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This article presents a class of 3D optical illusions, in which the
apparent orientation of an object changes to the opposite in
a mirror. We first show the mathematics behind such illusions,
and then present a method for designing objects with desired
appearances. Next, we show two simple subclasses, which can
be realized using paper, and hence can be useful even for children
to create their own illusion objects.

1 Introduction

The real world and its mirror image are plane-symmetric to each
other with respect to the surface of the mirror. However, an object
and its mirror image do not necessarily appear plane-symmetric
because human visual perception can be distorted due to optical
illusions [1, 3]. One typical case is a left-right reversal illusion [9].
An example is shown in Figure 1, where an object is placed on
a desk and a mirror is placed vertically behind it. The object is an
arrow pointing to the right, but it points to the left in the mirror.
We call this class of objects the “left-right reversing objects.” Their
behaviors look impossible, and hence they belong to the class of
“impossible objects” [11].

In this article, we focus on left-right reversing objects. We first
show the mathematics behind them, and then present a method
for designing such objects with desired appearances. Next, we
exhibit two simple subclasses, which can be constructed using
paper and hence can be useful even for children to create their
own illusion objects.

2 Left-right reversal created by line-symmetric objects

Let B be a set of points in the 3D space, l be a straight line, and
rot(B; l) be the set of points obtained by rotating B around l by 180°.
If rot(B; l) = B, B is said to be line-symmetric with respect to l, and
l is called a line of symmetry.

Suppose that we fix a line-symmetric object B in space in such
a way that the line of symmetry is vertical, as shown in Figure 2 (a),
where the dot-dashed line represents the line of symmetry. Let v1

Figure 1. Arrow that changes direction when seen in a mirror.
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Figure 2. Line-symmetric object and two mutually opposite
viewing directions.

and v2 be two viewing directions that are parallel to a common
plane containing the line of symmetry, with these views directed
towards the object from opposite sides, with the same downward
angle. Then B looks the same when we see it from the directions v1
and v2. This is the basic nature of a line-symmetric object. As shown
in Figure 2 (b), if we use a vertical mirror M and see the reflected
image along the direction v ′2 instead of seeing it directly along v2,
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Figure 3. Computer graphics images of the object in Figure 1.

the left and right will be exchanged. Thus, if the original appearance
along v1 is a right-facing arrow, the appearance along v ′2 will be
a left-facing arrow.

Indeed, this optical process is seen in Figure 1. Figure 3 shows
computer graphics images of the object. The left top is the plan
view, from which we can see that the boundary of the object is
point-symmetric with respect to the center. The line of symmetry
of this object passes through the center and is perpendicular to the
image plane. The left bottom image is the front view, and the right
bottom image is the side view. From those images we may deduct
that the object is line-symmetric with respect to a vertical line. The
top right image shows the appearance along the special viewing
direction, which makes the object look like a right-facing arrow.

As this example demonstrates, once we have a line-symmetric
object, we can produce a left-right reversal illusion. The next ques-
tion is how to create a line-symmetric object having a desired
appearance.

3 How to produce a desired appearance

Let (x, y, z) be a Cartesian coordinate system in 3D space. Figure 4
shows this coordinate system in such a way that the left half shows
the (x, y)-plane and the right half shows the (z, y)-plane, with the
common vertical y-direction. Suppose that, as shown in the left part
of Figure 4, we fix two x-monotone curves, y= c1(x) and y= c2(x),
−1 ≤ x ≤ 1, on the (x, y)-plane that satisfy c1(−1) = c2(−1),
c1(1) = c2(1), and c1(x) > c2(x) for −1 < x < 1. Let S denote
the closed curve composed of these two curves, and S′ denote the
curve obtained when we rotate S by 180° around the z-axis. In
Figure 4, S′ is represented by broken lines.

Our goal is to find the space curve, say T, that coincides with S
when seen along the viewing direction v1 =(0,1,− tanα) and with
S′ when seen along the viewing direction v2 = (0,−1,− tanα).
In Figure 4, we take the right-facing arrow as the curve S, and
then c1(x) = −c2(x), −1 ≤ x ≤ 1. However, this condition is not
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Figure 4. Construction of a left-right reversing object having
a desired shape.

necessary in general; that is, the curve S is not necessarily symmetric
with respect the x-axis.

For an arbitrary x, we consider two points P= (x,c1(x), 0) and
Q= (−x,c2(−x), 0). When we rotate S by 180° around the origin,
Q is transformed into Q′ = (x,−c2(−x), 0), and hence P and Q′

align along the same line parallel to the y-axis.
Let R denote the point that matches P when seen along v1 and

matches Q′ when seen along v2. As shown on the right side of
Figure 4, the point that matches P when seen along the direction
v1 is on a line passing through P and parallel to v1. This point is
represented by

z1 = −(y− c1(x)) tanα.

In its turn, the point that matches Q′ when seen in the direction
v2 is on the line passing through Q′ and parallel to v2. This point is
represented by

z2 = (y+ c2(−x)) tanα.

The point R is obtained by setting z1 = z2 (= z). This yields the
formula

y = c1(x) − c2(x)
2

,

and substituting this expression in the formula for z1, we obtain

z = c1(x) + c2(−x)
2

tanα.

Finally, we obtain

R = (x, c1(x) − c2(−x)
2

,
c1(x) + c2(−x)

2
tanα).

As x moves from −1 to 1, the point R traces a space curve that we
denote by T1. Let T2 be the curve that is line-symmetric to T1 with
respect to the z-axis. Then

T2 = (−x,−c1(x) − c2(−x)
2

,
c1(x) + c2(−x)

2
tanα),

where −1 ≤ x ≤ 1.
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Figure 5. Left-right reversing fish.

The curves T1 and T2 together form a closed space curve de-
noted by T, which is our objective. That is, T coincides with S when
seen along v1 and coincides with S′ when seen along v2.

We constructed the 3D object in Figure 1 by first computing
the space curve T from the boundary of an arrow shape using
the above method, then translating T in the vertical direction (the
direction parallel to the z-axis) and obtaining the swept cylindrical
surface, and finally by wrapping the top and the bottom with
continuous surfaces.

Figures 5, 6 and 7 show three more examples of left-right
reversing objects computed by the method described above. The
object in Figure 5 is a fish facing towards the left, which however
faces towards the right in the mirror. Note that the upper and
lower boundary curves of the fish shape are not symmetric with
respect to the x-axis.

In Figure 6 (a), a bird faces towards the right, but its mirror
image faces towards the left. In this case, we gave the initial bound-
ary curve of the bird shape on the (x, z)-plane instead of on the
(x, y)-plane, so that the resulting bird is almost vertical instead of
being almost horizontal. Figure 6 (b) and (c) present the front view
and the side view, respectively, of this object.

Figure 7 shows a jet airplane facing towards the left, but facing
in the opposite direction in the mirror. In this case, the upper and
lower boundaries are not x-monotone, but we can nevertheless
construct the object. Indeed, the monotonicity condition is too
strong; what we need is a one-to-one correspondence between
the points on the given curve and those with the same x-coordinate
on the 180° rotated curve.

In all examples, we first computed the space curve T, and then
added the thickness by translating T in the direction perpendicular
to the plane containing the initial curve S. Thus, the translation is
vertical in Figures 5 and 7, and horizontal in Figure 6.

(a) Object and its mirror image

(b) Front view (c) Side view

Figure 6. Left-right reversing bird.

Figure 7. Left-right reversing jet airplane.

4 Human factors of the illusion

Mathematically, the left-right reversal illusion is created by a line-
symmetric 3D object. However, we also must consider human
factors to strengthen the illusion.
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In the objects shown in last section, we adopted a swept surface
when the curve T moves along a straight line. The reason is as
follows: T is a space curve and physically matches S when it is seen
in the viewing direction v1. However, there is no guarantee that S
is perceived. One may perceive S, perceive T, or perceive any other
curve that matches T in the viewing direction v1. Thus, we need
some additional trick for the viewer to perceive S instead of any
other possible interpretations.

For this purpose, we used a remarkable characteristic of the
human vision system, that is, the preference for rectangularity. The
human brain prefers right angles to other angles when interpreting
2D pictures as 3D objects [4,5,12]. When we see a parallelogram,
we are apt to interpret it as a rectangle seen in the slanted direction.
This tendency is very strong and can be used to design various
types of depth illusions, such as impossible motions [7], ambiguous
cylinders [8], and topology-disturbing objects [10].

When T is translated vertically, the swept surface forms a cylin-
der whose height is the same wherever we measure it. Therefore,
we may expect that the viewer interprets the top curve as the sec-
tion obtained when we cut the cylinder by the plane perpendicular
to the axis. This section is identical to the original curve S.

Another factor to note is the difference between a 3D ob-
ject and its projected image. When we look at Figures 1, 5, 6 (a),
and 7, most of us can enjoy the illusion without any special effort.
However, we must note that these figures are 2D images taken
by a camera. When we see an actual 3D object, in contrast, the
illusion is not as strong because we have stereoscopic vision.

When we see a real object with two eyes, we can perceive the
depth to the surface of the object by the triangulation principle
[1,2]. This function is called binocular stereoscopic vision. Hence,
we can figure out the actual shape of the object relatively easily.

When we see an image taken by a camera, however, binocular
stereoscopic vision is not a factor in perceiving the image. A camera
has only one set of lenses, and hence taking a picture with a camera
is equivalent to seeing an object with one eye while closing the
other. As a result, our brain needs to choose some 3D structure
among many possibilities and usually chooses one that has many
right angles. For this reason, the left-right reversal illusion can be
perceived more strongly when we see projected images than when
we see actual objects.

5 Construction by rectangular cylinders

The left-right reversal illusion can be created when we construct
a line-symmetric object. One simple way to accomplish this is to use
a rectangular cylinder. The black lines in Figure 8 show a diagram of
the unfolded surface of a rectangular cylinder. When we print it on
a sheet of paper, fold it along the vertical lines, and glue it so that
the left and right edges meet, we obtain a rectangular cylinder.

c c

Figure 8. Unfolded surface of a rectangular cylinder.

Figure 9. Left-right reversing rocket made from the diagram in Figure 8.

Next, as shown by the red lines in Figure 8, let us cut off the
upper part in such a way that the leftmost side and the third side
from the left are cut along the same curve, and the second and
the fourth sides are cut along the straight lines connecting the end
point of c and the starting point of the other c (the red broken
lines in the figure). Then the resulting cylinder is a line-symmetric
object whose line of symmetry is parallel to the axis of the cylinder
and passes through the center of the rectangle section. Therefore,
by placing the resulting cylinder vertically in front of a mirror and
viewing it from a high angle, we can see the left-right reversal
illusion.

Figure 9 shows the object constructed from the diagram in
Figure 8. We painted the inner side of the cylinder in blue. The
top of the cylinder appears to be a rocket facing towards the left,
while it faces towards the right in the mirror. The thickness of the
apparent shape as well as the lengths of the left- and right-side
edges depend on the slant angle α along which we look down
at the object. In the case of Figure 9, we adjusted the viewing
angle so that one of the side edges degenerates to a point and
consequently the head of the rocket forms a sharp corner.

Figure 10 displays two more examples: (a) shows a fish and (b)
shows a cascade of arrows. The colors in the mirror change simply
because the inner side of each cylinder was painted in two colors.
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(a) Fish

(b) Cascade of arrows

Figure 10. Left-right reversal illusion made by rectangular cylinders.

The method is very simple. We need to use the same curve
twice, as shown by the points labeled c in Figure 8. Therefore, it
might be fun even for children to search for the curves that can
create their own original shapes.

6 Construction by pictures

Another simple way to construct a line-symmetric object is to draw
a picture. Figure 11 shows an example. The direct view of the
drawing looks like a staircase going up from left to right, while in
the mirror it goes up from right to left. Not only the staircase but
also the upper and lower floors and walls are all left-right reversed
in the mirror.

The drawing used in Figure 11 is shown in Figure 12. Note that
this drawing is point-symmetric: if we rotate it by 180° around the
center, we get the same picture as the initial image. This in turn
means that the picture is line-symmetric with respect to the line

Figure 11. Left-right reversing drawing of a staircase.

Figure 12. Drawing used in Figure 11.

that passes through the center of the drawing and is perpendicular
to the picture plane. Therefore, the left and the right are reversed
in the mirror because of the same reason as described above.

However, the perceptual process is a little more complicated
because our brain automatically interprets 2D pictures as 3D objects
whenwe look at the scene in Figure 11. If one does not interpret the
drawing as a 3D structure, one could easily understand Figure 11,
because the drawing in Figure 12 is just reflected by the mirror. In
fact, the nearest point of the drawing is mapped to the farthest
point in the mirror. However, the human brain has a stronger
preference for rectangles than for general parallelograms [4,5,12].
Thus, when we look at Figure 11, our brain perceives a 3D object
instead of a 2D drawing, and realizes that the mirror image is
inconsistent.

Another example is shown in Figure 13. This object is also a hor-
izontally placed drawing, and it is point-symmetric with respect to
the center, and hence line-symmetric with respect to a vertical line.
However, it is a perspective projection instead of the orthographic
projection of a 3D object, and consequently, the impression of
3D structure is strong. Physically, the nearest part is mapped to the
farthest part in the mirror. However, because we interpret the near-
est part as the lowest part of the 3D structure, we try to find the
corresponding counterpart around the nearest area in the mirror
and fall into an inconsistent perception.
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Figure 13. Another left-right reversing illusion made with a drawing.

Figure 14. Mixture of a horizontal drawing (staircase) and non-horizontal
structure (supporting walls).

The final example, shown in Figure 14, is a mixture of a horizon-
tal drawing and an actual 3D structure. The staircase is a drawing
fixed horizontally, with only the side walls not horizontal. The whole
structure is line-symmetric with respect to a vertical line, and as
a result, we can perceive the left-right reversal illusion.

7 Concluding remarks

We have demonstrated how a line-symmetric 3D structure can
create a left-right reversal illusion and presented a method for
designing illusion objects with desired appearances. We also pre-
sented two simple classes of line-symmetric structures: rectangular
cylinders and point-symmetric 2D pictures. These simple classes

can offer material for anyone, even for children, to create their
own illusion objects, and to experience the illusion.

From an educational point of view, these two simple classes of
illusion objects enjoy several advantages. First, children can create
their own objects instead of just being handed existing objects.
This may stimulate their active involvement. Second, children can
experience the illusion using real 3D objects instead of just viewing
images taken by a camera. This should provide an opportunity
to understand the difference between seeing objects and seeing
their images, and thus help children understand the importance of
having two eyes. Third, illusion objects can give children an oppor-
tunity to understand the power of mathematics, which provides
a framework to create illusions in a systematic manner rather than
by heuristics.

Optical illusions in general cover a wide range of visual phe-
nomena, including misperception of size, orientation, shape, color,
brightness, and motion. Among them, the depth illusion, which
includes the left-right reversal illusion, is remarkable in that the
mechanism can be understood from a mathematical point of view
more clearly than other classes of optical illusions. Indeed, the
interpretation of 2D retinal images as 3D objects is an ill-defined
problem, in the sense that the answer is not unique [2, 6], and
by observing the behavior of human visual perception, we can
guess what kind of possibilities are chosen more frequently. This
understanding also helps us create new optical illusions. The left-
right reversal illusion is one of the common illusions that can be
discovered using mathematics.
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