
Teaching school mathematics to prospective teachers

Hung-Hsi Wu

What kind of mathematics should be taught to prospective mathe-
matics teachers has been a longstanding open problem in mathe-
matics education. We contend that we should teach them exactly
what they need for their work: school mathematics.

1 Introduction

Good school mathematics education requires teachers who are
mathematically knowledgeable. After all, one can’t teach what one
doesn’t know. However, at least in America, we are still none too
sure about what kind of mathematics we should teach prospective
teachers to make them knowledgeable (cf. [12]). In a well-known
article back in 1990 [1], Deborah Ball reported on her study of the
subject matter knowledge of 252 prospective mathematics teacher
candidates (217 elementary school teachers and 35 high school
teachers) in five universities. The study zeroed in on one topic:
division of fractions. When presented with the division of 1 3

4 ÷ 1
2

and four story problems, only 30% of them were able to select the
problem that correctly represented this division. In a smaller study,
35 of the 217 teachers (25 elementary and 10 high school) were
asked to create a word problem of their own to correctly represent
this division. Only 4 out of the 35 teachers (thus 11%) could give
a satisfactory answer and all 4 were high school teachers. Ball’s
(separate) interviews—on the same topic of fraction division—with
mathematics majors in college who did not plan to go into teaching
did not produce better results. Her conclusion was that the subject
matter preparation of prospective teachers was in dire need of our
serious reappraisal.

The inquiry into how best to help prospective teachers acquire
the needed understanding of mathematics for teaching naturally
predated Ball’s study and went back to at least the beginning of
the 20th century. In the waning days of the New Math phase of
the 1960s, E. G. Begle also pondered over the possible correlation
between teachers’ knowledge of the subject matter and their
students’ achievements. In his 1972 study of 308 teachers of high
school algebra [2], he found no evidence that the amount of teacher
training in mathematics led to increased student achievement. This
finding was further confirmed in 1979 [3].

The decades since the works of Begle and Ball have lent clarity
to the phenomenon they uncovered. We will first analyze Ball’s
data about 1 3

4 ÷ 1
2 , and then put the data in the proper perspec-

tive by coming to terms with the fact that school mathematics is
a separate discipline distinct from the mathematics we teach in
universities.

2 The division of fractions: two views

We will approach the topic of fraction division from two perspec-
tives. First, we describe what elementary students need to know to
answer Deborah Ball’s questions and, second, what university stu-
dents in a course on algebra can learn about fraction division. Due
to length limitations, we will focus only on the criticalmathematical
differences between the two without addressing the pedagogical
ramifications.

When the topic of fraction division is brought up in upper
elementary school, students face a real conceptual challenge: the
concept of a fraction is a higher level of abstraction than anything
they have ever faced, and the concept of division is the most elusive
of the four arithmetic operations on fractions. Students cannot
overcome either obstacle if they are not told exactly what these
concepts mean. As an Arizona elementary school teacher Kyle
Kirkman said:

I have learned that precise mathematical definitions are critical.
If precision is lacking, students will fill in any missing or vague
elements of the definition with whatever happens to be
present in their paradigm that seems to fit the idea. Not all of
mathematics is intuitive in nature, so this can definitely lead to
erroneous conclusions. [12, Section 4.2.4]

Unfortunately, it is the case that school mathematics usually
explains fractions to students in terms of vague metaphors without
giving a precise definition, at least not one that students can use
for reasoning about the four operations on fractions. We have to
first describe a remedy for this deplorable situation. We will define
a fraction in terms of something that feels “real” and “tangible”
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to elementary students, and the commonly accepted definition
nowadays is as a point on the so-called number line (see [9, Sec-
tions 12.1 and 12.2] or [11, pp. 1–18]), as follows. We assume
that we can tell whether two segments (i.e., closed intervals) on
a line have equal length or not. A number line is a horizontal line
on which the whole numbers have been identified as points so
that the numbers 1, 2, 3,… are placed successively to the right of
0 and the segments [0, 1], [1, 2], [2, 3],… all have equal length
(Figure 1). The fractions with denominators equal to 5 (for example)
consist of the whole numbers together with the division points
when each of the segments [0, 1], [1, 2], [2, 3],… is divided into
5 equal parts, i.e., 5 segments of equal length (Figure 2). We call
this sequence the sequence of fifths. We can likewise introduce
the sequence of n-ths for each nonzero whole number n. (Observe
the resemblance of the sequence of n-ths for each n to the se-
quence of whole numbers.) Fractions are by definition the totality
of all the points in the sequence of n-ths for all nonzero whole
numbers n.

Next, we introduce the concept of length for certain segments.
By definition, the length of the segment [0, ab ] (

a
b a fraction) is a

b .
Thus a segment with the same length as [0, ab ] now also has length
a
b . To put this definition to use, we introduce the concept of the
concatenation of a collection of segments—say L1, L2, and L3—
to be the segment formed by putting these segments together
end-to-end:

L1 L2 L3

It follows that the length of the concatenation of 3 of the parts
when [0, 1] is divided into (let us say) 7 equal parts is 3

7 because
this segment has the same length as [0, 37 ].

Since division is based on multiplication, we will come straight
to fraction multiplication without discussing equivalent fractions
or fraction addition. By definition, 2

5 × 3
4 is the length of the con-

catenation of 2 of the parts when the segment [0, 34 ] is divided
into 5 equal parts. The multiplication of two fractions in general is
defined similarly (see, e.g., [11, Section 1.5] or [15, Section 1.4]). It
becomes a nontrivial fact (for elementary students) to prove the

following product formula:

2
5
× 3

4
= 2× 3

5× 4
. (1)

See, e.g., [11, Theorem 1.5, p. 60].
This definition of fraction multiplication did not come out of

the blue. If, in the definition of 2
5 × 3

4 , we replace the fraction
3
4

by 1 (= 1
1 ), then the definition of

2
5 × 1 (“the total length of 2 of the

parts when [0, 1] is divided into 5 equal parts”) becomes exactly
the above definition of 2

5 , so that (not surprisingly) 2
5 × 1 = 2

5 . Fur-
thermore, if we consider the product of whole numbers, say 2× 3,
we can also regard it as the multiplication of the fractions 2

1 and 3
1 .

Then the definition of fraction multiplication says that this product
is the total length of 2 of the parts when the segment [0, 3] is
divided into 1 equal part, i.e., when each part is the segment [0,3]
itself. In other words, the product 2× 3, whether considered as
the product of two whole numbers or the product of two fractions,
is just 3+ 3. In this light, we see that this definition of fraction
multiplication is a very natural outgrowth of familiar concepts.

How is this concept of multiplication related to the real world?
To elementary students, this is an important concern, as the fol-
lowing problem shows.

Example 1. If 4 2
3 buckets of water fill a water container exactly,

what is the volume of the container if the volume of the bucket is
5.5 liters?

Solution. The important thing is to understand the given data.
Since 4 2

3 = 4+ 2
3 by definition, the container contains 4 buckets

and 2
3 of a bucket of water. The total volume of 4 buckets is clear:

4× 5 1
2 liters. Now, students have to understand (and a teacher

should explain) that “ 2
3 of 5 1

2 liters” means that it is the total
volume of “2 of the parts when 5 1

2 liters is divided into 3 parts of
equal volume”. By our definition of fraction multiplication, this is
precisely 2

3 × 5 1
2 liters on the number line whose “1” is interpreted

as “1 liter”. By the distributive law, the volume of the container is

(4× 5
1
2
) + (2

3
× 5

1
2
) = 4

2
3
× 5.5 liters.

Thus, “4 2
3 of 5.5 liters” is equal to “(4 2

3 × 5.5) liters”.
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Incidentally, this explains why, when textbooks do not define
fraction multiplication, they give the rote instruction that the word
“of” means “multiply”.

Next, division. We must first review the concept of division
among whole numbers (see [9, pp. 97–100]). Observe that, where-
as we can add or multiply any two whole numbers, we are not free
to subtract or divide any two whole numbers. For example, in the
context of whole numbers, the subtraction 3− 7 is not allowed,
nor is 21 ÷ 5. Let us explain the latter: within whole numbers,
we can write 21÷ 7 (respectively, 15÷ 3) only because we know
ahead of time that 21 (resp. 15) is a whole number multiple of 7
(resp. 3). For example, the definition of division 21÷ 7 is:

21÷ 7 = {the whole number k so that k× 7 = 21}. (2)

This is why 21÷ 7= 3. The definition makes it perfectly clear that,
without a prior guarantee that 21 is a multiple of 7, the whole
number 21 ÷ 7 would be impossible to define. Equivalently, if
we do not know that 21 objects can be partitioned into 3 equal
groups of 7, then we cannot talk about 21÷ 7. If students find
equation (2) to be confusing, remind them that (2) is no different
from the definition of subtraction:

21− 7 = {the whole number ℓ so that ℓ+ 7 = 21}.

Why this review is important is that the division among whole
numbers serves as a model for the division among fractions, be-
cause whole numbers are also fractions (see [9, pp. 284–289]). So,
according to (2), the division 1 3

4 ÷ 1
2 (1 3

4 is just 7
4 ) would make

no sense unless 1 3
4 is a fractional multiple of 1

2 in the sense that
1 3
4 = m

n × 1
2 for some fraction

m
n . (This

m
n is unique; see [9, Lemma,

p. 286] or [11, Lemma 1.7, p. 75].) Assuming there is such an m
n ,

then we can define 1 3
4 ÷ 1

2 in exactly the same way as in (2):

1
3
4
÷ 1

2
= {the fraction m

n
so that

m
n

× 1
2
= 1

3
4
}. (3)

See [9, p. 289] or [11, p. 75].
Surprisingly, in contrast with the case of whole numbers, it

turns out that such a fraction m
n on the right side of (3) can always

be found as follows:

1
3
4
= 1× 1

3
4
= (1

2
× 2

1
) × 1

3
4

= 1
2
× (2

1
× 1

3
4
) (associative law of mult.)

= (2
1
× 1

3
4
) × 1

2
(commutative law of mult.). (4)

From (4), we see that if we let m
n = 2

1 × 1 3
4 , then 1 3

4 = m
n × 1

2 and
(3) would allow us to conclude that

1
3
4
÷ 1

2
= 2

1
× 1

3
4
.

This is of course the invert and multiply rule for fraction division.
This reasoning is seen to be perfectly general.

We now give a word problem whose solution requires the use
of the division 1 3

4 ÷ 1
2 in Ball’s article [1] and we will also explain

how this comes about.

Example 2. How many cups of water will fill a jar with a volume
of 1 3

4 liters if the cup holds 1
2 liters?

Solution. Let m
n cups of water fill the jar. Using the reasoning in

Example 1 about the volume of a water container, we see that

m
n

× 1
2
= 1

3
4
.

By the definition of fraction division, this means

m
n

= 1
3
4
÷ 1

2
= 2

1
× 1

3
4
= 3

1
2
,

where the last equality is a routine calculation.

We have now done enough to show the minimal mathemati-
cal knowledge a school teacher needs to teach fraction division
correctly to elementary students. We point out once again that this
minimal knowledge is not typically what elementary students are
taught in schools. Be that as it may, it is time to take up the other
concern in Ball’s 1990 article about why university mathematics
majors may not possess such knowledge either. We will only be
able to provide the barest outline in the following discussion.

A university course on abstract algebra that includes the math-
ematically correct way to define fractions is essentially students’
first introduction to abstract mathematics. The main purpose of
such a course is to guide students’ first steps in the new environ-
ment of what is called abstract mathematics. Hence the relentless
emphasis in such courses is on correct definitions and proofs, and
on reducing all complex mathematical phenomena—by the use of
logic—down to the bare essentials. For the case at hand, let us put
ourselves at the juncture where students are already in possession
of the integers, to be denoted by ℤ, and are made aware that
the main defect of ℤ from an abstract point of view is that no
nonzero integer other than 1 and −1 has a multiplicative inverse,
i.e., given an integer z, z ≠ 1 or −1, there is no integer z ′ so that
zz ′ = z ′z = 1. The way to eliminate this defect is to expand ℤ by
including the desired multiplicative inverses to form the field of
quotientsℚ. Thisℚ is of course what we call the rational numbers
(the fractions and negative fractions), but in the abstract setting,
we cannot just adjoin the new numbers ± 1

2 , ±
1
3 , etc., to ℤ and

declare, “There you are!”. After all, what are these new numbers
and how do we add and multiply them? We want students to learn
how to use a similar reasoning to expand any integral domain into
a field so that every nonzero element of the integral domain will
have a multiplicative inverse in the field. The way to do this is to
form the set of all ordered pairs of integers {⟨u, v⟩} (where u and v
are integers with v ≠ 0) and introduce into this set an equivalence
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relation (which essentially declares that the cross-multiplication
algorithm is valid), and then ℚ is by definition the set of equiva-
lence classes. After that, we can show that each integer u in ℤ
can be identified with the equivalence class containing ⟨u, 1⟩, and
we also write u

v for the equivalence class containing ⟨u, v⟩ so as to
align the new notation with the old. In particular, this means u

1 is
identified with the integer u for each u.

For beginners, just getting used to this general construction
and being at ease with the idea that each “number” inℚ is now an
equivalence class (each containing an infinite number of elements)
is already a full-time job. But more is yet to come. So far, we only
have a larger set ℚ containing ℤ but we do not yet know how to
do arithmetic in ℚ, i.e., given two arbitrary elements of ℚ, we do
not know as yet how to add them or multiply them. The next step
is therefore to define the rules for adding and multiplying elements
in ℚ (which are equivalence classes) with the goal of showing that
ℚ in fact forms a field, which means in particular that each nonzero
element z of ℚ will have a multiplicative inverse z−1, i.e., so that
zz−1 = z−1z = 1. Here are the relevant definitions: for u, v, s, t
in ℤ with v ≠ 0 and t ≠ 0,

u
v
+ s

t
def
= ut+ sv

vt
,

u
v
× s

t
def
= us

vt
. (5)

We underscore the momentous shift in perspective that has just
taken place here. In school mathematics, fractions are considered to
be a part of nature that students should get to know; the idea that
two fractions can be multiplied is taken for granted. What needs
to be to explained is how the product of two fractions is related to
the daily phenomena around us and why the product formula (1) is
correct. By contrast, abstract mathematics progresses from ℤ to ℚ
by regarding only the integers as known so that how to add or
multiply the unknown non-integer rational numbers is a total blank
that is waiting to be filled in; this is done by judiciously defining
what the sum and product of two rational numbers must be. The
internal structure of ℚ is the sole concern here, not how u

v × s
t is

related to daily phenomena. In particular, whereas equation (1) is
a theorem in school mathematics, the same statement (5) is merely
a definition in university mathematics.

We can now explain why university mathematics majors are
generally not capable of explaining to elementary students how
to multiply two fractions. First of all, most if not all of these math
majors were not provided with this kind of knowledge when they
were in elementary school themselves (see, e.g., [16]). More to
the point, what they learn about fractions in college mathematics
courses is about the abstract structure of the rational numbers as
a field, not about how fractions are related to daily experiences.
Therefore, it is not that university mathematics majors are igno-
rant about fractions, but that their understanding of fractions is
divorced from the concerns of elementary students. To the extent
that multiplication is the foundation of division, the same comment

will apply to the school mathematics of fraction division, as we
now show.

As part of the mission of university mathematics to reduce all
phenomena to bare essentials, the four arithmetic operations in
school mathematics are reduced to only two, namely, addition
and multiplication. In a field, subtraction a − b is by definition
the addition a + (−b), where −b is the additive inverse of b,
and division a÷ b (b ≠ 0) is by definition just the multiplication
a × b−1, where b−1 is the multiplicative inverse of b. Since the
multiplicative inverse of a nonzero rational number s

t is clearly
just the reciprocal t

s , the invert-and-multiply rule is now—like the
product formula (5)—a matter of definition:

u
v
÷ s

t
def
= u

v
× ( s

t
)
−1

= u
v
× t

s
. (6)

From the point of view of abstract mathematics, “division” is just
an afterthought once multiplication is in place. Mathematics majors
would usually be busy with exploring the new algebraic structures
(groups, fields, rings, etc.) at this point and any puzzlement over
division or its ramifications in real life simply does not enter the pic-
ture. If they cannot help elementary students overcome the fear of
“Ours is not to reason why, just invert and multiply”, it is—again—
not because they know less than school teachers but because
they know something different from the concerns of elementary
students.

3 What is school mathematics?

Through one small topic—fraction division—we get to see the criti-
cal difference between what may be called university mathematics
(the mathematics taught in universities to prepare students for
mathematical research) and school mathematics (the mathematics
taught in K-12 schools). A main goal of the former is to introduce
students to abstract mathematics, and the main emphasis is on
logical completeness and the use of abstractions to achieve this
goal. No matter how gently this is done, it is too austere and too
sophisticated to be suitable for use in schools. School students who
come mostly from the world of tactile experiences need a bridge to
help them transition to the world of abstractions. School mathemat-
ics is that bridge, and it should be recognized as an independent
discipline devoted to the customization of university mathematics
to meet the needs of school students, in the same way that chemi-
cal engineering is the discipline that customizes abstract chemical
principles to meet human needs. In this sense, school mathematics
is mathematical engineering (see [7]).

Now, there is good engineering and there is also bad engineer-
ing. Good engineering always observes the basic principles of its
associated scientific discipline—for example, mechanical engineer-
ing does not engage in designing perpetual motion machines—but
bad engineering can do just the opposite. In the case of mathemat-

42 EMS MAGAZINE 122 (2021)



ics, bad mathematical engineering has been at work for a long time
at least in America; it has produced school mathematics that seems
to make a mockery of the fundamental principles of mathematics
(see, e.g., [16]). But before proceeding any further, let us state one
version of the fundamental principles of mathematics [8]:
(i) Clear definitions. Each concept is precisely defined so as to be

usable for reasoning.
(ii) Logical reasoning. Every claim is supported by reasoning that

explains why it is true. (It is understood that in a few spe-
cial cases, such as the fundamental theorem of algebra, the
reasoning can be deferred.)

(iii) Precise language. There is no place for ambiguity in a discipline
where the difference between true and false is absolute.

(iv) Coherence. The concepts and skills are not fragmented bits
and pieces but are part of a coherent whole.

(v) Purposefulness. Each concept or skill is there for a purpose.

We have seen all of them in action in the preceding discussion
of fraction division. Thus, fraction, fraction multiplication, and
fraction division were all precisely defined to make possible the
use of reasoning to explain formulas (5) and (6). An example of
the precision that is in school mathematics is the definition of
division among whole numbers that shows why “m÷ n” does not
always make sense for two arbitrary whole numbers m and n. As
for “coherence”, we took pains to explain how the definition of
fraction multiplication evolves from the definition of a fraction as
well as from the definition of whole-number multiplication. We
also showed that the definition of fraction division is modeled
on the definition of whole-number division. Finally, although the
purpose of the concepts of fraction multiplication and division is
all too obvious, there are many other concepts or skills whose
presence in the school curriculum is not well explained, e.g., why
learn how to round to the nearest ten or nearest thousand (see
[9, Chapter 10]), why take the absolute value of a real number
(see [15, pp. 130–131] and [14, pp. 120, 123]), etc. Also see the
discussion of slope below.

We will refer to school mathematics that observes the funda-
mental principles of mathematics as PBSM (Principles-Based School
Mathematics; see [5]).

We now have the necessary tools to revisit the problem con-
cerning the mathematical education of teachers that Begle, Ball,
and others uncovered but did not clearly articulate. In our lan-
guage, their message is that to get mathematically knowledgeable
teachers, we have to teach teachers PBSM instead of university
mathematics. This is because school mathematics and university
mathematics are related but essentially distinct disciplines, so that
knowing university mathematics does not imply knowing PBSM.
We have underscored their differences using a small topic—that of
fraction division—but there are many other such examples. Let us
briefly look at two additional ones to further plead our case: the
concept of the slope of a line, and the broad issue of the school

geometry curriculum. Similar examples are pointed out throughout
the six volumes [9–11,13–15].

First, consider how school mathematics handles “slope”. The
typical starting point is to let students retain their naive conception
of a line as in Euclidean geometry and define slope in terms of
this naive conception. Thus, let a line L in the coordinate plane ℝ2

be given. Suppose L is not vertical (i.e., not parallel to the y-axis).
Then school mathematics defines the slope of L as the quotient

slope of L
def
= y1 − y2

x1 − x2
, (7)

where (x1, y1) and (x2, y2) are any two distinct points on L.

�
�
�

�
�

�
�
�

�
�

q
q
(x1, y1)

(x2, y2)

L

O
X

Y

We can explain to students that the slope of a (nonvertical) line
is a measurement of its “slant” relative to the y-axis (see [15,
pp. 338–346]). Incidentally, this explanation is an example of the
purposefulness of a concept. In any case, the central fact concern-
ing slope is the following theorem [14, Theorem 6.11, p. 354].

Theorem 1. The graph of a linear equation y = mx+ b (m and b
are constants) is a line with slope m, and conversely a line with
slope m is the graph of an equation y = mx+ b.

There is a subtlety hidden in the definition of slope: how do
we know that the right side of (7) does not change no matter
which two points (x1, y1) and (x2, y2) are chosen on L? Most
school textbooks evade this question, leading to much confusion
in students’ understanding of slope. The fact is that to answer this
question, we need the theorem that two triangles are similar if
they have a pair of equal angles. Rare is the school curriculum that
has covered similar triangles by the time it takes up the topic of
slope. Consequently, slope is rarely defined correctly. If there is no
correct definition for a concept, then there can be no theorem
involving the concept. Consequently, Theorem 1 is almost never
proved in school mathematics.

Not surprisingly, university mathematics approaches slope by
ignoring any reference to students’ naive knowledge and simply
defining a line in the plane as the graph of an equation y=mx+ b
(m and b being constants) or x= b (a vertical line). Then the slope of
the graph of y =mx+ b is by definition m. Very simple! Therefore,
brevity and total clarity are achieved at the expense of students’
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intuition. (Unfortunately, there are mathematics textbooks for
teachers that ignore the need for mathematical engineering and
also define a line the same way.) Clearly, such an understanding
of the slope of a line, while mathematically correct, will not help
secondary school students to come to terms with the concept
of slope.

Finally, a few passing remarks about the school geometry cur-
riculum. There are obvious defects in this curriculum that cry out
for correction. We have already brought up the need for coordi-
nating the teaching of similar triangles with the teaching of slope;
this need is generally not met. There is also the need to explain
the concepts of congruence and similarity because they come
up naturally in daily life. However, the school curriculum usually
teaches only triangle congruence and similarity in the course on
Euclidean geometry but never the congruence and similarity of
general geometric figures. This is not only defective as general ed-
ucation but also detrimental to the school mathematics curriculum
itself as a general knowledge of the congruence and similarity of
parabolas would greatly clarify the subject of quadratic equations
and functions (see [13, Sections 2.1 and 2.2]). Last but not least,
the course on Euclidean geometry is usually flaunted as the crown
jewel of school education on teaching students how to use logic
to prove everything strictly on the basis of axioms. The sooner we
can disabuse school students of this illusion the better! Indeed,
we have known since the work of Hilbert (1862–1943) that the
axiomatic system of Euclidean geometry is extraordinarily subtle
and its inner workings are not suitable for the education of school
students (see the early chapters in Hartshorne’s book [4]; they will
tax the dedication of even university mathematics majors). School
mathematics education should steer away from this make-believe
about axiomatic systems of Euclidean geometry and, instead, try
to introduce a reasonably large number of redundant assumptions
into Euclidean geometry to minimize students’ need to prove many
boring, obvious, and difficult-to-prove theorems at the beginning.
Compare [15, Chapters 4–5] and [13, Chapters 6–8].

Needless to say, no part of university mathematics will ever
address any of these issues in the presentation of high school
geometry. Serious mathematical engineering is called for here to
make plane geometry truly consumable by high school students.

4 An existence proof

Thus far, we have advocated for the need to teach prospective
teachers PBSM. The implicit assumption is that PBSM has always
been around and is ready for the taking. This is a pleasant assump-
tion to make and an even more pleasant assumption to believe.
However, it is sobering to realize that, with all kinds of defective
school mathematics out in the world, there is a distinct possibil-
ity that university mathematics can never be customized for the
consumption of school students without violating one or more

of the fundamental principles of mathematics. Alan Schoenfeld
seems to be the first among educators to acknowledge in 1994
that, although he believed that something like PBSM should exist,
there was as yet no documented proof that such was the case
[6]. What we can report in 2021 is that there is now at least one
systematic exposition of PBSM from kindergarten to grade 12 in
the form of six volumes: [9] for teachers of grades K-5, [10,11] for
teachers of grades 6–8, and [13–15] for teachers of grades 9–12.

We can explain the need for such a complete exposition of
thirteen years of PBSM. There have been articles and books that
demonstrate the possibility of introducing reasoning to a specific
topic or two in school mathematics, but discussions on such a small
scale cannot bring out the essence of the fundamental principles
of mathematics. For example, to expose teachers to the need for
precise definitions, we cannot show them PBSM on just a few
key topics because teachers need to experience this need in ev-
ery aspect of school mathematics, including the definitions of the
most mundane of concepts such as percent, ratio, speed, equation,
variable, angle, graph of an inequality, etc. Or, consider the issue of
coherence: it is usually invisible when school mathematics is viewed
through a microscope, such as a focus on fraction addition or frac-
tion division. But when the subject of fractions is taken as a whole,
then the way the theorem of equivalent fractions pulls all the di-
verse parts of fractions together becomes somewhat breathtaking
(see, e.g., [11, pp. 28–86]). On a slightly larger scale, one also gets
towitness coherence at workwhen the concept of division is shown
to be qualitatively the same for whole numbers, fractions, rational
numbers, and real numbers (cf. [9]). We should add that, without
such a longitudinal overview of school mathematics, the defects
of the school geometry curriculum might not have been detected.

The 6-volume exposition of PBSM, beyond providing a foun-
dation for student textbooks in school mathematics, shows in
detail how we can achieve a better mathematical education for
teachers. In America, teachers are taught in three grade-bands: el-
ementary (K-grade 5), middle school (grades 6–8), and high school
(grades 9–12). As noted above, the six volumes in question have
been written with these grade-bands in mind so that, collectively,
they now provide one answer to the original question implicitly
raised by Begle, Ball, et al., namely, what kind of mathematics
should we teach teachers? (A more detailed answer to this ques-
tion is given in [15, p. xxi].) It goes without saying that school
mathematics curricula are not now—and won’t ever be—all alike,
but we hope such a complete exposition of PBSM will neverthe-
less contribute to better school mathematics education by freeing
educators from the need to perform the necessary mathematical
engineering. It should now be relatively easy to freely modify this
existing model [9–11,13–15] to meet diverse needs.

Acknowledgements. I am very indebted to Larry Francis for his
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