
Solved and unsolved problems

Michael Th. Rassias

The present column is devoted to Geometry/Topology.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.
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Prove that the space of unordered couples of distinct points of
a circle is the (open) Möbius band. More formally, consider

(S1 × S1) ⧵ {(x, x) ∣ x ∈ S1}

and the equivalence relation on this space (x, y) ≡ (y, x); prove
that the quotient topological space is the (open) Möbius band.

Costante Bellettini (Department of Mathematics,
University College London, UK)
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In the Euclidean plane, let γ1 and γ2 be two concentric circles of
radius respectively r1 and r2, with r1 < r2. Show that the locus γ of
points P such that the polar line of P with respect to γ2 is tangent
to γ1 is a circle of radius r22/r1.

Acknowledgement. I want to thank the professors who guided
me in the first part of my career for giving me the ideas for these
problems.

Paola Bonacini (Mathematics and Computer Science
Department, University of Catania, Italy)
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Let A ⊆ ℝ3 be a connected open subset of Euclidean space, and
suppose that the following conditions hold:
(1) Every smooth irrotational vector field on A admits a potential

(i.e., it is the gradient of a smooth function).

(2) The closure A of A is a smooth compact submanifold of ℝ3 (of
course, with non-empty boundary).

Show that A is simply connected. Does this conclusion hold even
if we drop condition (2) on A?

Roberto Frigerio (Dipartimento di Matematica,
Università di Pisa, Italy)
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A regulus is a surface in ℝ3 that is formed as follows: We consider
pairwise skew lines ℓ1, ℓ2, ℓ3 ⊂ ℝ3 and take the union of all lines
that intersect each of ℓ1, ℓ2, and ℓ3. Prove that, for every regulus U,
there exists an irreducible polynomial f ∈ ℝ[x, y, z] of degree two
that vanishes on U.

Adam Sheffer (Department of Mathematics, Baruch College,
City University of New York, NY, USA)
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(Enumerative Geometry). How many lines pass through 4 generic
lines in a 3-dimensional complex projective space ℂℙ3?

Mohammad F. Tehrani (Department of Mathematics,
University of Iowa, USA)
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I learned about the following problem from Shmuel Weinberger. It
can be viewed as a topological analogue of Arrow’s Impossibility
Theorem.

(a) A group of n friends have decided to spend their summer
cottaging together on an undeveloped island, which happens to be
a perfect copy of the closed 2-disk D2. Their first task is to decide
where on this island to build their cabin. Being democratically-
minded, the friends decide to vote on the question. Each friend
chooses his or her favourite point on D2. The friends want a func-
tion that will take as input their n votes, and give as output
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a suitable point on D2 to build. They believe, to be reasonable and
fair, their “choice” function should have the following properties:
• (Continuity) It should be continuous as a function (D2)n → D2.

This means, if one friend changes their vote by a small amount,
the output will change only a small amount.

• (Symmetry) The n friends should be indistinguishable from
each other. If two friends swap votes, the final choice should
be unaffected.

• (Unanimity) If all n friends chose the same point x, then x should
be the final choice.

For which values of n does such a choice function exist?
(b) The friends’ second task is to decide where along the

shoreline of the island they will build their dock. The shoreline
happens to be a perfect copy of the circle S1. Again, they decide
to take the problem to a vote. For which values of n does a con-
tinuous, symmetric, and unanimous choice function (S1)n → S1

exist?
These are special cases of the following general problem in

topological social choice theory: given a topological space X, for
what values of n does X admit a social choice function that is
continuous, symmetric, and unanimous? In other words, when is
there a function A ∶ Xn → X satisfying
• A is continuous,
• A(x1,…, xn) is independent of the ordering of x1,…, xn, and
• A(x, x, x,…, x) = x for all x ∈ X?

Jenny Wilson (Department of Mathematics,
University of Michigan, USA)

II Open problem

Embeddings of contact domains
by Yakov Eliashberg (Department of Mathematics,
Stanford University, USA)

One of the cornerstones of symplectic topology, Gromov’s non-
squeezing theorem, see [6], asserts that for n > 1 the ball of radius
R > 1 in the standard symplectic space (ℝ2n,ω = ∑n

1 dxj ∧ dyj)
does not admit a symplectic embedding into the domain

{x21 + y21 < 1} ⊂ ℝ2n,

while there is no volume constraints to do that. Since that time,
the theory of symplectic embedding has made a lot of progress
(see F. Schlenk’s survey [8] for recent results).

The (non-)embedding results in contact geometry, which is
an odd-dimensional analogue of symplectic geometry, are rarer;
below, we discuss a few open problems.

Recall that a contact structure ξ on an (2n+ 1)-dimensional
manifold M is a completely non-integrable hyperplane field. If ξ is
defined by a Pfaffian equation α= 0 for a differential 1-form α (and
such a form can always be found locally, and if ξ is co-orientable
even globally) then the complete non-integrability can be expressed
by the condition that α∧ dαn is a non-vanishing (2n+ 1)-form
on M.

In this set of problems, we will restrict our attention to domains
in the contact manifold X ≔ ℝ2n × S1, S1 = ℝ/ℤ, endowed with
the contact structure

ξ ≔ {dz+ 1
2

n

∑
1
xj dyj − yj dxj = 0}.

Given a bounded domain U ⊂ ℝ2n, we set

̂U ≔ U× S1 ⊂ ℝ2n × S1 = X,

and refer to ̂U as a quantized domain U. We say that a domain ̂U1

admits a contact embedding into a domain ̂U2 if there is a contact
isotopy ft ∶ ̂U1 → X, starting with the inclusion f0 ∶ ̂U1 ↪ X such
that f1( ̂U1) ⊂ ̂U2. Note that any Hamiltonian isotopy which moves
U1 into U2 lifts to a contact isotopy moving ̂U1 into ̂U2. Hence
we will refer to the problem of contact embeddings between the
domains ̂U1 and ̂U2 as a quantized version of the corresponding
symplectic embedding problem of U1 to U2.

Denote by B2n(R) the 2n-dimensional open ball of radius R
and by P(r1,…, rk) the polydisk B2(r1)×⋯× B2(rn) ⊂ℝ2n, where
0 < r1 ≤ r2 ≤ ⋯ ≤ rn. It was shown in [3] that if πr21 < k < πr22
for any integer k ≥ 1, then ̂B2n(r2) does not admit a contact
embedding into ̂B2n(r1). Another theorem from [3] states that if
πR2 < 1, then ̂B2n(R) admits a contact embedding into ̂B2n(r)
for any r > 0. The former result was improved in [2, 5] to show
that for any r1 < r2 with πr22 > 1 there is no contact embedding
of ̂B2n(r2) into ̂B2n(r1). Recall that Gromov’s symplectic width
WidthGr(U) of a domain U ⊂ℝ2n can be defined as the supremum
of πρ2 such that B2n(ρ) can be symplectically embedded into the
domain U. The above results can be slightly generalized to the
following statement, see [3].

If, for two domains U1,U2 ⊂ ℝ2n, we have

WidthGr(U2) > WidthGr(U1) and WidthGr(U2) > 1,

then the quantized domain ̂U2 does not admit a contact embed-
ding into ̂U1.

Very little is known about embeddings of contact domains
beyond the above results. Let us formulate a couple of concrete
problems concerning quantized versions of some relatively old
embedding results in symplectic topology. As we already mentioned
above, many new obstructions to symplectic embeddings were
found in recent years. It is unknown whether any of them hold in
the quantized versions.
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258*
Contact packing problem. Suppose that πR2 > πr2 > 1. Is there
a maximal number of quantized balls ̂B2n(r)which admit a contact
packing into ̂B2n(R)? And if the answer is “yes”, then what is this
number?

Here we say that ̂B2n(R) admits a contact packing by k quant-
ized balls ̂B2n(r) if the disjoint union

̂B2n(r) ⊔⋯⊔ ̂B2n(r)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
k

⊂ X

admits a contact embedding into ̂B2n(R). Note that the correspond-
ing symplectic packing problem was intensively studied beginning
with the seminal paper by Gromov [6], where he proved that the
packing of the ball B2n(R) with 2 disjoint balls B2n(r) is possible
if and only if R2 > 2r2. For n = 2, the problem was significantly
advanced by D. McDuff and L. Polterovich in [7], and then com-
pletely solved by P. Biran in [1]. In the contact case, Problem 258*
is completely open.

259*
Rotating quantized polydisks. For r < R, consider the standard
contact inclusion (x,y)↦ (−y,x). Let ̂j = j× Id, ̂ψ =ψ× Id be the
corresponding contact inclusion ̂P(r, r)→ ̂P(R,R), and consider the
contactomorphism ψ× Id∶ X = ℝ2n × S1 → ℝ2n × S1 = X. When
are the embeddings ̂j , ̂ψ ∘ ̂j ∶ ̂P(r, r) ↪ ̂P(R,R) contact isotopic?

Note that a theorem of Floer–Hofer–Wysocki, see [4], states
that when 2r2 > R2 the symplectic embeddings j,ψ ∶ P(r, r) →
ℙ(R,R) are not symplectically isotopic.
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III Solutions
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We consider a setting where there is a set of m candidates

C = {c1,…, cm}, m ≥ 2,

and a set of n voters [n]={1,…,n}. Each voter ranks all candidates
from the most preferred one to the least preferred one; we write
a ≻i b if voter i prefers candidate a to candidate b. A collection
of all voters’ rankings is called a preference profile. We say that
a preference profile is single-peaked if there is a total order ⊲
on the candidates (called the axis) such that for each voter i the
following holds: if i ’s most preferred candidate is c and a ⊲ b ⊲ c
or c⊲ b⊲ a, then b≻i a. That is, each ranking has a single “peak”,
and then “declines” in either direction from that peak.

(i) In general, if we aggregate voters’ preferences over can-
didates, the resulting majority relation may have cycles: e.g., if
a ≻1 b ≻1 c, b ≻2 c ≻2 a and c ≻3 a ≻3 b, then a strict majority
(2 out of 3) voters prefer a to b, a strict majority prefer b to c, yet
a strict majority prefer c to a. Argue that this cannot happen if the
preference profile is single-peaked. That is, prove that if a profile is
single-peaked, a strict majority of voters prefer a to b, and a strict
majority of voters prefer b to c, then a strict majority of voters
prefer a to c.

(ii) Suppose that n is odd and voters’ preferences are known to
be single-peaked with respect to an axis ⊲. Consider the following
voting rule: we ask each voter i to report their top candidate t(i),
find a median voter i∗, i.e.,

|{i ∶ t(i) ⊲ t(i∗)}| < n
2

and |{i ∶ t(i∗) ⊲ t(i)}| < n
2
,

and output t(i∗). Argue that under this voting rule no voter can
benefit from voting dishonestly, if a voter i reports some candidate
a ≠ t(i) instead of t(i), this either does not change the outcome
or results in an outcome that i likes less than the outcome of the
truthful voting.

(iii) We say that a preference profile is 1D-Euclidean if each
candidate cj and each voter i can be associated with a point in ℝ so
that the preferences are determined by distances, i.e., there is an
embedding x∶ C∪ [n] → ℝ such that for all a,b ∈ C and i ∈ [n],
we have a ≻i b if and only if |x(i) − x(a)| < |x(i) − x(b)|. Argue
that a 1D-Euclidean profile is necessarily single-peaked. Show that
the converse is not true, i.e., there exists a single-peaked profile
that is not 1D-Euclidean.

(iv) Let P be a single-peaked profile, and let L be the set of
candidates ranked last by at least one voter. Prove that |L| ≤ 2.

(v) Consider an axis c1 ⊲ ⋯ ⊲ cm. Prove that there are exactly
2m−1 distinct votes that are single-peaked with respect to this
axis. Explain how to sample from the uniform distribution over
these votes.
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These problems are based on references [4] (parts (i) and (ii)),
[2] (part (iii)) and [1, 5] (part (v)); part (iv) is folklore. See also the
survey [3].

Edith Elkind (University of Oxford, UK)

Solution by the proposer
(i) We can restrict the voters’ preferences to the set {a,b, c}; the
reader can check that a restriction of a single-peaked profile to
a subset of candidates remains single-peaked. We consider three
cases depending on how a, b and c are ordered by the axis ⊲.
Case 1: a ⊲ b⊲ c or c ⊲ b⊲ a. Then all voters who prefer a over

b have a as their top choice and hence prefer a to c.
Case 2: b⊲ a⊲ c or c⊲ a⊲ b. All voters who prefer c over a have

c as their top choice and hence prefer a to b; therefore,
these voters are in minority.

Case 3: a ⊲ c ⊲ b or b ⊲ c ⊲ a. This is impossible: all voters who
prefer b to c have b as their top choice, so we have a strict
majority preferring b over a, a contradiction.

(ii) Suppose the winner under truthful voting is a. Consider
a voter i. If t(i) = a, then i cannot improve the outcome by lying.
So suppose t(i) ⊲ a (the case a ⊲ t(i) is symmetric). If i reports a
or some candidate b with b ⊲ a, this does not change what the
top choice of the median voter is, and hence does not change the
outcome. If i reports a candidate c with t(i) ⊲ c, then the median
voter may shift to the right, i.e., further away from i ’s true top
choice; as i ’s preferences are single-peaked, this does not improve
the outcome from her perspective.

(iii) Ordering the candidates by their position, i.e., placing a
before b on the axis ⊲ if x(a) < x(b) results in an axis witnessing
that the input profile is single-peaked. To show that the converse
is not true, consider the following four votes:

b ≻1 c ≻1 a ≻1 d, c ≻2 b ≻2 a ≻2 d,

b ≻3 c ≻3 d ≻3 a, c ≻4 b ≻4 d ≻4 a.

This profile is single-peaked on a ⊲ b ⊲ c ⊲ d. Now, suppose for
contradiction that it is 1D-Euclidean, i.e., it admits an embedding x.
Consider the positions of the four voters x(1), x(2), x(3), x(4).
Assume without loss of generality that x(b) < x(c). Then we have

x(1), x(3) < 1
2
(x(b) + x(c))

(as voters 1 and 3 prefer b to c) and

x(2), x(4) > 1
2
(x(b) + x(c))

(as voters 2 and 4 prefer b to c). But now consider the point
1
2 (x(a) + x(d)). Voters 1 and 2 have to be on one side of this
point and voters 3 and 4 have to be on the other side of this
point, because of their preferences over a vs. d. But this is clearly
impossible!

(iv) Assume without loss of generality that P is single-peaked
with respect to the axis c1 ⊲⋯⊲ cm. Clearly, P may contain a vote
that ranks c1 last or a vote that ranks cm last. But it cannot contain
a vote that ranks some ci with 1 < i < m last: if the top candidate
in that vote is a cj with j < i, then this voter prefers ci to cm, and
if the top candidate in that vote is a ck with k > i, then this voter
prefers ci to c1.

(v) Induction. For m= 2, we have 2= 22−1 orders, i.e., c1 ≻ c2
and c2 ≻ c1. Now suppose the claim has been proved for allm′ <m.
A vote that is single-peaked on c1 ⊲⋯⊲ cm may have c1 in the last
position, with candidates in top m− 1 positions forming a single-
peaked vote with respect to c2 ⊲⋯⊲ cm (2m−2 options) or it may
have cm in the last position, with candidates in top m− 1 posi-
tions forming a single-peaked vote with respect to c1 ⊲⋯⊲ cm−1

(2m−2 options). For sampling, we can build the vote bottom-up. At
the first step, we fill the last position with c1 or cm, with probability
1
2 each. Once k positions have been filled, 1 ≤ k ≤ m− 1, the not-
yet-ranked candidates form a contiguous segment c1 ⊲ ⋯ ⊲ cj of
the axis. We then fill position k+ 1 from the bottom with ci or cj,
with equal probability. This sampling is uniform, because the prob-
ability of generating a specific ranking is exactly 2−m+1: we make
m− 1 choice, and with probability 1

2 each choice is consistent with
the target ranking.

References

[1] V. Conitzer, Eliciting single-peaked preferences using comparison
queries. J. Artificial Intelligence Res. 35, 161–191 (2009)

[2] C. H. Coombs. Psychological scaling without a unit of measurement.
Psychological Review 57, 145 (1950)

[3] E. Elkind, M. Lackner and D. Peters. Structured preferences. In Trends
in Computational Social Choice, edited by U. Endriss, Chapter 10,
AI Access, 187–207 (2017)

[4] H. Moulin, Axioms of Cooperative Decision Making. Cambridge
University Press, Cambridge (1991)

[5] T. Walsh, Generating single peaked votes. arXiv:1503.02766 (2015)

246
Consider a standard prisoners’ dilemma game described by the
following strategic form, with δ > β > 0 > γ:

C D

C
β δ

β γ

D
γ 0

δ 0
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Assume that any given agent either plays C or D and that agents
reproduce at a rate determined by their payoff from the strategic
form of the game plus a constant f. Suppose that members of an
infinite population are assorted into finite groups of size n. Let q
denote the proportion of agents playing strategy C (“altruists”) in
the population as a whole and qi denote the proportion of agents
playing C in group i. We assume that currently q ∈ (0, 1).

The process of assortment is abstract, but we assume that it has
finite expectation E[qi] = q and variance Var[qi] = σ2. Members
within each group are then randomly paired off to play one iteration
of the prisoners’ dilemma against another member of their group.
All agents then return to the overall population.
(a) Find a condition relating q, σ2, β, γ, δ and n under which

the proportion of altruists in the overall population rises after
a round of play.

(b) Now interpret this game as one where each player can confer
a benefit b upon the other player by individually incurring
a cost c, with b > c > 0, so that β = b− c, δ = b and γ = −c.
Prove that, as long as (i) there is some positive assortment in
group formation and (ii) the ratio c

b is low enough, then the
proportion of altruists in the overall population will rise after
a round of play.

Richard Povey (Hertford College and St Hilda’s College,
University of Oxford, UK)

Solution by the proposer
(a) We can firstly see that the number of altruists (type C) and
non-altruists (type D) in group i after a round of play will be given by

n′
i q

′
i = (β(nqi − 1

n− 1
)+ γ(n(1− qi)

n− 1
)+ f)nqi,

n′
i (1− q′

i ) = (δ( nqi
n− 1

)+ f)n(1− qi).

Summing these two equalities yields

n′
i = βqi(

n(nqi − 1)
n− 1

)+ γqi(
n2(1− qi)

n− 1
)

+ δ(1− qi)(
n2qi
n− 1

)+ fn.

Given an infinite population and hence an infinite number of groups,
the new proportion of altruists in the overall population will be

q′ = E[n′
i q

′
i ]

E[n′
i ]

= (β(nE[q
2
i ] − E[qi]
n− 1

)+ nγ(E[qi] − E[q2
i ]

n− 1
)+ f E[qi])

⋅ (βqi(
nE[q2

i ] − E[qi]
n− 1

)+ nγ(E[qi] − E[q2
i ]

n− 1
)

+ nδ(E[qi] − E[q2
i ]

n− 1
)+ f )

−1
.

Substituting in E[q2
i ] = σ2 + E[qi]2 and E[qi] = q gives us

q′ = (β(nσ
2 + nq2 − q
n− 1

)+ nγ(q(1− q) − σ2

n− 1
)+ fq)

⋅ (β(nσ
2 + nq2 − q
n− 1

)+ nγ(q(1− q) − σ2

n− 1
)

+ nδ(q(1− q) − σ2

n− 1
)+ f )

−1
.

Assuming f is high enough to make the denominator positive, it
then follows that

q′ − q > 0

⟺ (1− q)(β(nσ
2 + nq2 − q
n− 1

)+ nγ(q(1− q) − σ2

n− 1
))

− nqδ(q(1− q) − σ2

n− 1
) > 0.

After some further rearrangement, we can derive the following:

q′ − q > 0

⟺ σ2

q(1− q) > 1−(n− 1
n

)( β
(1− q)(β− γ) + qδ

). (1)

Since the right-hand side of (1) must be strictly between 0 and 1,
this has the intuitive interpretation that the inter-group variance
σ2 must be sufficiently high relative to the intra-group variance¹
so that, although altruists do less well relative to non-altruists
within each group, the concentration of altruists together within
particular groups is sufficiently strong to confer enough of an
evolutionary advantage to offset this and to enable altruists to do
better evolutionarily than non-altruists in the overall population.²

(b) In the case where β = b− c, δ = b and γ = −c, condition
(1) can be rearranged to give

c
b
< ( σ2

q(1− q))(
n

n− 1
)− 1

n− 1
. (2)

With random assortment, qi would be equal to Xi
n where Xi, the

number of altruists in group i would have a binomial distribution:
Xi ∼ B(n,q). Therefore

σ2 = Var[Xi

n
] = q(1− q)n

n2
= q(1− q)

n
.

With perfect positive correlation between group members, we
would get

σ2 = Var[Xi

n
] = q(1− q)n2

n2
= q(1− q).

¹ This is the variance of the Bernoulli variable B(q) which takes a value
of 1 of a single individual drawn from the population is an altruist
and 0 otherwise, which is q(1− q).

² This result was first proved in a general evolutionary context by
George R. Price [3,4].
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With some positive assortment generating positive covariance
between group members, we may therefore without loss of gener-
ality suppose that

σ2 = q(1− q)n+ q(1− q)ε(n2 − n)
n2

= q(1− q)
n

+ εq(1− q)(n− 1)
n

,

where ε ∈ (0, 1). Plugging this into (2) and simplifying, we get
c
b < ε. So we can see that for any ε > 0 there always exists a value
of c

b low enough for altruists to expand as a proportion of the
overall population.³
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Consider a village consisting of n farmers who live along a circle
of length n. The farmers live at positions 1, 2,…,n. Each of them
is friends with the person to the left and right of them, and each
friendship has capacity m where m is a non-negative integer. At the
end of the year, each farmer does either well (her wealth is +1
dollars) or not well (her wealth is −1 dollars) with equal probability.
Farmers’ wealth realizations are independent of each other. Hence,
for a large circle the share of farmers in each state is on average 1.

The farmers share risk by transferring money to their direct
neighbors. The goal of risk-sharing is to create as many farmers
with OK wealth (0 dollars) as possible. Transfers have to be in
integer dollars and cannot exceed the capacity of each link (which
is m).

A few examples with a village of size n = 4 serve to illustrate
risk-sharing.
• Consider the case where farmers 1 to 4 have wealth

(+1,−1,+1,−1).

³ The literature on this model has further established the results that
multiple periods of isolation in finite groups acts to amplify inter-group
variance, so that even with random assortment into groups altruism
can evolve [1]. It has also been found that use of punishment strategies
in dynamic interactions can act to weaken this group selection
mechanism [2]. For an accessible book-length treatment of the topic of
group selection in the biological and social sciences, see [5].

In that case, we can share risk completely with farmer 1 sending
a dollar to agent 2 and farmer 3 sending a dollar to farmer 4.
This works for any m ≥ 1.

• Consider the case where farmers 1 to 4 have wealth

(+1,+1,−1,−1).

In that case, we can share risk completely with farmer 1 sending
a dollar to farmer 2, farmer 2 sending two dollars to farmer 3
and farmer 3 sending one dollar to farmer 4. In this case, we
need m ≥ 2. If m = 1, we can only share risk among half the
people in the village.

Show that for any wealth realization an optimal risk-sharing ar-
rangement can be found as the solution to a maximum flow
problem.

Tanya Rosenblat (School of Information and Department
of Economics, University of Michigan, USA)

Solution by the proposer
We augment the village graph by adding two auxiliary nodes. The
source node s is connected to all the farmers with positive wealth
(+1) and each of these links has capacity 1. The sink node t is
connected to all the farmers with negative wealth (−1) and each
of these links also capacity 1. We now look for the maximum flow
from s to t: this is equal to the number of luck/unlucky farmer pairs
who can be matched under the best risk-sharing arrangement.

248
This exercise is a continuation of Problem 247 where we stud-
ied risk-sharing among farmers who live on a circle village and
are friends with their direct neighbors to the left and right with
friendships of a certain capacity. Assume that for any realization
of wealth levels the best possible risk-sharing arrangement is im-
plemented and denote the expected share of unmatched farmers
with U(n,m). Show that U(n,m) → 1

2m+1 as n → ∞.

Tanya Rosenblat (School of Information and Department
of Economics, University of Michigan, USA)

Solution by the proposer
The solution proceeds in two stages. In Problem 247, we already
established that the problem can be understood as a maximum flow
problem. We first formulate a particular algorithm that implements
this flow. We then use this algorithm to express U(n,m) in closed
form.

Risk-sharing as a Maximum Flow Problem. We next describe
a matching algorithm which is to run for m rounds. The claim
is that this algorithm implements the maximum flow in the aug-
mented graph for any m. For the purpose of this algorithm, we
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call a black agent an agent with positive shock and a white agent
an agent with a negative shock.

Step I: Index all agents from 1 to n clockwise (1 is the neighbor
of n on a circle). Set the counter i to 1.

Step II: If agents i and i+ 1 are of different colors, label them
“matched” and move the counter clockwise to i+ 2. If agent i+ 1
has the same color as agent i, then declare agent i “unmatched”
and move the counter clockwise to agent i+ 1. Repeat this step
until the counter has reached the first agent again.

Step III: Define a new circle by ordering all the unmatched
agents on a circle without disturbing the order of the agents. Es-
sentially, this implies that all the matched agents are simply removed
from the circle and any gaps are plugged by connected the closest
unmatched agents with each other. Repeat steps I and II for this
new circle. Repeat this algorithm m times.

Lemma 1. The above matching algorithm implements the maxi-
mum flow.

Proof. The Ford–Fulkerson algorithm computes the maximum flow
by looking for open paths which can carry positive flow and then
constructing a graph with augmented capacities in which the
next path is found, etc. Once no more open path exists the max
flow has been implemented. The above algorithm implements
Ford–Fulkerson using a particular order of selecting open paths.
Therefore, it implements the max flow.

Closed form solutions. We next prove the following lemma.

Lemma 2. Assume we have a circle of size n where the probability
that an agent has a neighbor of the same color is α. Then the
share of unmatched agents after one round of the above algorithm
converges to α

2−α as n → ∞.

Proof. In each instance of step I of the algorithm, it produces an
unmatched agent with probability α and a pair of matched agents
with probability 1− α. The sum of unmatched and matched agents
has to be n. Therefore the share of unmatched agents converges
to

α
α+ 2(1− α) = α

2− α
.

The final step in the proof of the result is to derive the probability
αm that an agent is followed by a same-color agent in round m.
We know that in round 1 shocks are i.i.d.; therefore α1 = 1

2 . We
start by proving a recursive formula for calculating αm.

Lemma 3. If the sequential probability is αm in round m, then the
sequential probability in round m+ 1 satisfies

αm+1 = 2− αm

3− 2αm
. (1)

Proof. Consider an agent i on whom the counter rested at some
point in the algorithm and who stays unmatched in the current
round. This must be because he has a neighbor i+ 1 of the same
color (without loss of generality assume both are black). With
probability αm agent i+ 2 is also black and therefore agent i+ 1
will survive into round m+ 1 as well and be of the same color as
agent i (black). With probability 1− αm agent i+ 2 is white. In this
case agents i+ 1 and i+ 2 can be matched. Matching can continue
for the subsequent pairs of agents (i+ 3, i+ 4), (i+ 5, i+ 6), etc.;
it will only stop if for any of these pairs agents have the same color.
This will happen with probability αm. To figure out it if this process
will stop at a “white pair” or a “black pair” (let’s call it the “blocking
pair”) it is crucial to know whether agent i+ 2, i+ 4, i+ 6, etc.
(i.e., the agent just prior to the blocking pair) is white or black.

We know that agent i + 2 is white. What is the probability
that agent i + 4 is the same color (provided (i + 3, i + 4) is not
a blocking pair)? This can only happen if the pair (i+ 3, i+ 4) is
a black agent followed by a white agent. If it is a white agent
followed by a black agent then i + 4 has a different color from
i+ 2. So the probability of a color change is

αm(1− αm)
αm(1− αm) + (1− αm)2

= αm.

Assume that the probability that the agent prior to the blocking
pair is of the same color as i+ 2 is q. With probability αm the pair
(i+ 3, i+ 4) is a blocking pair and with probability 1− αm the pair
is not blocking. In that case agent i+ 4 has a different color from
agent i+ 2 with probability αm. Because of the recursive nature of
the problem, the probability that the agent prior to the blocking
pair has the same color as i+ 4 is q. Therefore we know that

q = αm + (1− αm)[(1− αm)q+ (1− q)αm].

This allows us to calculate q as

q = αm(2− αm)
1− (1− αm)(1− 2αm)

= 2− αm

3− 2αm
.

So we know that the agent prior to the blocking pair is white
with probability q. The blocking pair is therefore a black blocking
pair with probability q(1− αm) + (1− q)αm. Therefore the total
probability that the next unmatched agent after agent i is of the
same color (black in this case) is

αm+1 = αm + (1− αm)[q(1− αm) + (1− q)αm]

= q = 2− αm

3− 2αm
.

We can check that αm = 1− 1
2m satisfies both the initial con-

dition and the recursive equation 1. This implies that

αm

2− αm
= 2m− 1

2m+ 1
.
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Finally, note that the share of unmatched agents (for n → ∞) can
be calculated by taking the product of the share of unmatched
agents in each round:

lim
n→∞

U(n,m) =
m

∏
i=1

αi

2− αi
= 1

2m+ 1
.

249
In a combinatorial auction there are m items for sale to n buyers.
Each buyer i has some valuation function vi(⋅) which takes as input
a set S of items and outputs that bidder’s value for that set. These
functions will always be monotone (vi(S∪ T) ≥ vi(S) for all S, T),
and satisfy vi(∅) = 0.

Definition 1 (Walrasian equilibrium). A price vector p⃗ ∈ ℝm
≥0 and

a list B1,…,Bn of subsets of [m] form a Walrasian equilbrium for
v1,…, vn if the following two properties hold:

• Each Bi ∈ argmaxS{vi(S) −∑j∈ S pj}.
• The sets Bi are disjoint, and ⋃i Bi = [m].

Prove that a Walrasian equilibrium exists for v1,…, vn if and
only if there exists an integral⁴ optimum to the following linear
program:

maximize ∑
i
∑
S

vi(S) ⋅ xi,S

such that, for all i, ∑
S

xi,S = 1,

for all j, ∑
S∋ j

∑
i

xi,S ≤ 1,

for all i, S, xi,S ≥ 0.

Hint. Take the dual, and start from there.

Matt Weinberg (Computer Science, Princeton University, USA)

Solution by the proposer
First, we take the dual of the given LP. We use the dual variable pj
for the constraints involving items, and the dual variable ui for the
constraints involving bidders. Then the dual problem is

minimize ∑
i

ui +∑
j

pj

such that, for all i, S, ui + ∑
j∈ S

pj ≥ vi(S),

for all j, pj ≥ 0.

Walrasian equilibrium implies integral optimum. Now, assume
that a Walrasian equilibrium exists, and let it be p1,…, pm and
B1,…, Bn. Then consider the integral solution to the LP that sets

⁴ That is, a point such that each xi,S ∈ {0, 1}.

xi,Bi = 1 for all i, and all other variables to 0. This solution is clearly
feasible for the LP, and has objective value equal to ∑i vi(Bi).

Consider also the dual solution ui ≔ vi(Bi) −∑j∈Bi pj, with pj
as given in the Walrasian equilibrium. We claim this is a feasible
solution to the dual. To see this, observe first that each pj ≥ 0. Also,
because Bi ∈ argmaxS{vi(S) −∑j∈ S pj} by definition of Walrasian
equilibrium, we have that

ui ≔ vi(Bi) − ∑
j∈Bi

pj ≥ vi(S) − ∑
j∈ S

pj for all S.

Therefore, all dual constraints are satisfied, and this is a feasible
dual. Moreover, observe that the value of the dual objective is

∑
i

ui +∑
j

pj = ∑
i

(vi(Bi) − ∑
j∈Bi

pj) +∑
j

pj = ∑
i

vi(Bi).

The last equality follows because each item is in exactly one
bundle Bi. So we have proved that if (p⃗, B⃗) is a Walrasian equi-
librium, then there is an integral feasible point for the LP with
objective value ∑i vi(Bi), and also a feasible dual solution with
value ∑i vi(Bi). By LP duality, both feasible solutions are in fact
optimal. Therefore, there is an integral optimum for the LP.

Integral optimum implies Walrasian equilibrium. Now, assume
that the LP has an integral optimum. Observe that for this integral
solution, there must exist disjoint sets B1,…,Bn such that for each i,
xi,Bi = 1 and all other variables are 0. The LP value for this solution
is ∑i vi(Bi). Moreover, observe that if any item j ∉ ∪iBi, we can
add j to an arbitrary Bi without decreasing ∑i vi(Bi) (because each
vi(⋅) is monotone). Therefore, if there is an integral optimum to the
LP, there exist disjoint B1,…,Bn such that ∪iBi = [m] and ∑i vi(Bi)
is the optimal solution to the LP.

By Strong LP Duality, there also exists a feasible dual solution
p1,…, pm, u1,…, un such that ∑i ui +∑j pj = ∑i vi(Bi). We will
claim that (p⃗, B⃗) form a Walrasian equilibrium.

For a proof by contradiction, assume that this is not the case.
Then there must be some bidder i such that Bi ∉ argmaxS{vi(S) −
∑j∈ S pj}. In particular, this means that there exists some B ′

i such
that vi(B ′

i ) −∑j∈B′
i
> vi(Bi) −∑j∈Bi . Because ui is a feasible solu-

tion for the dual, we then conclude that

ui ≥ vi(B′
i ) − ∑

j∈B′
i

> vi(Bi) − ∑
j∈Bi

pj.

We claim that this contradicts the fact that ∑i ui +∑jpj =∑i vi(Bi),
since

∑
i

ui > (∑
i

vi(Bi) − ∑
j∈Bi

pj) > ∑
i

vi(Bi) −∑
j

pj.

The first inequality holds because ui ≥ vi(Bi)−∑j∈Bi pj for all i,
and the inequality is strict for at least one i. Therefore, (p⃗, B⃗) must
be a Walrasian equilibrium.
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Wrapup. This concludes the proof. We have shown that there is
an integral optimum to the LP if and only if a Walrasian equilibrium
exists. The solution to this problem is given by Nisan et al. in [3,
Corollary 11.16]; they cite [1,2].
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Consider a game played on a network and a finite set of players
𝒩 = {1, 2,…,n}.⁵ Each node in the network represents a player
and edges capture their relationships. We use G = (gi j)1≤ i, j≤n to
represent the adjacency matrix of a undirected graph/network, i.e.,
gi j = gj i ∈ {0, 1}. We assume gi i = 0. Thus, G is a zero-diagonal,
squared and symmetric matrix. Each player, indexed by i, chooses
an action xi ∈ ℝ and obtains the following payoff:

πi(x1, x2,…, xn) = xi −
1
2
x2i + δ ∑

j∈𝒩
gi jxixj.

The parameter δ > 0 captures the strength of the direct links
between different players. For simplicity, we assume 0 < δ < 1

n−1 .
A Nash equilibrium is a profile x∗ = (x∗

1 ,…, x∗
n ) such that, for

any i = 1,…,n,

πi(x∗1 ,…, x∗n ) ≥ πi(x∗1 ,…, x∗i−1, xi, x
∗
i+1,…, x∗n ) for any xi ∈ ℝ.

In other words, at a Nash equilibrium, there is no profitable devi-
ation for any player i choosing x∗

i .
Let w = (w1,w2,…,wn)′, wi > 0 for all i (the transpose of

a vector w is denoted by w′), and In the n × n identity matrix.
Define the weighted Katz–Bonacich centrality vector as

b(G,w) = [In − δG]−1w.

Here M≔ [I− δG]−1 denote the inverse Leontief matrix associated
with network G, while mi j denote its i j entry, which is equal to
the discounted number of walks from i to j with decay factor δ.
Let 1n = (1, 1,…, 1)′ be a vector of 1s. Then the unweighted
Katz–Bonacich centrality vector can be defined as

b(G,1) = [I− δG]−11n.

(1) Show that this network game has a unique Nash equilibrium
x∗(G). Can you link this equilibrium to the Katz–Bonacich
centrality vector defined above?

⁵ For an overview of the literature on network games, see [2].

(2) Let x∗(G) = ∑n
i=1 x

∗
i (G) denote the sum of actions (total

activity) at the unique Nash equilibrium in part 1. Now suppose
that you can remove a single node, say i, from the network.
Which node do you want to remove such that the sum of effort
at the new Nash equilibrium is reduced the most? (Note that,
after the deletion of node i, we remove all the links of node i,
and the remaining network, denoted by G−i, can be obtained
by deleting the i-th row and i-th column of G.)
Mathematically, you need to solve the key player problem⁶

max
i∈𝒩

(x∗(G) − x∗(G−i)).

In other words, you want to find a player who, once removed,
leads to the highest reduction in total action in the remaining
network.
Hint. You may come up with an index ci for each i such that
the key player is the one with the highest ci. This ci should be
expressed using the Katz–Bonacich centrality vector defined
above.

(3) Now instead of deleting a single node, we can delete any pair
of nodes from the network. Can you identify the key pair, that
is, the pair of nodes that, once removed, reduces total activity
the most?⁷

Yves Zenou (Monash University, Australia) and Junjie Zhou
(National University of Singapore)

Solution by the proposer
(1) Suppose that x∗(G) is a Nash equilibrium. Then we obtain the
following optimality equation for player i:

x∗i (G) = 1+ δ ∑
j∈𝒩

gi jx∗j (G).

In matrix form,

x∗(G) = 1n + δGx∗(G)

or

x∗(G) = [In − δG]−11n ≔ b(G,1).

In other words, the Nash equilibrium effort is exactly equal to the
unweighted Katz–Bonacich vector.

Note that, under the assumption that 0 < δ < 1/(n− 1), the
matrix [In − δG] is invertible, and the inverse matrix has the fol-
lowing infinite sum representation:

[In − δG]−1 = In + δG+ δ2G2 + δ3G3 +⋯.

For uniqueness, it is obvious.

⁶ The key player problem has been introduced in [1].
⁷ For the analysis of group players, see [1,3].
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(2) Before solving it, we first enrich the baseline model by taking
into account heterogeneous individual weights wi > 0,

πi(x1, x2,…, xn) = wixi −
1
2
x2i + δ ∑

j∈𝒩
gi jxixj. (1)

The unique equilibrium of this extended model corresponds to the
weighted Katz–Bonacich centrality

x∗(G,w) = [In − δG]−1w ≔ b(G,w),

or, equivalently, for each i = 1,…,n:

x∗i (G,w) =
n

∑
j=1

mi jwj =
n

∑
j=1

∞

∑
k=0

δkg[k]
i j wj = bi(G,w),

where g[k]
i j ≥ 0 gives the number of walks of length k ≥ 1 from i

to j in the network and bi(G,w) is the weighted Katz–Bonacich
centrality of player i.

The aggregate equilibrium action is then equal to

x∗(G,w) = 1′
n[I− δG]−1w = b′(G,1)w.

Intuitively, when wi increases by 1 unit, x∗
j (G,w), each player j ’s

equilibrium effort increases by mj i = mi j, and the total equilibrium
action increases by bi(G, 1) = ∑j mi j = ∑j mj i (note that M is
a symmetric matrix). Mathematically,

∂x∗j (G,w)
∂wi

= mj i = mi j for all i, j, (2)

∂x∗(G,w)
∂wi

= bi(G,1). (3)

To solve the key player problem, it suffices to prove that, for
i ∈ 𝒩,

ci(G) ≔ (x∗(G) − x∗(G−i)) = [bi(G,1)]2

mi i
.

And the key player is the player i that maximizes ci(G).
To prove this, we take the following approach. Instead of re-

moving node i (and all its links with others), we reduce the weight
of player from wi = 1 to ŵi = 1− bi(G,1)

mi i
, while keeping the weights

of other players at 1 as in the baseline model, i.e., wj = 1 for all
j ≠ i. (It will be clear why we pick this particular ŵi.)

We claim that, after this reduction in weight, the resulting
equilibrium is the same as the one when i is removed from the
network.

To see this, we first ask: what is the new equilibrium after this
change in wi? We claim that player i would choose exactly zero
action. This is because, by (2), the change in equilibrium action by
player i,

Δx∗i (G) ≔ x∗i (G,wi = ŵi) − x∗i (G,wi = 1),

is given by

Δx∗i (G) = mi i × (ŵi −wi) = −mi i
bi(G,1)
mi i

= −bi(G,1)

from the construction of ŵi. Since initially player i chooses bi(G,1),
we have x∗

i (G,wi = ŵi) = 0 and the claim follows. What happens
to other nodes? By (2), player j ’s equilibrium action would change
by mi j × (ŵi −wi), and the aggregate equilibrium action, by (3),
would change by

x∗(G−i) − x∗(G) = bi(G,1) × (ŵi −wi)

= −bi(G,1)2

mi i
= −ci(G).

This completes the proof of our claim. Thus, the key player in
a network is the player i who has the highest ci(G).

(3) For any group S ⊂ 𝒩, we can define the inter-centrality
measure

dS(G) = b′
S(G,1)M−1

SS bS(G,1),

where MSS = (mkl), k, l ∈ S, is the submatrix of M, that is, the
|S| × |S| M matrix of the subnetwork formed by players in S. Sim-
ilarly, bS(G, 1) is a subvector of the unweighted Katz–Bonacich
centrality vector b(G,1) for indices in the set S. It can be shown
that

dS(G) = x∗(G) − x∗(G−S),

where G−S is the network obtained after removing all nodes and
their links in S. The proof is similar to the one in part (2), since
removing S from the network has the same effect on the equilib-
rium as changing the weight vector from wS = 1S to ŵS = 1S −
M−1

SS bS(G,1), while the weights of the nodes in the complement
of S remain fixed at 1 as in the baseline model.

When S is a pair (i, j) with i ≠ j, we can explicitly express the
index as follows:

d{i, j}(G) = [bi(G,1) bj(G,1)][
mi i mi j

mj i mj j
]
−1

[
bi(G,1)
bj(G,1)

]

The key pair (i, j) is the pair (i, j) with the largest d{i, j}(G).
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We hope to receive your solutions to the proposed problems and
your ideas on the open problems. Send your solutions to Michael
Th. Rassias by email to mthrassias@yahoo.com.

We also solicit your new problems with their solutions for
the next “Solved and unsolved problems” column, which will be
devoted to Differential Equations.
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