 .

Let B = A1 ∪⋯∪ Aj and C = Aj+1 ∪⋯∪ Ak. We write B and C
for the complementary events.

If exactly one of A1,…,Ak occurs, then exactly one of B and C
can occur. So

Pr(exactly one of A1,…,Ak occurs) ≤ Pr(B∩ C) + Pr(B∩ C)

≤ Pr(B) Pr(C) + Pr(B) Pr(C)

≤ max{Pr(B), Pr(B)}

≤ 1+ ε
2

where the second inequality is due to Harris’ inequality.
Remark. It is conjectured that for any c > 1

e there exists some
ε > 0 for which the statement is true. Here 1

e is optimal, since if
Ai are independent Bernoulli random variables with mean 1

k , then
the number of occurrences is asymptotically Poisson with mean 1,
with so that the probability of single occurrence is 1

e + o(1).

We are eager to receive your solutions to the proposed problems,
and any ideas that you may have on open problems. Send your
solutions to Michael Th. Rassias (Institute of Mathematics, Univer-
sity of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
michail.rassias@math.uzh.ch).

We also solicit your suggestions for new problems together
with their solutions, for the next “Solved and unsolved problems”
column, which will be devoted to Topology/Geometry.
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