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Professor Sullivan, first we want to congratulate you on being
awarded the Abel Prize for 2022 for your groundbreaking con-
tributions to topology in its broadest sense and, in particular, its
algebraic, geometric and dynamical aspects. You will receive the
Abel Prize from His Majesty the King of Norway tomorrow.

Thank you!

You have worked in very many different fields, and, actually, your
supervisor, William Browder, described you as sort of an intellec-
tual vacuum cleaner. But it seems that you always had a guiding
principle for what you are doing. If mathematics rests upon two
pillars: space and number, you have been partial to space to the
extent that you want to replace number by space.

A part of this quest of yours is the question: “What is a man-
ifold?” And that is perhaps a good place to start; before we
continue on your journey, as you say, from the outside to the
inside, intuitively: what is a manifold?

It is space, expressed logically in terms of a set of points.

It’s space, but it’s sort of a special space, isn’t it?

No. The idea of space is that you can move things around. There
isn’t an invisible wall that makes you stop here, but you can move
around. Any object which is locally like that is called a manifold.
Space itself is an intuitive word, that we all know about. But there
is an actual concept called manifold, which is the logical version of
that intuitive concept. It’s an attractive notion when you first learn
about it as a math student. And the first math theory about these
manifolds that I learned about was sort of strange.

Tell us!

You attached to such an object, which you didn’t really describe
in terms of its logical definition, some other objects which were
very abstract and part of algebraic topology. And when you had
enough of those with the right conditions, you could build the
manifold.

So you could actually reconstruct the manifold from these abstract
objects?

You could build it up to equivalence. But you didn’t really construct
the points of the manifold in a canonical way. So, it has no points.
It was like a black box. The information is stored there. And that is
where numbers come in; all these concepts are based on numbers,
the algebra, whereas the actual texture of space is not there.

Is it like the recipe for the cake versus the cake?

Yeah, I’d say it’s exactly like that; it’s a good idea. You must have
prepared that?

No, we did not!

It’s a very good interpretation. It’s like a cake with no edges or
layers. It’s just this delicious cake going on for ever, right?

And you really want to get at the cake?

Well, that is what you are attracted to, the idea of space and
its texture. And then, it turned out, that every time I would ask
a professor a question, he gave me an answer that was in terms
of number, which is algebraic topology and homotopy theory. So
I had to learn that, as it were. I adjusted the geometrical problem
so that it fitted with the numbers, so to speak. You know, some
goals are not achievable and some are within reach, so I adjusted
to get the ones within reach during that period.

Is what you describe here more or less what is called surgery,
where you actually build the space according to the prescription?

Right, you have a prescription of the information: how many holes
it has, how many handles etc., and you build an actual manifold
with that description. And surgery allows you to build it. That
was a powerful technique. Actually, it was a secondary technique
following Thom’s cobordism theory, which was very influential.
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But the important distinction here is between what can be de-
formed and pushed, well, in homotopy theory, in the homotopy
type – to use technical jargon – as opposed to the actual manifold?

Right. First, it’s interesting that the classification of closed manifolds
is an interesting subject. It’s not, a priori, clear that it will be so,
but it’s extremely interesting classifying manifolds that are closed.
You know, no boundary, not going off to infinity.

Classically, one knows the classification for surfaces. That goes
back to Abel and Riemann. They figured that out. The sphere, the
genus number, abelian functions, abelian differentials, and so on.
But already Poincaré discovered that in dimension three it’s much
more complex. And then it gets more and more complex as the
dimension goes up.

It was kind of interesting that there is enough “number ma-
chinery”, so to speak, to understand spaces of dimension five and
higher. That was an amazing development, basically due to Thom,
I would say, who started this, and surgery was completing this
story. And I got in on the last big boat heading to… wherever.

With the surgery exact sequence?

Kind of. Browder – youmentioned Browder – hewas presenting this
theory. And it was in a complicated form. You could sort of change
it around a little bit and get it simpler. And then you could see from
the changed picture which areas could be developed completely.

The smooth structure is still open, in some sense, up to finiteness.
I mean, we know all the infinite part for the smooth structures.

And that is an area where the previous Abel Prize winner Milnor
had a huge impact.

Yeah, on that one, certainly. His 1963 paper with Kervaire was my
math bible.

This actually leads us to your thesis in Princeton. Princeton must
have been a fascinating place to be at that time?

Absolutely! All these famous people around with their expertise.

So you could just ask them?

Yeah, you could just ask them every day at tea, you didn’t have
to make an appointment, because they all came to tea. You could
ask them anything you wanted to.

There is a cute story about when you are closing in on your thesis,
and you had a discussion with Milnor. Could you tell it?

Well, I had this sequence of steps, and if I could do them all, I could
solve what I wanted. But each step had a clear surgery part and
then it had a Milnor exotic sphere part. I didn’t know how they
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where linked together, so I went into his office, because I had
a serious question. At tea you could ask any question, but this was
serious. He looked at it and said: “Why don’t you just forget the
Milnor-part”. He didn’t say it that way, but something like: “Why
don’t you just forget the exotic sphere part, and just do the first
part.” And this worked for piecewise differentiable manifolds.

So this is the combinatorial manifold case?

Yes, I call them combinatorial manifolds, or PL manifolds, or piece-
wise differentiable manifolds. You allow the differential structure
to break, but you keep the combinatorial structure. And I said:
“Thank you Professor Milnor”, but I thought: “Oh, these piecewise
linear manifolds, I like smooth manifolds, but these are just piece-
wise linear.” And I thought about it: “Wait a minute, if I do that,
I know the structure completely! That is, I know the local structure
completely.” And I just had to figure out the global structure, which
took another year, but then it solved the whole problem.

And you asked your thesis advisor Browder: “Can this go into my
thesis?”

Well, yeah, that’s right. I asked him: “I have this sequence of steps,
which have these coefficients, and if you can do all the steps you
get this result. Can that be a part of my thesis?” And he said: “Well,
I guess that is your thesis.”

And that answered a long standing question that people had been
wondering about for quite a while? We are thinking about the
so-called Hauptvermutung.

That was actually the driving engine. There was this more fa-
mous question about whether the combinatorial structure was
uniquely determined by the topological structure. And that was
called the Hauptvermutung. And it turned out that whenever
I could understand the theory of what I was discussing completely,
I could use the technique of Novikov to prove my list of numbers
were zero.

The next eight months was like a race, it was really a race
against reality. Every time I could understand this global theory
better, I could prove the Hauptvermutung. It turned out that I could
prove everything was zero except one little thing in dimension four
that wasn’t zero, but had order two, and that was it. A few years
later they actually found counterexamples in that little place there.
So I proved as much as one could.

What you call “that little place” is an obstruction group in dimen-
sion four, right?

Yes, that was my obstruction group in dimension four. In a sense,
that isn’t the way I work. Well, I would love it if I could solve a well-

known question, but I really like understanding things better. So,
I actually like the theory that says that these are all the piecewise
linear manifolds in a given homotopy type, and you can compute
these numbers and then you know which one you have, and that
is a complete discussion. It turns out that 99 out of a 100 of those
numbers are also topological invariants. So you get this corollary.
People today only know the corollary. And now they even have
a simpler proof, so everything I have done is forgotten! So I’m glad
I get this Prize so I can talk about it again.

Immediately from there you move on and do other amazing stuff.
You discover that the Galois group has important consequences
for the study of manifolds. Indeed, you solve a famous conjecture
that way. Could you elaborate on that, focusing on the manifold
aspect of it? Specifically, how come you have a Galois action on
manifolds, it doesn’t seem reasonable at all.

I would say that it’s still not understood. In other words, there was
this list of invariants – I’m simplifying it a little bit – but a big part
of that list could be collected into one element in K-theory. And
K-theory has this symmetry, the Adams operations. One knows that
when you look at the roots of unity in the complex numbers, that
is if you add the roots of unity and form that field, that gives you
the abelian part of the Galois group. And the symmetry of those
fields, more precisely, you have to complete the manifold theory –
it’s technically a little strange to topologists and geometers – you
complete the number aspect of manifolds so to speak, and that
has symmetry exactly the abelian part of the big Galois group. So
we have Abel and Galois together.

And that symmetry exists in K-theory, so it acts on the invariants
of manifolds. So, the manifolds were just given the information,
the homotopy type and these other numerical invariants, and the
Galois group acted on these invariants, and therefore it acted
on the manifolds. That is how it came about. It doesn’t come
about in a natural explicit geometric way, and that gave rise to this
Jugendtraum, or dream of youth, a term coined by Kronecker in
a different context. This Jugendtraum, explaining this in elementary
terms, is still open.

How can we viewmanifolds? As we would view algebraic varieties?

It’s a little strange, you see. If you think of usual algebraic vari-
eties with real numbers and complex numbers, they are normal
topological spaces. And this topology comes from the topology
of complex numbers or the real numbers, right? The Galois group
doesn’t preserve that topology. A lesson from algebraic geometry
is that to understand things that are defined in terms of integers
it is best understood by looking at each prime and looking at the
real completion, and view the information that way. The “inter-
section” of all this information gives the integral information. It’s
kind of sophisticated. This was actually too much for my topologi-
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cal colleagues. They didn’t want to hear about it. The geometric
topologists, not the homotopy theorists. The homotopy theorists –
they loved it!

So, you are assembling all this information, one prime at a time,
plus the rational information?

Yeah, for a manifold the finite prime part splits into the prime two
and all the odd primes. Individual odd primes behave the same
way. Because of the Poincaré duality, it’s like a quadratic form. It’s
well known that quadratic forms behave differently at the prime
two than at the odd primes.

Could we for a moment segue into a different topic, though still
associated with the name Poincaré. We are thinking of the term
Poincaré moment, which refers to the experience Poincaré himself
described where he in a flash saw the solution to a problem he had
worked on for months. Have you had such Poincaré moments?

I search for them all the time, but they come very seldom.

Could you tell us about the fascinating experience you had when
you were about to take the oral exam as part of your PhD?

Oh, yeah, yes, right. There is a little book by Milnor called Topology
from a differentiable viewpoint. About how you could do all of the
usual things, you know, the Königsberg bridge problem, continuing
to Betti numbers, etc., etc. You could do all that more geometrically
using smooth functions and regular values, preimages of the nice
points, submanifolds and stuff like that. That was Milnor’s beautiful
description of the Thom theory from 1953, okay? So, we were
studying that for the orals, and I knew it forwards and backwards,
I could answer any question.

I was walking in to take the exam, and thought: “Let me look
at it one more time before the exam”. I went to the library, opened
the book, looked at it. It’s a small book, it’s got ten theorems in it.
But still, there are a lot of steps, and I was looking at it one more
time, and then this basic picture appeared to me: You have a map
to something like a sphere, and you take the preimage of a point –
which is what is called a nice value – you get a nice submanifold
by the Implicit Function Theorem. You get local coordinates, and
then the neighborhood sort of funnels down, like you would push
a slinky down and flatten it out completely. But this was saying
something about the global map: There is the preimage of one
point, and then I noticed: “Oh, wait a minute, the preimage of
one point has all the information.” The complement may be very
complicated in the domain, but the complement of a point or a disk
in the image sphere is contractible. It’s like taking a point out of
a balloon, it contracts, it’s contractible! So you can extend the
mapping to the contractible part uniquely. Any choice you make
will be related by deformation to any other choice.

Dennis Parnell Sullivan – 2022 Abel Prize laureate.
© John Griffin / Stony Brook University / Abel Prize

Suddenly the whole book, or the whole theory, became clear.
It just follows from this picture, from this slinky picture, with the
logical remark that the complement here is contractible, so there
is no more information. That is just pure logic, plus this simple
picture. The whole book fell away, the entire theory fell away. If I got
amnesia but was left with that picture in mymind, I could reproduce
the whole book and the whole theory. And then I thought: “This
is what it means to understand mathematics”. I was a graduate
student! So, I want to feel this again!

And have you?

Yes! However, it takes longer and longer.

Of your other main results in this area, is there any one that has
such a picture in your mind, where you actually see the entire
theory?

Well, I mean, basically this sequence of steps things I was talking
about, where you take preimages and use this picture, I kept using
it. For example you know how a screwdriver works, it goes into
the slot and you turn it. You can take apart this house, you know.
I mean, you can do anything. You have to have a simple tool, you
have to understand it, and then use it. Well, that wasn’t exactly
a Poincaré moment.

The Poincaré moment I was thinking of, when you said that,
was when he put his foot on the bus and he realized that the
holomorphic bijections of the unit disk were the same as the sym-
metries or the congruences of non-euclidean geometry. And that
was a fantastic connection. He knew both things. But, in a sense,
the connection is themoment. This largely dictated the next century,
and all the work of Thurston and so on.
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But you must have had a similar experience, when you proved the
Adams conjecture. You’ve commented that it wasn’t really impor-
tant that the Galois action corresponded to the Adams operations.
Still, it must have been very important to you at the time when
you were trying to solve the Adams conjecture, that they were the
same. That must have been a revelation, that that actually could
be true?

Well, it’s not my creation, it was Quillen’s observation that some-
how these Adams operations, whatever they are, let’s just say they
are some symmetries of something that relates to manifolds and
space.

The symmetry is related to the fact that, when you are working
in the field of algebra, you may assume that p times anything is 0,
where p is a prime, like 3 times anything is zero, 3 being the prime.
There is an amazing fact that if you work, for example, with 3 times
something is 0, and you take a number x and you cube it, and you
take another number y and cube it, then if you add the two and
then cube the sum of the two numbers, you get the same thing:
x3 + y3 = (x+ y)3. This is because of what the binomial coefficient
theorem says, that you get these 1, 3, 3, 1-terms, but 3 is zero, so
you get 1 and 1. That shows that you have this symmetry in each
of these prime worlds. So, you have this additional symmetry given
by what is called the Frobenius automorphism. That is fantastic!

Quillen had already suggested that there is a relation between
the Adams conjecture and Frobenius, but then that was a little too
exotic for me. I wanted to use the answer to the Adams conjecture,

I didn’t want to prove it. And then I heard – I hadn’t met him yet –
that he wasn’t going to work on it, because he first had to learn
200 pages of Grothendieck and transfer it into his setting. Okay,
he only wrote perfect papers, it had to be perfect, or else he didn’t
write it.

It’s Quillen you are talking about, right?

Yes, it’s Quillen. Now I’m adding what I found out later, as I read
more of his work: every paper is perfect. Perfect isn’t the right
word, it’s optimal. You can’t do better. So, I heard about this, and
I said: “Okay, I’m going to pretend that this is true, because Quillen
made this connection, and he could have written the proof out.”
And then I said: “But wait a minute, I can’t just pretend that this is
true, I’ve got to prove it myself.” But if it’s true, it’s easier to prove.
Because you know it’s true. It’s a topological theorem, so I just
kept working on it.

I worked on it for six months, which in those times was a really
long time because things were happening faster. I reduced it to
something – it was equivalent to something – and then I tried for
a long time to prove this something, but I couldn’t do it. And then:
I remember sitting on the lawn, I remember exactly that moment,
August 19, 1967. I had just driven up from Mexico with my family
to Berkeley. I was going to spend two years there. I was sitting on
the lawn of the house where we were staying for a few days until
we got our own place, and I thought: “What has Quillen said about
this?” He said: “Frobenius! algebraic symmetry! at the primes!” It
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turned out that it gave my condition immediately, and so I had
a proof of the Adams conjecture.

In some sense that was a Poincaré moment. It took me a year to
write out the details. There were different details, less foreboding
than what Quillen had envisaged, so I was able to do it.

And that spawned the so-called MIT notes, which became widely
circulated and famous?

That spawned the MIT notes, yeah. You have to first localize, then
complete and then do all the related homotopy theory.

And then you moved on to the quasiconformal manifolds and
Lipschitz conditions. How did that transition happen?

You sort of skipped about ten years… but we don’t have so many
hours!

Yeah, we agreed to skip the rational homotopy theory, which really
hurts, but…

Okay, but let me make one point about that. Algebraic geometry
and stuff like that just does the finite primes. It turns out that all the
information in this algebraic topology which is determined at the
primes, has this extra symmetry in it, which is related to algebraic
geometry. But then I thought: “Wait a minute, what about the
infinite prime, the archimedean place?” I didn’t know any analysis,
or anything like that. “But, maybe it has to do with differential
forms?” And it turned out that it did. It’s sort of like algebra does
this part, analysis and geometry do this part.

Which does open analysis to all of the rational theory.

Right!

And you then prove that cohomology in many situations deter-
mines the entire rational type; Kähler manifolds.

Yeah, it had nice corollaries. The idea was to express the information
in terms that are natural. It’s natural to express the information
of the infinite part, rational numbers, real numbers, in terms of
differential forms, which is natural for analysis and geometry.

So you have this information for the primes with the Galois action
and you have analysis on the differential forms for the infinite
piece?

All of which is related to topology, right. But then, to go on, all
of this was frustrating, because it was outside the manifold. They
were sort of invariants. I liked facts about things inside the mani-
fold. Foliations or dynamical systems and fractal sets, these things

are inside the manifold and they are constructed by infinite pro-
cesses inside the manifold. So I started to learn about these infinite
processes.

That began the dynamics part. It was sort of like just follow-
ing this interest inside, there was no logical reason. I was starting
over as a graduate student again, I’d say. It turns out that the best
way to understand the holomorphic part of manifold theory in
dimension two is not through the smooth structure, but in terms
of the quasiconformal structure. That is the best way to under-
stand dimension two. And it’s amenable to certain infinite fractal
processes. Anyway, it was natural to leave this highly sophisticated
algebraic viewpoint and go back to the original interest in man-
ifolds, like dynamics – and processes like dynamics – inside the
manifold. I mean, physical processes take place in space, so this
is all about everything else in science. You know, even medicine;
your body has tubes with fluids and so on.

Let’s talk a little more about these dynamical systems and their
importance in studying manifolds. Perhaps we could start with
something very concrete, namely Denjoy’s answer in the 1930s to
a question posed by Poincaré about circle diffeomorphisms with-
out periodic points. This was taken up and extended enormously
in the ’70s by Michel Herman and his student Yoccoz, answering,
among other things, a question posed by Arnold. With this as back-
ground, could we ask you how this theory impacted your desire, so
to speak, to understand things inside the manifold? This in contrast
to the picture you give of manifolds locally being like a puddle of
milk looked at from the outside – there isn’t much personality.

Let me answer this by first posing the question: “Why is it interest-
ing to know about manifolds?” It’s all about space. Okay, we have
done the number aspect, but why is it really interesting?Well, all the
processes that we see go on in space. All that stuff that is described
by various other fields, ODEs, partial differential equations, func-
tional analysis, that’s all part of describing the processes. It’s also
combinatorics, computer algorithms. All that is about processes
in time, but all these processes in time go on in space.

I didn’t know all that then, but I wanted to know more about
things going on inside manifolds. A little dynamical system could
create an interesting fractal set inside the manifold. And if you
perturb that dynamical system, that fractal set was still there. It
was structurally stable. So I had to learn about things such as Cantor
sets, fractals and stuff. So I started and I’d say it was almost a ten
year period of time before I got to quasiconformal mappings.

This was at the end of the ’70s. I was thinking about dynamics
and foliations, like this idea of an onion that is foliated. That is a very
attractive picture, and these were interesting objects. Thurston
had arrived on the scene, and he blew everybody’s mind away,
including mine. Immodestly, I have to say that I was smart enough
to appreciate that I was watching Mozart playing the piano. I mean,
not everyone did, because Thurston wasn’t so communicative.
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But he was one of your heroes along with Thom, wasn’t he?

Yes, but he was younger than I was, he was my younger brother
hero. All this fitted with this desire of mine to go inside the mani-
folds, and understand more geometric things. So I started studying
dynamics, and I learned about the Smale school. And then, in
France, I started going to Michel Herman’s lectures, and I met
Yoccoz, his student. Michel Herman was working on the problem
you alluded to in your question. It happened like this: Denjoy died
in 1974, and Michel Herman was working on his papers for the
French Mathematical Society. Herman started to talk about the
Denjoy argument. So, I learned that argument. And then Herman
started answering these questions, refining what Denjoy had done.
You have to remember that Poincaré was doing celestial mechan-
ics, in particular, the three body problem. He came up with this
question that was answered by Denjoy, who did this a couple of
decades after Poincaré died, actually.

This is all about one dimensional manifolds. It turns out that
they are actually among the hardest from this interior point of view.
They are very difficult. Herman analyzed the very fine structure
of diffeomorphisms of the circle, and we were learning as he
was producing results. I was just intrigued about it. For example,
there is a beautiful example involving the golden ratio number and
Fibonacci numbers, and that intrigued me.

And this is while you are at IHÉS?

At IHÉS, yes. He was at Orsay, which was just a walk across the
valley of the Yvette. The interesting thing about the real line is that

there are three kinds of distortions that behave algebraically very
nicely. There’s the metric distance distortion, the ratio distance
distortion and the cross ratio distortion; corresponding respectively
to metric geometry, affine geometry and projective geometry. And
there is the usual chain rule. You take the logarithm of that, it’s
a nice formula under composition, and now you can do two other
compositions with these higher distortions. Those were the key
things that I used to explain Herman’s work to myself.

Michel Herman’s theorem took a whole volume of Publications
Mathématiques de l’IHÉS, and I wanted to get it down to something
like just a few key moments of understanding. And you could –
after a couple of years thinking about it – get it down to something
you could tell on the phone to somebody. That was my challenge:
Find a proof that I could tell to somebody on the phone. You have
to understand it, you can’t write down a lot of formulas and calcu-
late and stuff like that, you have to understand it. It was just like
that, the desire to understand, and it was just like fun, you know.

But then, in ’82, I heard that physicists had discovered some-
thing startling related to phase change. You know, the water gets
colder and colder, and suddenly it forms this crystal, right? It’s
when all this rigidity happens. That is called phase change. There
are a lot of situations where that happens in physics. It turned out
that physicists had calculated one such in a dynamics example,
where you adjust a certain parameter to the freezing point, I’d say,
and then you get this incredible thing: It could have depended on
infinitely many parameters, and it doesn’t depend on anything at
all, it’s universal!

That was what Feigenbaum first discovered, right?
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Feigenbaum discovered that there was this rate (from the other
direction). Then other physicists discovered – and Feigenbaum too,
actually; he hadn’t communicated it as well as the other ones –
that it was this intrinsic geometry, like a crystal, I’d say.

What was interesting about this for me was that there were
not enough techniques available to prove this at the time. It was
numerically calculated. You can take this formula and that formula,
and do this infinite process, calculate and – bingo! The Hausdorff
dimension is 0.5308…, or something like that. So, here is a theorem
that is true and it is precisely formulated. True with quotes, because
it was numerically true. The available techniques weren’t enough
to prove it. It turned out that you just had to add three more things
to the Michel Herman and Yoccoz stuff, and then you could prove
it. But it took eight years.

The idea was, I could stop whatever I was doing, and just work
on this, there wouldn’t be any counterexamples, you know. And
a proof would need new math.

And you were the one that came up with a proof?

Yeah, I found it and it took eight years.

And that was in ’82?

It was in ’90. It was ’82 when I heard about it.

And in the meantime…

…in the meantime? I was just working on this. There might be
other things that appeared in print, but I wasn’t working on
anything else.

For instance the non-wandering-domain theorem?

No, that is ’81.

It was published in ’85?

No no no, that was already over. Iwas in quasiconformal mappings;
Ahlfors and Bers’ theory goes into dynamics. That was already fait
accompli by 1980.

That must have been very inspirational that you got this result
about non-wandering sets.

It was sort of obvious. It was obvious from the understanding.

But it wasn’t obvious to Fatou.

No, but he didn’t have this theory of quasiconformal mappings,
this deformation theory.

It must have been very satisfactory for you to prove that?

Well, no it’s not, no no, you have misread me. These prizes and
stuff are nice, but that’s not the point. It’s not the point to solve
a problem, the point is to understand. And by this point, by the
time, you understood what Ahlfors and Bers were doing, it was
like a Poincaré moment, where you say: “This theory here could be
very useful in this other theory”. These are disjoint universes, and
do this Fatou–Julia thing, and just transfer the technique over.

Are you now talking about your dictionary?

That is the first entry of my dictionary, right.

In the paper where you prove the non-wandering domain you state
the dictionary in the introduction. But do you use your dictionary
in order to prove, say, the non-wandering result?

I do. There is something called the Ahlfors finiteness theorem,
and you take what makes that work, and you restructure it over
in this other domain. It was really using the comparison, the
correspondence.

The non-wandering result, the Fatou theorem, corresponds to
a known theorem in this Kleinian group category. It’s about the
idea of understanding, not the names, not what field it is, but what
is the math idea. The math idea is the same here and here.

Is this like you were telling us a moment ago, that once you know
something is true, it’s way easier to prove it? Was the dictionary
some sort of guidance in that respect – you knew what would
be true?

No, it’s like when you arrange a party: you have to have enough
drinks, enough food. I mean, you have to have enough stuff. You
have to accommodate the correspondence. In retrospect you can
say that the Fatou problem corresponds to something known over
here, in Ahlfors and Bers, okay?

The underlying math is the same, and that is satisfying. But it
was so obvious, it wasn’t exciting. The idea is, if you think in terms
of structures, the structure here and the structure there were the
same, two examples, the same structure.

So we were talking about your dictionary between the Kleinian
groups and quadratic or complex dynamics, if you like, right?

That is one item in the dictionary. The dictionary says: “For every
item here, there should be a corresponding item here, because the
basic elements of the two universes are the same. In fact, I once
introduced Bers at a conference to Mostow. Bers asked: “Why are
you introducing us? We’ve know each other for years, we’re close
friends, but we never talk math”. Like he said it proudly. I said:
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“Well, I have this one theorem. If you do this it is Mostow’s theorem,
if you do this it is your theorem.”

How did they react to that?

You know, people are in their comfortable world, it’s already
rich and beautiful, they are happy there. I’m not like that, when
I start to understand something, I start wanting to move sideways,
somehow.

So, you have the dictionary and what you’re telling us is that the
underlying mathematics of the two things are the same. But not for
any particular reason; it’s just the same? It occasionally happens
that you have two different mathematical problems, and the way
you handle them, or the way their combinatorics work is just the
same, for no apparent reason.

No. The question is: “what are the basic elements that are involved
in the mathematics, in each situation?” In this case there is dy-
namics which has a certain form actually, a technical form called
hyperfiniteness, related to von Neumann algebras, and also it has
to do with Riemann’s ideas of deforming the complex structure.
Okay, so those are the two ideas.

There is an underlying complex structure, that is preserved by
the dynamics. These are called holomorphic dynamical systems. This
technique can be used in the entire field. But before this happened
there was a field called Fatou–Julia theory and one separate field
involving Poincaré limit sets and domains of discontinuity and so
on. These were two different fields. This was occupied by complex
analysts, and this was occupied, in modern time, by dynamical
systems people. The basic elements of the underlying discussion
were the same. Every advance here should correspond to something
over there.

It’s just to look at things in simple terms, without the words.
I don’t let my graduate students use names, they can’t use any
proper name. They have to say, in an English sentence, in terms of
basic concepts, like linear algebra or integers what the hell they
are talking about. And I slap them around if they don’t, verbally.

You are known to be very broad in your interests in mathematics,
and you see connections that other people do not see. But could we
ask you a provocative question: is there some type of mathematics
that you don’t like?

No, because there is this one tapestry, it’s all connected. It’s like the
tapestry behind you, it goes all around. Everything is interesting
to me.

And now the fluid dynamics enters. Can you tell us about that and
why? Okay, you have a punchline in the end here, we won’t spoil
it for you.

I forgot…

Oh, you promised to replace Newton’s calculus by Poincaré’s
combinatorial topology.

Oh, right, of course yes, but that isn’t a punchline, that’s the theme.
The idea is, yeah, so, quick history of math, right: We had the
Greeks, they had their problems, more than two thousand years
ago. Newton came along and he invented the calculus along with
Leibniz. Suddenly, a bunch of problems the Greeks had could be
solved. You can compute volumes of new things. Because with
calculus you sort of ignore higher order error terms. Error of 0.1
decimal place, and errors of 0.001, you ignore all those, and you
just try to get the first part. And then the formula is simple, and
you get this beautiful theory.

But, you know, if you look a physicist in the eyes and ask,
they’ll say: “The continuum doesn’t exist.” The continuum doesn’t
exist, because, what do we know about it? The atomic models,
elementary particles, there is no physics below 33 decimal places.
There is no physical theory, you can’t even talk about distance
below that.

On the other hand, the calculus ideal works beautifully, we have
gravity, Einstein’s theory. By the way, Einstein’s theory hasn’t been
connected to the standard model, which is the way the elementary
particles interact, with these small distances getting down to Planck
scale. In fact, Planck scale is sort of the scale in which gravity and
the strong forces of nature are comparable.

Even the physicists use the continuum… like in a religious
way! As if it exists! And they know it’s not true, because Newton’s
calculus leads to classical physics, which is negated by quantum
theory. But it’s so beautiful! Representation theory, Lie groups, it’s
so beautiful, and they can make models, and the models work! But
there is no basis somehow, there is something missing, right? In
the physics theory.

So, fluid mechanics has been in between the classical and the
quantum discussion, you might say, the statistical discussion. It has
been in between, and in three dimensions… Well, in two dimen-
sions it has theoretically been worked out, not computationally, but
theoretically worked out. For the same mathematical reasons, this
Ahlfors–Bers theory and this deformation theory works, analysis,
it’s related to that, and I understood that. That was one reason I got
in, I understand that, and half of that theory works in dimension
three, but not the other half.

I was astonished to hear, in ’91 or ’92, that these basic hydro-
dynamics equations in three dimensions weren’t theoretically un-
derstood – whether they have solutions or not – because in dimen-
sion two it was all clearcut, and I understood why. They’re used all
over the world by engineers to produce oil and by doctors to fix
aneurysms. The latter use a little turbulence inside the aneurysms
and do a little support thing here, doctors can do several a day,
and they can fix people up that might die at any point.
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How could it be true that 3D hydrodynamics was so mysterious?
Also about that same time onewas able to put things on a computer
quite well, but still there is now a limitation of a thousand of grid
points or so in each direction. Thousand by thousand by thousand,
that is a billion. You calculate, but then there is a matrix problem,
billion by billion, so that is beyond reach. So there is this definite
limitation to what one can compute. This mathematical problem,
which actually became one of these millennium problems later,
I was already working on it for about a decade before, is beautiful,
precise and so on. But it’s not practical. What is really important
is: what can you understand at the scale where you can compute?
And then maybe prove theorems too.

The idea I had was, this is all about space – processes hap-
pening in space. And you’ve got the Newton continuum, which
gives you a beautiful algebra picture of space, you have differential
forms, calculus, the Leibniz’ rule for a product, you know. Great! It
turns out that if you discretize the problem and put it on a com-
puter, you’ve got to do difference quotients instead of derivatives,
and they don’t satisfy the product rule which has an h2-error, di-
vided by h, still an h-error. But then h goes to 0. That is in every
computation, that error term. So the idea is, and they know this,
the numerical analysts know this, of course, they know this much
better than I do, but they don’t seem to have a theoretical way to
approach it. So, the idea is, or Poincaré told us, for all this topology,
all the numbers games we were talking about before, which is quite
deep, has to be done by breaking space into little chunks, and do
some combinatorics with that. So, that is combinatorial topology,
that allows you to understand the non-linear aspect, which has
a product structure. That has been my theme of understanding,
and now I have been working on it for three decades, and I think
I have made some progress recently.

To take the discretization that we have to do in order to calculate
anything in fluid mechanics and anything like that. Are you saying
that we should make that as a main object of study itself?

Yes! We should study the full algebraic topology – this is going
back to the beginning now: Poincaré duality, intersections, how
things intersect, that’s the ring structure. You know, these objects
in a manifold can be intersected, and that gives a ring structure.

Do you think the Navier–Stokes problem, which we’ve been talking
about, is one of the hardest Millennium Prize Problems?

No idea. I’m even not concerned with it as a Millennium Prob-
lem. I’d love to prove it, but I’d rather understand some vari-
ant of it. I mean, what made this dictionary stuff so interesting
in a way, there were several Fields Medals there and stuff like
that, was because they had these pictures of the Mandelbrot set.
Once a waiter came along while we were working on it, and
he said: “Oh, that’s the Mandelbrot set”. Everybody knows the

Mandelbrot set, right? There are good computations of the Mandel-
brot set, you can zoom in to any scale, it gets more and more
complicated, it’s beautiful, like a fern or something. And you go
deeper, and then there is a new thing, you know, it’s precise. And
that has led to many statements and conjectures, half of which
have become theorems, and half of which are still open. So, it
has been a very active field. We don’t have such good computa-
tions for fluids in general. We don’t have enough understanding.
We can just try, if it works: good. If it doesn’t work, you know:
bad. So, the idea is to put more kind of conceptual work on the
problem.

To use Poincaré’s ideas, to break space up to combinatorial
pieces, see how they interact, put other pieces to cover the breaks
which reveals the Poincaré duality, and put all that into the com-
puter programs that is treating the Navier–Stokes equation.

You’ve said several times, that simplicity is the thing. When Atle
Selberg was interviewed two years before he died, one of the
things he stressed very much, was, and we quote him with a direct
translation from Norwegian: “I believe that it is the simple things
that will survive in mathematics.” Would you agree with that?

Oh yeah, of course. C’est evident! You know, like a screwdriver.
It’s going to last forever, if it’s simple, and it’s useful. I’ll go even
further, the goal of mathematics is to simplify everything. I think
that the complicated things can be simplified.

Actually, Selberg mentioned Hermann Weyl as a prime example
of a person that could attack a problem, simplify it and solve it.

I think that is a good method, because there are these fundamen-
tal points, like the moments I was describing with the graduate
students, organize everything. They aren’t easy to find, you know.
What are the central points? You don’t know a priori. And you start
by getting a sense of it, it has to do with the structure: what is the
structure of the situation. A little “Grothendieck-like”.

The time is…

I’m not tired! I know this phenomenon; if hours are late and the
mathematician one is talking to is tired, then one just asks him
a question about what he is doing, right? And he starts talking,
and suddenly he’s full of energy again!

This is going to be the last question, we promise! During our
preparatory Zoom-meeting we mentioned a 1828 quote of Abel’s
we’d like you to comment on.

One should give a problem such a form that it is possible
to solve it, something one can always do with any problem.
In presenting a problem in this manner, the actual wording
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of it contains the germ to its solution, and shows the route
one should take. I have treated several topics in analysis and
algebra in this manner, and although I have often posed
myself problems that surpass my powers, I have never-
theless attained a great number of general results that
have shed a broad light on the nature of these quantities,
the knowledge of which is the object of mathematics.

Do you have any comment on this?

The formulation of the problem is very important. Even more,
a given problem may not be the correct formulation of the problem.
Every problem stands, if it’s well-defined, but it could be that there
is a slightly different version of the problem which is more natural
and will be successfully solved, you know.

I’m willing to change the problem, while it sounds like Abel is
trying to take the problem as given and put it in its best perspective.
I’m also willing to change a problem slightly, to one that can be
solved, right? But I certainly agree with that.

Another thing that I’ve noticed, as I’ve been around doing this
for a long time, is that when a subject is sort of complete, you can
look back, you know, it’s very easy to close the barn door after the
horse has escaped. You know that you should have done it before.
When you look at the final story, you would say, “Jeez, if we had
started over here, then it would be natural to do this, and then you
would have gotten there very quickly.” Using just a simple picture
of what has happened.

So, if you are in a situation where you don’t have that, look for
it. That is kind of what Abel said.

On behalf of the Norwegian Mathematical Society and the Euro-
pean Mathematical Society and the two of us we would like to
thank you very much for this most interesting interview.

It was my pleasure, I assure you!

Thank you!
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