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1 Introduction

On 18 October 2013, I was sitting on my living room sofa scrolling
through the news, when one article caught my attention. The
headline read something along the lines of “Sleep cleans the brain
of toxins”, and described a recent original research study from the
lab of neuroscientist Prof. Maiken Nedergaard [39]. In a series of
experiments, Nedergaard and her team had injected a fluorescent
dye (a so-called tracer or contrast agent) into the fluids surrounding
the brain of mice, and observed that the tracer moved into (and out
of) the brain many times faster in sleeping mice than in awake mice.
Their findings revealed a fundamental interplay between sleep and
brain clearance, but also highlighted how far from complete our
understanding of the brain’s waterscape (Definition 1) is.

Definition 1. The brain’s waterscape is the circulation, flow and
exchange of tissue fluid and associated solute transport through
and around the brain.

Our brains are composed of very soft tissue consisting of neur-
ons, glial cells, and interstitial space filled with interstitial fluid
(ISF), penetrated by blood vessels, and surrounded by a bath of
cerebrospinal fluid (CSF). Its well-being crucially relies on the trans-
port of solutes: the influx of oxygen and nutrients, and clearance
of metabolic waste. Due to the barrier layers between blood, tissue
and CSF in the brain, the fluid exchange between these spaces
is limited and regulated. Tracer experiments act as a proxy for
quantifying this fluid flow and exchange, in lack of more direct
medical techniques for measuring water movement in-vivo (Fig-
ure 1)1. In the nearly ten years since 2013, the brain’s waterscape
has been attracting substantial and increasing interest from the
neurocommunity; more about that to follow.

A year before the striking sleep study [39], Nedergaard had
launched a new theory for describing the brain’s waterscape: the
glymphatic system [22]. In the original glymphatic concept, CSF

1All clinical data presented and visualized here courtesy of P. K. Eide and
G. Ringstad, Oslo University Hospital – Rikshospitalet.

enters the brain via perivascular spaces surrounding brain arter-
ies, mixes with ISF and flows in bulk and convectively through
the tissue, and ISF is cleared from the brain along perivascular
spaces surrounding brain veins. With my background in analysis
of numerical methods for partial differential equations describing
biological tissue, I was immediately intrigued by this setting. I also
quickly realized that this was an underdeveloped area for applied
mathematics, and that even fundamental concepts for multiscale
modelling of the brain’s waterscape were missing. Fortunately, the
European Research Council Mathematics Panel agreed, and funded
my project proposal in the summer of 2016.

In the next few years, we very much realized that the brain’s
waterscape was even less understood and more discussed that
what I had originally thought, and that its mechanisms were sur-
rounded by controversy. It seemed as though almost every piece of
the glymphatic theory was disputed with different groups arguing
about, e.g., the role of diffusion versus convection, the existence
of any convective flow and, if existent, its directionality, the im-
portance vs. nonimportance of aquaporin channels and glial cells,
the pathways for clearance, the anatomy of the compartments
involved, etc. The list could go on and on. For us, this made the
need for mathematical and computational foundations even more
obvious to, e.g., quantify observations, bridge between species,
and test, reject or support hypotheses.

2 Quantifying brain solute transport

Transport of solutes is often described via the usual convection-
diffusion-reaction equation: in a domain Ω ⊂ ℝd (d = 1, 2, 3) and
over a time interval (0, T], find the concentration c = c(x, t) such
that

ct − divDgrad c+ div(cφ) + rc = 0, (1)

where the subscript t denotes the time derivative, div and grad
are the divergence and gradient respectively, D is the diffusion
tensor, φ is a convective velocity field and r is a kinetic reaction
rate. In addition, c may be prescribed on the boundary ∂Ω for
a.e. 0 < t ⩽ T, and initially c(x, 0) = c0(x) for x ∈ Ω. Numerical
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Figure 1. Contrast agent concentrations c1, c2 in a human brain at 6 (left)
and 24 (right) hours after injection in the lower spine.

approximations of (1) are readily computed using finite difference
and finite element methods, via, e.g., the FEniCS software [2].

2.1 Modelling the glymphatic theory via stochastic fields
Now, in our first step towards modelling human brain solute trans-
port [7], we took a just-published clinical study as a starting point
[32]. Ringstad, Vatnehol and Eide [32] had injected a contrast agent
into the fluid-filled spaces surrounding the spine, and then imaged
its whereabouts within the brain 1–48 hours later (Figure 1). They
concluded that it seems unlikely that diffusion alone explains the
brain-wide distribution. We asked: “is it?” and were curious as to
whether mathematical modelling could support, quantify and/or
add to this statement.

Stochastic diffusion. First, in order to quantify the unlikeliness of
diffusion as a sole mechanism, a key question was how to capture
the uncertainty associated with the brain’s diffusivity D as a random
field. Importantly, we aimed to ensure that diffusivity samples were
positive, with a literature-based expected valueD∗

g , and appropriate
variability. To this end, we represented D as a continuous random
field

D∗(x,ω) = 0.25D∗
g + D∗

f (x,ω),

where for each fixed x ∈ Ω, D∗
f (x,ω) is a gamma-distributed ran-

dom variable with a prescribed shape (k = 3) and scaling (θ =
0.75D∗

g /k). To also enforce continuity and to effectively sample the
diffusion field, we drew samples of D∗

v by first sampling a Matérn
field (with a given smoothness and correlation length), and then
mapping it onto a gamma random field via a copula (see, e.g., [7]
and references therein for further details). Next, we pieced together
inputs from several sources: a human brain finite element mesh
with nearly two million vertices and ten million cells, and a upwards-
travelling contrast agent distribution on the mesh boundary based
on an eye-norm estimation of the published data [32].

In short, we found that the uncertainty in the diffusion field
magnitude had a substantial impact on the amount of contrast
agent both in the grey and white matter. While the clinically ob-
served distribution of contrast in the grey matter was well within
the expected variability of diffusion, its distribution into the white
matter was not. We could thus support the claim that diffusion
was likely not sufficient as a sole mechanism, but at the same
time highlight that diffusion was likely nearly sufficient. Further,
we demonstrated that local variations (i.e., heterogeneity) in the
diffusion field had little impact on expected values, and thus that
contrast agent distribution in larger brain regions could be well
approximated by average diffusion coefficients.

Stochastic convection. We next asked how we could represent the
convective velocity φ = (φ1,φ2,φ3) described by the glymphatic
theory in a stochastic setting at the brain scale? Well,
• φ varies more after a distance proportional to the mean dis-
tance between arterioles and venules (λ ≈ 1mm);

• the vasculature is random and independent of space in the
sense that the presence of paraarterial or paravenous spaces
are equally likely at any point in space (hence the expected
value of each φi is zero);

• φ is continuous and divφ = 0; and
• older experimental studies indicate an expected velocity mag-
nitude E(‖φ‖) = vavg = 0.17 µm/s with some variability.

In turn, we defined the stochastic glymphatic circulation velocity
field φ as the curl of three standard independent identically distrib-
uted Matérn fields with correlation length λ and scaled to align
with the expected value and variability. Then, again using Monte
Carlo simulations, we computed c samples via (4), but now with
non-zero φs.

Surprisingly (or perhaps not), we found that the expected tracer
distribution with or without the glymphatic velocity were nearly
identical and with little variability. Thus, on average, small fluctu-
ations in the CSF/ISF velocity did not increase (or decrease) the influx
or clearance of contrast agent in the brain on a larger scale. Indeed,
further model variations, such as including a directional flow at the
macroscale and allowing for local fluid influx and/or efflux, were
required for the convective terms to effectively contribute to the
solute transport [7].

Remark 2. Despite its limitations, this uncertainty quantification
study felt like a true breakthrough: we had taken advantage of an
original mathematical approach and produced new physiologically
relevant insights. Importantly, it was the first study by my team
that had been accepted and published in Fluids and Barriers of the
Central Nervous System, a domain-specific journal read by everyone
and anyone interested in brain mechanics, including neurosurgeons
and neuroradiologists, neuroscientists, biophysicists, bioengineers
(and mathematicians).
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(a) Subject-specific mean diffusivity D̄∗ extracted from diffusion
tensor imaging.

(b) Optimal convective flow field φ (streamlines) between 6
and 24 hours post contrast injection (cf. Figure 1), estimated by
high-dimensional inverse modelling [40].

Figure 2

Remark 3. Another, moremathematical, question is how to sample
Matérn field efficiently, especially in the context of more advanced
Monte Carlo methods over non-trivial geometries. As such, this
physiological problem setting also guided us to develop new samp-
ling and Monte Carlo algorithms [8].

2.2 Identifying convective flow: An inverse problem
With these insights, we understood more about the roles and prop-
erties of diffusion and convection via CSF/ISF flow within the brain.
We also understood that in order to get much further, we needed
a closer collaboration with the clinicians and better access to the
raw data. Luckily, Prof. P.-K. Eide and Dr. G. Ringstad at Oslo Uni-
versity Hospital were very willing to share their data and expertise
with us and very enthusiastic about exploring how computational
modelling could contribute to quantify and interpret their clinical
findings.

We then found ourselves in the unprecedented position of
having multi-modal magnetic resonance (MR) data, including T1-
and T2-weighted structural images, T1-maps, diffusion tensor im-
ages and contrast MR images, available for several individual in
different cohorts. MR data are characteristically at high spatial res-
olution, but only available at a sparse set of discrete time points,
e.g., {1, 6, 24, 48} hours after contrast injection. These images
combined allowed us to segment and construct subject-specific
finite element meshes, interpolate subject-specific diffusion tensor
fields (Figure 2 (a)), and map MR contrast signal intensities onto
finite element concentration fields for each subject and each time
point (Figure 1).

Remark 4. In fact, to handle this data set, we developed and
published an open-source pipeline going from magnetic resonance
brain images to finite element simulations, accompanied by an
open-access introductory booklet [25].

An optical flow problem? Now, given this data set, could we
identify and quantify the convective flow of ISF/CSF within the
brain? Or the task in more mathematical terms: given non-negative
scalar fields c1, c2, identify a transport field φ that maps c1 onto
c2 in a (to be defined) suitable sense.

This is a classical problem setting, known in computer vision as
the optical flow problem [21]. The idea is that given c1, c2 ∶ Ω→ℝ
at t1, t2 for 0 ⩽ t1 < t2, find an optimal φ∶ Ω× [t1, t2] → ℝd that
minimizes an objective functional J,

min
φ

J ≡ min
φ

∫
t2

t1
∫
Ω
f 2 dxdt+ α2R2. (2)

In the original optical flow setting, it is assumed that φ maps c1 to
c2 by convective transport alone – corresponding to

f = ct + div(φc), (3)

and the initial and final conditions c(t1) = c1, c(t2) = c2. The
choice of regularization term R (and also f for that matter) gives
variations of the method; one option is to minimize the kinetic
energy:

R2 = ‖cφ ⋅ φ‖L1([t1,t2])×L1(Ω) ≡ ∫
t2

t1
∫
Ω
cφ ⋅ φdxdt.

This formulation yields the L2-Monge–Kantorovich mass transfer
problem, analysed across three centuries (see [3] and references
therein), and used by Tannenbaum, Ratner et al. [30] early on to
study mouse brain transport via in-vivo imaging.

However, when we applied this method to our human image
data set, we quickly faced several challenges. First, by considering
transport by convection alone (3), we ignore the substantial con-
tribution from diffusion. Second, we found the method sensitive
to the choice of the regularization parameter α > 0. And third,
c ≈ 0 locally, for which (2) is not obviously well posed. We there-
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fore needed to develop a more physiologically accurate and more
numerically robust approach.

Bilinear flow control. Still targeting the task of “given c1,c2∶ Ω→ℝ
at t1, t2, identify a convective flow field φ defined over the time
interval [t1, t2]”, we instead considered the bilinear optimal control
problem of finding minimizers

min
c,φ

(‖c(t2) − c2‖2 + α2R2), (4)

subject to c(t1) = c1, and such that (1) holds (with r = 0) over
(t1, t2]. We let R=‖φ‖L2 + |φ|H1 , though that choice can easily be
reevaluated. Note that we deliberately allow for non-divergence-
free velocity fields in light of our previous results (Section 2.1)
indicating that local fluid influx and efflux may be key for effective
convective transport. This problem setting is very similar to that
studied in terms of well-posedness and existence by Glowinski
et al. [20] modulo choice of regularization and incompressibility
(divergence-free) constraint (or lack thereof).

There are two main approaches to solving the constrained
minimization problem (4): either (i) introducing a Lagrange mul-
tiplier for the PDE-constraint and solving the resulting nonlinear
Euler–Lagrange problems directly (the all-at-once approach), or
(ii) iteratively solving the optimization problem by solving the PDE-
constraint (1) with c1 as initial condition for a series of φ by means,
e.g., a quasi-Newton method (the reduced approach). After nu-
merical experiments and comparisons, we found that the latter
approach (using an L-BFGS algorithm) was more robust for our
uses in the sense that this method successfully converged for most
patients and time intervals between brain scans and yielded con-
sistent results for different mesh resolutions and values of the
regularization parameters.

Remark 5. Our previous work on automated solution of high-
dimensional inverse problems and accompanying software dolfin-
adjoint [2,18] proved to be very useful here.

Ultimately, we thus decided to estimate net (time-averaged) ve-
locity fields φ∶ Ω→ℝd in the contrast agent influx phase (t1, t2) =
(6, 24) h and clearance phase (t1, t2) = (24, 48) h for each pa-
tient by solving (4) (using subject-specific finite element meshes,
diffusion tensors and concentration observations) via a reduced
approach using a fixed maximal number of iterations (Figure 2 (b)).
Interestingly, for all subjects and time intervals, we identified per-
sistent velocity fields with brain-averaged velocity magnitudes
(i.e., flow speeds) of ∼1–8 µm/min. These flow speeds corres-
pond to bulk flow rates of 0.1–0.8 µL/(gmin) – a range which
compares fascinatingly well with estimated bulk flow rates of
0.1–0.3 µL/(gmin) from early (1970s–80s) tracer experiments in
cats [1]. Interestingly, we can also estimate the net fluid influx/efflux
by computing, e.g., the brain-wide average of divφ, and find that

water dominantly flows into the brain (e.g., by filtration from the
blood stream) at a rate of ∼1–4min−1.

Open problem 6. Our findings suggest that high-dimensional in-
verse modelling offers a powerful avenue of investigation for the
brain’s waterscape. However, a question that remains is how well-
posed the optimization problem is with respect to the uncertainty
in the input data and choice of regularization functional. Moreover,
clearly there are “terra incognita” (or perhaps rather “mare incog-
nita”) for which there is little information in the medical images,
i.e., little or no contrast agent present, and where velocity field
estimates intuitively would be associated with substantial uncer-
tainty. Quantifying the uncertainty and information level required
for reliable flow estimates in this setting is a open problem.

So, using stochastic and inverse modelling as described, we
have quantified the relative contributions of diffusion and convec-
tion in brain solute transport, suggesting that these modes coexist
and co-contribute. The next question is: given that there is a per-
sistent convective fluid flow within the brain parenchyma, what
could be the mechanisms and the brain mechanics allowing for
such a flow?

3 The brain as a pulsating poroelastic medium

From the viewpoint of mechanics, the brain is an almost surprisingly
soft elastic medium, enclosed and protected by the stiffer men-
inges and much stiffer skull, and permeated by a number of fluid
networks including the blood-filled vasculature (arteries, capillaries
and veins), the ISF-filled extracellular space between brain cells,
and potential CSF- or ISF-filled perivascular spaces surrounding
the vasculature. With every heart beat (the cardiac rhythm) and
breath (the respiratory cycle), your brain expands and contracts
with displacements of the order of 1mm and volume changes of
the order of 1 cm3. The precise interplay and transfer of forces
and sources between these compartments, and how these change
with age and disorders, still lacks understanding and quantification
however.

In pioneering work, Tully and Ventikos [34] introduced the
multiple-network poroelastic theory (MPET), a theory originating
in fractured geological reservoirs, in the context of modelling brain
solid and fluid mechanics. Specifically, the quasi-static MPET equa-
tions enforce balance of momentum and mass and read as: for
a given number of networks J∈ℕ, Ω⊂ℝd (d= 1,2,3), and a time
interval I find the displacement field u ∶ Ω× I → ℝd and the j-th
network pressure field pj ∶ Ω× I for j = 1,…, J such that

−div(σ(u)) +∑ j αj gradpj = f,

∂t(sjpj + αj divu) − div κj gradpj + Tj(p) = gj.
(5)
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Figure 3. Top: Brain displacements and arterial blood network pressure predicted by a pulsatile fluid
influx and the MPET theory (5) (snapshot in time). Below: A posteriori error indicators (sagittal view)
on initial (left) and adaptively refined final (right) mesh [33].

Here σ(u) is the elastic stress-strain relationship and T describes the
transfer of mass between fluid networks. In the linear and isotropic
case,

σ(u) = 2με(u) + λdiv(u)I, ε(u) ≡ 1
2
(gradu+ graduT),

Tj(p) = ∑ i ξj i(pj − pi).

with Lamé parameters μ > 0 and λ > 0. Each network j is equipped
with its Biot–Willis coefficient αj ∈ (0,1]with∑jαj ⩽ 1, its storage
coefficient sj > 0, and its hydraulic conductivity tensor κj, while
the network interactions are described via the exchange coeffi-
cients ξj i. We also note that the fluid (Darcy) velocity vj in network
j is defined by

vj = −κj gradpj. (6)

For simplicity, consider the basic boundary conditions u= 0, pj = 0
on ∂Ω and initial conditions pj(0) = pj,0 here.

In the case J=1, theMPET equations reduce to Biot’s equations,
whose properties have been studied for decades (and still actively
are). The general MPET equations however seemed to have received
much less attention from the mathematical community.

3.1 MPET as an elliptic-parabolic problem
To analyse approximations of the MPET equations (Figure 3), we
realized that the framework of coupled elliptic-parabolic problems
as introduced by Ern and Meunier [17] provided an ideal starting

point. Specifically, this framework considers variational problems
in space and time of the form “given bilinear forms a, b, c, and d
and input data f and g, find u ∈ H1(I;Va) and p ∈ H1(I;Vd) such
that, for almost every t ∈ I,

a(u, v) − b(v,p) = ⟨f, v⟩∗ ∀v ∈ Va,

c(pt,q) + b(ut,q) + d(p,q) = ⟨g,q⟩∗ ∀q ∈ Vd,
(7)

with the initial condition p(0) = p0”. Crucially, under natural as-
sumptions on the bilinear forms and the underlying (Hilbert) spaces,
and subsequently spatial and temporal discretizations, Ern and
Meunier [17] derived optimal stability estimates, a priori error
estimates and a posteriori error estimates for such problems.

Introducing Va = H1
0(Ω;ℝd), Vd = H1

0(Ω;ℝJ) and denoting
p = (p1,…, pJ) and analogously for α, the MPET equations (5)
take the form of a coupled elliptic-parabolic problem (7) via the
identifications

a(u, v) = ⟨σ(u), ε(v)⟩,

b(u,p) = ⟨α ⋅ p,divu⟩,

c(p,q) =
J

∑
j=1

⟨sjpj,qj⟩,

d(p,q) =
J

∑
j=1

⟨κj gradpj,gradqj⟩ + ⟨Tj,qj⟩,

(8)

Clearly, Va and Vd as defined are Hilbert spaces, dense in La =
L2(Ω;ℝd) and Ld = L2(Ω;ℝJ), respectively, a is symmetric, con-
tinuous and coercive if μ > 0, 2λ+ dμ > 0), b is continuous for
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αj ∈ (0, 1] and c is symmetric, continuous and coercive for sj > 0.
By assuming that the exchange coefficients are positive, symmet-
ric ξj i = ξi j > 0, and bounded, and that the conductivities are
bounded (including from below: κj > κmin > 0), shuffling terms and
the Poincaré inequality gives that d is symmetric, coercive and con-
tinuous, then stability and uniqueness follows for (weak) solutions
of the MPET equations (5) [17].

Introducing a conforming finite element discretization of Va

and Vd relative to a mesh 𝒯h with mesh size h and a first-order
implicit time discretization with time steps τn to define discrete
approximations uhτ and phτ, a priori and a posteriori error estimates
(Figure 3) also follow.

Theorem 7 (Eliseussen, Rognes and Thompson [12]). For solutions
(u,p) and approximations (uhτ,phτ) of the MPET equations, and
for each time step tn, n ∈ {0, 1,…,N},
‖u− uhτ‖L∞(0,tn;H1) + ‖p− phτ‖L∞(0,tn;L2) + ‖p− phτ‖L2(0,tn;H1)

≲ η1 + η2 + η3 + η4 +ℰh0(u0,p0) +ℰh(f,g),

where η1,η2,η3,η4 are a posteriori computable quantities involving
appropriately weighted cell and facet residual contributions, ℰh0

and ℰh are determined by the approximation of the initial data
and source terms, respectively.

3.2 The incompressible MPET equations
As the human brain is composed of ≈ 80% water, it is widely
considered (nearly) incompressible (λ→∞ in (5)). It therefore seems
highly relevant to ask if the variational formulation (7) with forms
given by (8) and the estimates of Theorem 7 are robust with respect
to λ? The answer is no: the continuity of the linear elasticity form a
(and thus the error estimates) degenerate as λ → ∞. Indeed, it is
illuminating to take a look at the structure of the MPET equations
in this scenario. Set sj = 0 to reveal the extreme cases. As λ → ∞,
divu → 0, the MPET equations decouple into a coupled Darcy flow
system for p = (p1,…,pJ) and an elliptic equation for u,

−div κj gradpj + Tj(p) = gj, (9)

−div2με(u) = f−∑ j αj gradpj.

We can thus expect finite element discretization of the MPET equa-
tions in the incompressible limit to be wrought with analogous
challenges as for the linear elasticity equations.

How should we remedy this situation? An appealing solution,
first introduced in the context of Biot’s equations, is to introduce
the total pressure p0 as a new variable, p0 = λ divu− α ⋅ p. Then
the action of the MPET operator transforms into

⎛⎜⎜
⎝

−div2με −grad 0
div λ−1 λ−1α
0 λ−1αT∂t ̃C + λ−1ααT∂t

⎞⎟⎟
⎠

⎛⎜⎜
⎝

u
p0
p

⎞⎟⎟
⎠
,

This formulation is indeed robust in the incompressible limit with
energy estimates uniform in λ and (subsequently a priori error
estimates for stable discretizations):

Theorem 8 (Lee et al. [23]). Given sufficiently regular f, gj and
initial conditions I0, solutions u, pj to system (5) satisfy an energy
estimate of the form

‖ε(u)‖L∞(I,L2(Ω)) +∑ j(‖pj‖L∞(I,sjL2(Ω)) + ‖pj‖L2(I,κjH1
0(Ω)))

≲ I0 + ‖f, ̇f ,gj, ̇gj‖,

with inequality constant independent of the parameter λ.

Preconditioning by congruence. When next turning to the efficient
solution of the MPET equations via preconditioned iterative meth-
ods, an interesting puzzle appeared with a charming solution motif
[27,28]. To illustrate, consider a coupled Darcy flow with exchange
system like (9) written as

Ap = (−KΔ+ E)p = b,

where K = diag(κ1,…, κJ) and

Ei j = −ξi j for i ≠ j, Ei i = ξj, ξj = ∑ i ξj i.

Block-diagonal preconditioners B of this system easily yield con-
dition numbers that grow with the ratio between the exchange
ξj i and conductance κj coefficients [28]. But, can the task of con-
structing block-diagonal preconditioners be simplified by a linear
change of variables p ↦ ̃p with a matrix P (p = P ̃p)?

By definition, a matrix A is diagonalizable by congruence if
and only if there exists a matrix P such that PTAP is diagonal.
Further, two matrices A and B are simultaneously diagonalizable by
congruence if there exists a matrix P such that both PTAP and PTBP
are diagonal. Now, if A is a real, symmetric and positive definite
and B is a real symmetric matrix, then A and B are simultaneously
diagonalizable by congruence. In our case, K is symmetric and
positive definite as long as κj > 0 and E is symmetric; therefore, K
and E are simultaneously diagonalizable by congruence.

Next, in general, if C = A−1B has J distinct eigenvalues with ei-
genvectors vj, then the matrix P = {vj}Jj=1 constructed from these
eigenvectors diagonalizes A and B by congruence. This observation
gives a direct construction for P in terms of the eigenvectors of
K−1E. The transformed system is then block-diagonal and easily pre-
conditioned with condition numbers that are uniform for a range
of exchange and conductance parameters [28]. Interestingly, the
construction extends to the MPET system [27].

3.3 Brain-CSF interactions
Remark 9. The total pressure formulation of the MPET equations is
also advantageous when considering the fluid-structure interaction
between the poroelastic brain and the CSF that surrounds it and
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Phase I

Phase II

Phase III

Phase IV

Figure 4. Intracranial pressure and fluid flow in the brain and surrounding CSF subject to a pulsatile fluid (blood) influx in the brain –
a fluid-structure interaction problem [6, Figure 4].
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clinical applications (Figure 4) [6]. The intracranial pressure, a key
clinical measure, can be interpreted as the total pressure in the
parenchyma and the hydrostatic pressure in the CSF.

Open problem 10. In-vivo imaging options for brain pulsatility
(deformations, stresses) are currently limited, but new techniques
such as, e.g., magnetic resonance encephalography (MREG) are
coming into play. The quantification of MREG images remains
somewhat enigmatic however, and we envision that computational
fluid-structure poroelastic brain simulations could provide new
interpretations.

3.4 Impermeability and minimal Biot–Stokes stability
The permeability of the brain’s extracellular space is estimated to
be of the order 10 nm2, which is many orders of magnitude lower
than, e.g., the permeability of the blood circulation. Thus, another
limit of interest for studying brain fluid flow is the impermeable
case κ → 0. This is a particularly interesting case, often attempted
addressed by introducing the Darcy velocity (as defined by (6)) as
a separate field.

Taking the (time-discrete) Biot equations (i.e., (5) with J = 1)
and s1 = 0 as an example; these form a generalized saddle-point
system that in the limit as κ = 0 reduces to the incompressible
Stokes equations in terms of u and p. On the other hand as noted
previously (cf. (9)), in the limit as λ → ∞, the Biot equations de-
couple into an elliptic equation for u and a (mixed) Darcy equation
for (z and) p. These observations hint at close relations between
Stokes, Darcy, Biot and MPET equations, and suggest that, for
combinations of finite element spaces U ×W × P, that the pair-
ing U× P is Stokes stable and W× P Darcy stable in the discrete
Babuška–Brezzi sense. However, in the limit at κ → 0, it is highly
non-trivial to ensure uniform Darcy stability [24].

Fortunately, we could show that a revised notion, coined min-
imal Stokes–Biot stability is sufficient.

Definition 11 (Minimal Stokes–Biot stability [24]). A family of dis-
crete spaces {Uh ×Wh ×Qh}h with Uh ⊂ U,Wh ⊂W and Qh ⊂ Q
is called minimally Stokes–Biot stable if and only if
1. the bilinear form a is continuous and coercive on Uh;
2. {Uh × Qh}h are Stokes stable in the discrete Babuška–Brezzi

sense;
3. divWh ⊆ Qh for each h.

Theorem 12 (Mardal, Rognes and Thompson [24]). Minimally
stable Stokes–Biot discrete solutions at each time stepm converge,

‖um − umh ‖1 + ‖zm − zmh ‖K−1,τ;div + ‖pm − pmh ‖ ≲ hcM1 + τM2

for c ∈ ℕ (depending on regularity, order, etc.), where

M1,M2 ≲ (‖u‖,‖z‖,‖p‖,‖∂tu‖,‖∂ttu‖,‖∂tp‖,‖∂tz‖).

Figure 5. Brain blood vessels are surrounded by fluid-filled perivascular
spaces. Are these dual networks amenable for geometrical model
reduction? Pulsatile Stokes flow in perivascular spaces can accurately and
efficiently be represented by geometrically reduced models over the
centreline geometry [9, Figure 6].

Now, returning to the physiology at hand, the moderate pres-
sure differences observed clinically and the nearly vanishing per-
meability of the extracellular space suggest that extracellular fluid
flow is negligible. Could there be alternative, more permeable
pathways within the brain?

4 Perivascular fluid flow and model reduction

As the brain lacks lymphatic vessels, fluid-filled spaces surrounding
blood vessels – the perivascular spaces (PVSs) – are conjectured to
act as higher-permeability proxy pathways; “highways” for fluid
efflux and metabolic solute clearance [22,31]. At this mesoscale
(≈mm, s), the vasculature and perivasculature form slender dual
networks, running along the brain’s surface and diving into the
brain. While experimental studies indicate that solutes move rap-
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Figure 6. Fluid flow velocity profiles in idealized (A) and image-based (B) periarterial and perivenous geometries
[36, Figure 4]. The slow perivenous flow results in delayed tracer transport around veins.

idly in PVSs, a lingering question is “what are the mechanisms,
characteristics and forces underlying PVS fluid flow”?

Flow in perivascular spaces appears synchronized with the car-
diac cycle. This observation has led to the widespread notion that
perivascular flow is driven by arterial wall motion. However, can
pulsatile wall motions be a driver for net flow at this scale? To
investigate, we created computational models of an annular pe-
rivascular segment surrounding an image-based bifurcating blood
vessel (Figure 5) and induced laminar (Stokes) flow in the moving
PVS by (i) travelling pulse waves on the (inner) blood vessel wall,
(ii) pulsatile pressure differences at inlet and outlets, and (iii) static
pressure differences. Wall pulsations induce substantial pulsatile
flow, but only negligible net flow (due to their long wavelength of
∼100mm) [11]. On the other hand, even a small static hydrostatic
pressure difference can induce net flow of relevant magnitudes.
Such hydrostatic pressure differences could be induced by experi-
mental procedures [37], but are also of comparable magnitude as
transient pressure differences measured in the human brain [38].

Another disputed point is whether there is a net efflux of ISF
along perivenous spaces. The original glymphatic theory emphas-
izes this concept, as injected tracers were observed along arteries,
but not around veins at early time points, and along veins at later
time points [22]. However, could an alternative explanation for
this be connected to the geometry of brain surface arteries and
veins? We created pressure-driven Stokes flow models as well
as convection-diffusion models of tracer transport from optical
coherence tomography images of perivascular spaces surround-

ing arteries and veins to investigate [36]. PVS flow speeds were
2–6 times higher in the periarterial geometries than in perivenous
geometries (Figure 6). Interestingly, these differences in flow speeds
due to geometrical differences (area, shape) lead to delayed tracer
transport by about 25–30min, in agreement with the originally
observed delayed tracer distribution surrounding veins.

4.1 Perivascular spaces as topologically 1d-networks
Modelling the interplay between blood vessels and tissue via geo-
metrically reduced models has been an active and important re-
search topic for decades, cf., e.g., [5] and references therein. In the
brain, the characteristic dual networks formed by the cerebral vas-
culature and perivasculature define a new setting for geometrically
reduced fluid flow modelling [9].

Consider a perivascular domainΩ defined as the union of gener-
alized annular cylinder branches Ωi. Assume that each such cylinder
has a well-defined, oriented, and topologically one-dimensional
centreline Λi with coordinate s, and let Λ = ⋃i Λ

i (Figure 5). The
set of bifurcation points i.e., the points at which the centrelines of
branches meet is denoted ℬ. Finally, assume that the boundaries
pulsate with a wall speed w in the normal direction.

Under a set of assumptions on the moving geometries (axial
symmetry, radial boundary movement and fixed centreline) and
flow and pressure fields (axial symmetry, constant cross-section
pressure, axial velocity profile), we can derive a reduced system of
equations for the cross-section flux q and average cross-section
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pressure p over time t > 0 on each centreline Λi with inner and
outer radius R1, R2 (denoting q|Λi by q i and p|Λi by pi),

ρ
Ai q

i
t −

μ
Ai q

i
ss + μ

αi

Ai q
i + pis = 0 on Λi,

q i
s = f i on Λi,

(10)

where

f i(s) ≡ 2π(R i
1(s, t)w(R1, s, t) + R i

2(s, t)w(R2, s, t)).

In (10), ρ is the density of the fluid and μ its viscosity, Ai = Ai(s, t)
denotes the cross-section area, while α̂i = α̂i(s, t) is a lumped flow
parameter that depends on the domain geometry and the choice of
axial velocity profile. We also define the (one-dimensional) normal
stress induced by ̂q and ̂p as

σ ≡ μ
A
qs − p,

which corresponds to an average of the axial (s-)component of the
normal stress in each cross-section.

At the bifurcation points b ∈ ℬ ⊂ Ω, we impose conservation
of flux and continuity of normal stress,

qp(sp) = qd1(sd1) + qd2(sd2),

σp(sp) = σd1(sd1) = σd2(sd2),

where Λp and Λd1, Λd2 represent centrelines of the parent and
daughter branches meeting at the bifurcation point b, and s⋅ the
respective coordinates of b.

This system is particularly amenable for a variational finite ele-
ment formulation imposing the flux conservation condition weakly
using a Lagrange multiplier. Relative to a finite element mesh 𝒯
of the centreline Λ composed of mesh segments 𝒯i (one for each
centreline branch Λi), we define the
• flux space Vh as the space of continuous piecewise quadratics
over 𝒯i for each i,

• pressure space Qh as the space of continuous piecewise linears
on 𝒯, and

• Lagrange multiplier space Rh = ℝ|ℬ|.
The discrete problem then reads as follows: for each discrete time
tk and time step τ, find qh ∈ Vh, ph ∈ Qh and λh ∈ Rh solving

a((qh,ph,λh), (ψ,φ, ξ)) = Lk((ψ,φ, ξ))

for all ψ ∈ Vh, φ ∈ Qh, and ξ ∈ Rh. Here, a is defined by

a((q,p,λ), (ψ,φ, ξ))

= ∑
i∈ I

∫
Λi
(C iq iψ i + τμ

Ai q
i
sψ i

s + q i
sφi − τψ i

spi)ds

+ ∑
b∈ℬ

λb[ψ]b + ξ b[q]b,

where C i = A−1
i (ρ+ τμα i), and λb (and ξ b) is simply the λ (or ξ )

corresponding to the point b, and the natural jump is

[ψ]b = ψp(b) − ψd1(b) − ψd2(b).

This formulation provides an inexpensive and reasonably accurate
framework for estimating pulsatile perivascular fluid flow in large
networks, and thus establishes a mathematical foundation for
future computational studies of perivascular flow and transport
(Figure 5) [9].

Open problem 13. Originally, I was planning on coupling the vascu-
lature and perivascular spaces with the tissue via topologically one-
dimensional dual networks embedded in the three-dimensional
volume, see e.g., [5]. Due to the controversy regarding the exist-
ence of flow in brain PVSs and extracellular space, we did not go
further with this approach, and as such it remain as (at least) an
interesting mathematical problem.

5 Bridging electrochemistry and fluid mechanics

When you are thinking about the brain, the first thing that comes
to mind is probably not brain fluid flow. Indeed, neuroscience is
possibly foremost occupied with the electrical signalling of the
brain. These signals are however generated by electric potential
differences, which in turn are induced by ion concentration differ-
ences [29]. On the other hand, differences in ion concentrations
also induce water movement by osmosis. Thus, up till now, we
have only considered one (mechanical) piece of the puzzle, while
ignoring electrical and chemical effects. The challenge is that

the coupling between electrochemical effects, fluid transport
and elastic deformation is particularly difficult and is only
little understood, specifically in the brain [19].

By a pure serendipity, just as we were getting ready to address
this challenge, Mori [26] published an elegant and comprehensive
multidomain tissue-level model ionic electrodiffusion and osmotic
water flow in biological tissue. In this framework, the tissue do-
main Ω is composed on R coexisting compartments (for instance
neuronal, glial, and extracellular spaces) with |K| interacting ionic
species (such as sodium Na+, potassium K+, chloride Cl−). The
coupled, time-dependent, nonlinear system of PDEs describes the
volume fractions αr, ion concentrations [k]r for k ∈ K, electric po-
tentials φr, mechanical pressures pr, and fluid velocities ur for each
compartment r = 1,…,R (see [13,26]). For instance, in compart-
ments r=1,…,R−1, themovement of each ion concentration [k]r
is governed by ∂t(αr[k]r) + div J kr ∝ J krR, where J kr is the ion flux
density and J krR is the transmembrane water flux between the com-
partments r and R. Coupling (chemical) diffusion, drift due to the
electric field, as well as fluid flow within each compartment, yields
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Figure 7. Accurate methods for simulating the interplay between chemical, electrical and mechanical quantities of interest
(here during wave propagation through a 10mm line of brain tissue) is an essential foundation for studying computationally the role
of the brain’s waterscape in brain signalling and vice versa [13].

ion fluxes of the form

Jkr = −Dk
r [k]r −

Dk
r zk

ψ
[k]r gradφr + αrur[k]r;

see the aforementioned references for a complete description.
The combination of diffusion, nonlinear reaction and convec-

tion dynamics makes this a highly interesting system to approximate
numerically using, e.g., finite element or spectral methods [13].
Moreover, the underlying physiology induces sharp wave fronts that
require a very fine spatial and fine temporal resolution for all cur-
rent methods (Figure 7). As such, the numerical simulation of ionic
electrodiffusion and water movement remains a real challenge, and
solution approaches that retain accuracy at lower computational
expense could enable further uptake in the community.

Remark 14. As the Waterscales project nears its end, it has been
rewarding to observe its trajectory from roots in numerical analysis,
rapid impact of poroelasticity and fluid dynamics in brain mechanics,
and stretching toward impact in neuroscience in the long run.
Our most recent work [15] took us back to the project’s origins,
by realizing a collaboration with medical experimentalists at the

GliaLab at the University of Oslo involved in the development of the
original glymphatic theory, while its publication in eNeuro points
towards a closer relation with the neuroscience community.

Remark 15. Another question is whether the tissue level is the ap-
propriate scale for modelling the interplay between electrical, chem-
ical and mechanical effects. Indeed, we can envision a paradigm
for modelling excitable tissue at the level of cells instead, with ex-
plicit representation of cell membranes and spaces. This is however
a story for another day [14,35].

6 Computational abstractions and algorithms

Over the last decades, we have witnessed a tremendous increase
in the physical, mathematical, numerical and computational com-
plexity of models for physiological processes. To keep up, there
has been a corresponding change in how algorithms and soft-
ware frameworks for the numerical solution of (partial) differential
equations are designed. In the context of finite element methods,
the FEniCS Project provides a computational platform combining
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Figure 8. Computational representations of mixed-domain and mixed-dimensional problems take advantage of mappings within
(simplicial) complexes such as meshes and submeshes, faces and stars [10, Figure 4].

high-level abstractions for the specification of discrete variational
formulations with automated code generation of optimized ker-
nels [2,18]. However, FEniCS support for multidomain, multiscale
and/or multiphysics problems has been sorely lacking.

A core Waterscales aim was to remedy this situation by design-
ing numerical algorithms and software abstractions that allow for
high-level specification and high-performance forward and reverse
solution of models with multiscale features. We addressed this goal
by designing and introducing mathematical software concepts to-
gether with lower-level algorithms for expressing, representing, and
solving systems of PDEs coupled across interfaces or subdomains
(Figure 8) [10]. These tools enable automated assembly and solution
of a wide range of mixed finite element variational formulations,
such as, e.g., the finite element spaces and formulations involved
in the reduced perivascular flow models (10), interactions across
the cell membrane in geometrically resolved models of excitable
tissue [16, 35] or fluid-structure interfaces [6]. All algorithms are
publicly and openly available via the FEniCS Project software [2,10].

Open problem 16. High-level computational specification and
automated solution of, e.g., coupled n × (n − 2)-dimensional
problems (n ⩾ 2), such as to represent interactions between the
(peri)vasculature and CSF or tissue, comes with an additional set of
challenges including, e.g., non-conforming averaging and exten-
sion operators and computational geometry classification problems,
and remains an open problem.

7 Brain clearance and neurodegeneration

All-in-all, why are we really so interested in solute transport in the
human brain? Well, there are two intertwined clinical reasons –
either to transport treatment drugs into the brain, or to understand
how metabolic waste clears from the brain – in order to better
comprehend and hopefully treat neurodegenerative diseases such
as, e.g., Alzheimer’s disease.

With new and quantitative physiological insights at hand, we
could now mathematically describe the role of dynamical clearance
in the propagation of toxic proteins across the brain. Representing
the brain’s connectome (i.e., fiber bundle pathways) by a graph
(𝒱,ℰ), we study the distribution of the protein concentrations pi
and regional clearance values λi (i ∈ 𝒱), evolving via the graph

Figure 9. Stages of toxic protein concentrations (coronal view upper row,
sagittal view lower row) governed by (11). Courtesy of G. Brennan,
Mathematical Institute, University of Oxford.

Laplacian L that describes anisotropic diffusion and nonlinear reac-
tions as

∂tpi = −ρ
N

∑
j=1

Li jpj + (λcrit − λi)pi − αp2i ,

∂tλi = −βipi(λi − λ∞
i ),

(11)

with initial conditions on pi,λi; here αi,βi are kinetic parameters,
and λcriti and λ∞

i critical and minimal clearance values, respect-
ively [4].

The local (|𝒱| = 1) dynamical system (11) admits a class of
“healthy” fixed points (p, λ) = (0, λ) for any λ ⩾ λ∞, stable for
λ > λcrit, and also unconditionally stable, “unhealthy” fixed points
(α−1(λcrit − λ∞), λ∞). The full system describes intriguing path-
ways of toxic protein propagation and clearance decay (Figure 9)
in which the dynamic clearance waterscapes alter disease progres-
sion [4].

8 Concluding remarks and outlook

In my original project proposal, I wrote that Waterscales would be
bridging the fluid mechanics across scales and electrophysiology
of the brain – with ample opportunities for further mathematical,
numerical and more applied study. Indeed, the brain’s waterscape
has proven to be a rich field for applied and computational mathem-
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atics, which we have only begun to explore. We have many more
questions, both in terms of mathematics and physiology, now than
when we started. An important interdisciplinary lesson has been
that medicine is not mathematics: uncertainties prevail and a single
published experiment or clinical study is not “proof” nor settles
a case once and for all. However, we have successfully created
new mathematical models, new numerical methods, new computa-
tional technology and new physiological insights, and importantly,
a vibrant research environment targeting ground-breaking research
in computational brain electromechanics ready for new challenges.
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