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A Mathematical Introduction to General Relativity
by Amol Sasane

Reviewed by José Natário

Although general relativity is a highly math-
ematical theory, and arguably one of the
main drivers behind the development of
Riemannian geometry in the last 100 years,
there are relatively few introductory books
on this subject that specifically target math-
ematicians. The book under review is a
welcome addition to this scant literature,
aiming to introduce Einstein’s theory, as
well as the needed differential geometry,

in a fully rigorous manner. It is interesting to note that the author,
a professor of mathematics at the London School of Economics,
is not an expert in general relativity, and so is in an ideal position
to connect with mathematicians who are encountering the theory
for the first time.

The book starts by developing the main ideas of differential
geometry, and then goes on to discuss general relativity. It is care-
fully written, containing numerous appealing figures, and averaging
more than ten exercises per chapter (with full solutions provided
in an appendix, which is ideal for autonomous study). Moreover,
many of the examples and exercises in the differential geometry
part are calculations in general relativity (where the author supplies
the relevant metrics to be derived in later chapters), which no doubt
will appeal to the reader eager to learn general relativity. The level
is more elementary than that of other books written in the same
mathematical vein, such as “General Relativity for Mathematicians”
by Sachs and Wu (which already assumes the differential geometry
background), or “Semi-Riemannian Geometry” by O’Neill, and is
well suited for mathematics or mathematically inclined physics
undergraduate or beginning graduate students.

The detailed plan of the book is as follows: smooth manifolds
and smooth maps are introduced in Chapter 1, without assum-
ing point set topology (indeed the prerequisites of the book are
simply the usual linear algebra, multivariate calculus and differen-

tial equations courses common to most degrees in mathematics,
physics or engineering). Chapter 2 discusses tangent vectors, and
Chapter 3 studies vector fields. General (mixed) tensor fields are
defined in Chapter 4, and semi-Riemannian (in particular Lorentzian)
manifolds are introduced in Chapter 5. The Levi-Civita connection,
parallel transport and geodesics are discussed in Chapters 6, 7
and 8, respectively, and the notion of curvature is addressed in
Chapter 9. Chapters 10 and 11 constitute a digression into differ-
ential forms and integration, including the Hodge star (later used
to formulate the Maxwell equations); this is a subject not covered
in many introductory general relativity books (e.g. O’Neill’s “Semi-
Riemannian Geometry”). The relativity part of the book starts in
Chapter 12 with a discussion of physics in Minkowski spacetime,
including a detailed analysis of relativistic velocity addition and
electromagnetism. Chapter 13 gives a geometric reformulation of
Newtonian gravity and defines the relativistic energy momentum
tensor, motivating the introduction of the Einstein field equation in
Chapter 14. This chapter also contains a derivation of the Schwar-
zschild metric and the calculation of the perihelion precession.
Chapter 15 introduces black holes, including the Kruskal extension
of the Schwarzschild solution, and Chapter 16 briefly discusses
cosmology.

On the whole, the book does a good job of introducing differ-
ential geometry and general relativity in a mathematically rigorous
fashion. It can be used as the textbook for a course on either differ-
ential geometry or general relativity (or both) for undergraduate or
beginning graduate mathematics or physics students, and is also
well suited for autonomous study. My one criticism of the book
would be that, after making it through the differential geometry
part, the reader should perhaps be rewarded with more general
relativity. For example, the discussion of differential forms and
electromagnetism in chapters 10, 11 and 12 is nicely followed
up by a discussion of the Reissner–Nordström charged black hole
solution in Chapter 15, but only as an exercise, with no further
exploration of the rich geometry of this spacetime. Other topics of
current mathematical and physical interest, such as the linearized
Einstein equations, gravitational waves, or the ΛCDM cosmological
model for our universe, are likewise only addressed in the exercises,
and some other topics, such as the singularity theorems or the
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Cauchy problem for the Einstein equations, are not addressed at all.
While it is of course unrealistic to ask for a detailed treatment of all
these subjects, especially in a book for undergraduates, more steps
in that direction could perhaps have been taken. Nevertheless,
these small quibbles should not take away from the fact that this
book is a valuable addition to the general relativity literature for
mathematicians, and one which I highly recommend.
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Lectures on Optimal Transport
by Luigi Ambrosio, Elia Brué and Daniele Semola

Reviewed by Filippo Santambrogio

This is the first of the two books that I am re-
viewing for this issue of the EMS Magazine.
It is a textbook on optimal transport (in
the same spirit of a book I published in
2015 [9], or of the two books by Cédric
Villani [11,12]), meant yo be used by gradu-
ate students. The first author is one of the
leading experts on the topic, who has been
giving lectures on it for decades at SNS Pisa
(by the way, it is in the course that he gave

exactly 20 years ago that I started learning about optimal transport).
The second and third authors are two of the brilliant students who
attended these courses in Pisa.

The book is organized into 19 chapters, each meant to cor-
respond to a single lecture. The duration of a single lecture is
not suggested explicitly, but I find the rhythm a little bit slow for
graduate students, as I usually cover the material of the first 6
or 7 lectures in approximately 6 hours. Regardless, the idea of
organizing the presentation according to teaching time is a very
useful pedagogical tool.

The 19 lectures can be roughly divided into four series. Lectures
1 to 7 are essentially devoted to the main theory of the Monge

and Kantorovich problems, where two measures are fixed and
one looks for the optimal plans or maps to transport the first
measure onto the second at minimal cost. At the beginning the
cost function is as general as possible, which allows to develop
the whole Kantorovich theory, including existence of optimal plans
and duality. Only in the last of these lectures the focus is on some
precise Euclidean examples, and in particular on the quadratic cost,
together with its connections with the Monge–Ampère equation
(whose name is spelled correctly all along the book, except for
the title of the corresponding lecture where, unfortunately, we
can see an acute accent). Another very natural cost, the distance
cost originally studied by Monge, is deliberately discussed for only
a single page, since it is clearly the goal of the authors to move on
to some notions, in connection with PDEs and differential geometry,
that are more related to the quadratic cost. Some choices in the
proofs or in the presentation could be debatable, for instance
regarding duality: the authors do present, shortly, a proof based on
rather general convex analysis (the Fenchel–Rockafellar theorem),
but devote more space to a full and self-contained proof based
on the c-cyclical monotonicity of the support, arguing that it is
more constructive, which is absolutely true. On the other hand,
this approach might suggest the wrong idea that each optimizer in
the Kantorovich problem is associated with a specific maximizer of
the dual (the one built from the support of this very optimizer) and
this can be seen in the (absolutely classical) proof of uniqueness of
optimal transport maps. This proof is based on the clever statement
that if every optimal plan is induced by a map, then it is unique,
but does not exploit the fact that the map corresponding to a plan
can be chosen to be the same for all plans.

After the general presentation of the optimal transport problem,
a second series of lectures (8–10) on the Wasserstein distances
and Wasserstein spaces follows. Here the authors do a remarkable
work by systematically analysing which metric properties of a metric
space (X,d) are inherited by the corresponding Wasserstein space
(𝒫(X),W2) (we see that the focus is explicitly on the case p= 2, in
order to pave the way for the next part of the book): compactness,
completeness, geodesics,… Some parts require the introduction of
suitable tools from analysis in metric spaces, in particular the notion
of metric derivative, which are independent of optimal transport,
but not always well known among graduate students in analysis.

Similarly, the next series of lectures (11–14) is not specifically
related to optimal transport: it is devoted to a detailed analysis of
gradient flows in Hilbert spaces, paying attention to those notions
which can be extended to metric spaces, and in particular the EVI
(Evolution Variational Inequality) and the EDI (Energy Dissipation In-
equality) formulations. The role played by convexity or λ-convexity
is emphasized from the very beginning. A full chapter is devoted to
the study of the heat flow as a gradient flow with different choices
of the functional and of the Hilbert norm (the heat flow is, for
instance, the gradient flow of the Dirichlet energy u↦ 1

2 ∫|∇u|2 in
the L2 space, but also of the simplest functional u ↦ 1

2 ∫u
2 in the
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