
Solved and unsolved problems

Michael Th. Rassias

The present column is devoted to geometry/topology.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.

276
Consider the tiling of the plane by regular hexagon tiles, with cen-
ters in the lattice L of all ℤ-linear combinations of the vectors (1,0)
and (− 1

2 ,
√3
2 ). Glue all but finitely many tiles into position, remove

the unglued tiles to form a region, discard some of these tiles,
and arrange the remaining n unglued tiles in the region without
rotating them, in arbitrary positions such that none of the tiles
overlap. Is there a way to slide the unglued tiles within the region,
keeping them upright and non-overlapping, so that their centers
all end up in L?

Hannah Alpert (Department of Mathematics and Statistics,
Auburn University, USA)

277
Find two non-homeomorphic topological spaces A and B such
that their products with the interval, A× [0, 1] and B× [0, 1], are
homeomorphic.

Guillem Cazassus (Mathematical Institute,
University of Oxford, UK)

278
What is the topology of the space of straight lines in the plane?

Guillem Cazassus (Mathematical Institute,
University of Oxford, UK)

279
In the standard twin paradox, Greg stays at home whilst John travels
across space. John finds, upon returning, that he has aged less
than Greg. This is an apparent paradox because of the symmetry
in the situation: in John’s rest frame, it seems like Greg is doing
the moving and so should also be experiencing time dilation. The
standard explanation of the paradox is that there is no symmetry:
at some point John needs to turn around (accelerate), so, unlike
Greg, John’s rest frame is not inertial for all times. So let’s modify
the set-up: suppose that space-time is a cylinder (space is a circle).
Now, John eventually comes back to where he started without
needing to decelerate or accelerate. In this fleeting moment of
return, as the twins pass one another, who has aged more?

Jonny Evans (Department of Mathematics and Statistics,
University of Lancaster, UK)

280
The k-dilation of a piecewise smooth map is the degree to which
it stretches k-dimensional area. Formally, for a map f ∶ U → V be-
tween subsets U ⊆ ℝm and V ⊆ ℝn, or more generally between
Riemannian manifolds,

Dilk(f) = sup{|ΛkDfx| ∣ x ∈ U},

where ΛkDfx ∶ ΛkTxU → ΛkTf(x)V is the induced map on the k-th
exterior power and | ⋅ | is the operator norm. A map of rank k− 1
has k-dilation zero, so this can be thought of as a quantitative
refinement of rank.

Consider the rectangular prism Rε = [0, 1]2 × [0, ε].
(1) Let f ∶ R1 → Rε be a map of relative degree 1, that is, it restricts

to a degree-1 map between the boundaries of the rectangles.
Show that the 2-dilation of such a map is bounded below by
a C > 0 which does not depend on ε.

(2) Now let cε be the minimum 2-dilation of a surjective map
f ∶ R1 → Rε. Construct examples to show that cε → 0 as ε → 0.

Fedor (Fedya) Manin (Department of Mathematics, University
of California, Santa Barbara, USA)
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Given a triangle in the (real or complex) plane, show that there
is a natural bijection between the set of smooth conics passing
through the vertices and the set of lines avoiding the vertices.

Jack Smith (St John’s College, University of Cambridge, UK)

II Open problems

by Dennis Sullivan (Mathematics Department, Stony Brook
University; and City University of New York Graduate Center,
New York, USA)

A new problem and a new conjecture in four dimensions
Closed oriented two-manifolds were understood in Riemann’s time.
Klein discovered closed non-orientable two-manifolds in the 1880s.
Poincaré discovered that three-manifolds were complicated around
1900. Dimensions four, five and more were then evidently even
more mysterious.

Therefore, it came as a surprise in the 1950s that closed mani-
folds oriented or non-orientable up to cobounding such a manifold
of one higher dimension could be completely understood in terms
of numerical invariants called Pontryagin numbers (integers) and
Stiefel–Whitney numbers (integers modulo two).

Rochlin, mentored by Pontryagin, began the pattern by show-
ing in dimension four that the cobordism classes of oriented closed
smooth manifolds form an infinite cyclic group. The integer invari-
ant, called the signature, attached to M4 was computed from the
intersection of two-cycles in M4 as the difference between the
number of positive squares and the number of negative squares of
the symmetric intersection form. Rochlin proved the formula “the
signature equals one-third the first Pontryagin number.”

Thom extended this Rochlin pattern to all dimensions using the
geometric techniques of Pontryagin and Rochlin plus the algebraic
topology techniques of Serre, showing that, up to two-torsion,
the class of an oriented manifold was determined by the set of
Pontryagin numbers, these being the evaluation of products of
Pontryagin classes on the fundamental homology class of the
oriented manifold. Thom also showed that the non-oriented the-
ory gave a beautiful structure determined by the Stiefel–Whitney
numbers.

Hirzebruch, using Thom’s work, extended Rochlin’s formula
for the signature in a rich but explicit fashion to all dimensions; for
example, in dimension 8 the signature is one 45th of (seven times
the second Pontryagin number minus the evaluation of the first
Pontryagin class squared on the fundamental class of the manifold).

Milnor used the seven in that formula to show that the seven-
sphere has at least seven different smooth structures. The final
answer is 28, where the factor of four is related to the Dirac oper-
ator continuation of Rochlin’s contribution discussed below. The

figure shows one construction of Milnor’s generating exotic seven-
sphere, which is done by taking the boundary of the eight-manifold
obtained by connecting up like party rings tangent disk bundles of
the four-sphere as in the E8 Dynkin diagram.

Back to dimension four
Rochlin’s cobordism result depended on showing first that the
cobordism group in dimension four was determined by the value of
the first Pontryagin class evaluated on the fundamental class of the
manifold. Then secondly showing that the signature of any bound-
ing manifold had to be zero. This last proposition is elementary,
yet one of the most important facts in manifold topology.

But the most profound point comes now
Rochlin also calculated by a geometric argument à la Pontryagin
that if M4 was almost parallelizable, i.e., parallelizable in the com-
plement of a point, then the first Pontryagin number was actually
divisible by 48. Thus the signature of such a closed four-manifold,
which Rochlin proved was one third of the first Pontryagin num-
ber, had to be divisible by 16. This divisibility by 16 is the cel-
ebrated Rochlin’s theorem about almost parallelizable smooth
four-manifolds.

This was at first glance a curious result for the following reason:
being almost parallelizable for an oriented closed four-manifold
meant exactly that the self-intersection number of any mod two
two-cycle was zero mod two, the value mod two being determined
by evaluating the second Stiefel–Whitney class on the cycle.

The intersection form for integral cycles up to homology was
non-degenerate over the integers by Poincaré duality. Such even-
on-the-diagonal unimodular forms inside all symmetric bilinear
forms taking integral values were studied in number theory. There
it was known these properties meant the signature was divisible by
eight and by no more in general. A basic example is the E8 matrix,
where the (inner) products for a special basis are illustrated by the
E8 Dynkin diagram:

2 2 2 2 2 2

21 1 1 1 1 1

2

1

Each nodal basis element has self-intersection number two and
two nodal basis elements intersect exactly once if and only if there
is an edge between them, otherwise the inner product is zero. E8
is an even unimodular symmetric form of signature eight.

One knows that E8 generates the indefinite even unimodular
forms, in the sense that any such form is a direct sum of E8’s and
hyperbolic forms ( 0 1

1 0 ).
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Thus Rochlin’s theorem shows that half of the elements in the
infinite set of even indefinite unimodular forms cannot appear as
the intersection form of any smooth closed almost parallelizable
four-manifold: namely, those with an odd number of E8’s. An
example that does appear is the ubiquitous K3 complex surface
whose intersection form is two E8’s and three hyperbolic forms.

This result set the stage for another important development in
topology, geometry and analysis.

This relates to definite forms.
In number theory one also knows that there are finitely many

unimodular definite symmetric forms of a given rank, the number
growing exponentially with the rank.

Donaldson proved that none of those definite forms except
the identity form occurs as the intersection form of a smooth four-
manifold. This is the first theorem of the unexpected Donaldson
theory discovered three decades after Rochlin’s theorem.

Freedman at the same time showed remarkably that every
unimodular form occurs for closed topological four-manifolds.

Donaldson theory does not prove Rochlin’s theorem, because
Rochlin’s statement involves hyperbolic forms.

In fact, there is an intermediate class of manifolds between
smooth and topological where the analysis of Donaldson theory is
perfectly valid.

More precisely, there are two such intermediate classes of man-
ifolds, the ones with coordinate charts where the transition map-
pings are bi-Lipschitz, and the ones where the transition mappings
are quasi-conformal.

Let us call these Sobolev manifolds.

282*. Problem.
Is Rochlin’s theorem true for these Sobolev four-manifolds?

283*. Conjecture.
If Rochlin’s theorem is true for Sobolev four-manifolds, then
Sobolev four-manifolds are actually smoothable.

Information
Closed topological four-manifolds are almost smoothable, namely,
they are smoothable in the complement of a point (see surveys
and book by Frank Quinn).

Also, except for dimension four, all topological manifolds carry
unique Sobolev structures of each type.

The proof makes heavy use of the Kirby–Edwards completely
elementary and very ingenious construction of paths of homeo-
morphisms between nearby homeomorphisms in all dimensions
(late 1960s).

These paths of homeomorphisms allowed Siebenmann in 1969
to construct higher-dimensional manifold counterexamples to the

Hauptvermutung soon after he understood the precise role played
by Rochlin’s theorem about four dimensions in this question.

Operators on Hilbert Space
The signature operator twisted by a vector bundle exists in the
Sobolev context. The unbounded version exists in the Lipschitz
context. The bounded version, just using the phase of the operator
(which contains all of the topological information), exists in the
quasi-conformal context. Stiefel–Whitney classes make sense in
these settings, so the possibility of constructing Dirac operators
also makes sense. This is unknown at present (more below).

Physics
Donaldson theory is part of a larger quantum field theory which has
an effective version obtained by integrating out certain variables.

This effective version has expression in terms of Dirac operators
which depend on the tangent bundle. One knows that Rochlin’s
theorem can be deduced in a context using Dirac operators, the
Atiyah–Singer index theorem and quaternions (more below).

Physicists believe that Donaldson theory and its effective version
Seiberg–Witten theory are equivalent. From the perspective of
Sobolev manifolds, Rochlin’s theorem provides a challenge to and
an opportunity for understanding better this belief.

More history
In the middle 1960s this author, as a second year Princeton topology
grad student, was following the evidently powerful constructive
cobordism techniques of Browder and Novikov classifying smooth
manifolds in a homotopy type (simply connected) with stable tan-
gent vector bundle specified plus the covering space method of
Novikov for showing that the rational Pontryagin classes were
homeomorphism invariants. The motivation was to study firstly,
PL-manifolds in a given homotopy type without PL-stable tan-
gent microbundle specified and secondly, to study PL-manifolds
in a given homeomorphism type without PL-stable tangent mi-
crobundle specified. These formulations, suggested by the influence
of Milnor and Steenrod, had completely calculable outcomes,
whereas every other formulation did not have such completely
calculable outcomes (simply connected and dimension greater
than four).

Given a homotopy equivalence f ∶ L → M one could define in
all dimensions numerical obstructions to f being homotopic to a PL-
homeomorphism via differences of signatures of V and f−1V, where
V is a manifold cycle in M and f−1 is its transverse preimage in L.
These differences were divisible by eight because f is a homotopy
equivalence and so pulls back Stiefel–Whitney classes. There were
also modulo n versions of this picture where V is a mod n manifold
cycle.
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The vanishing for a finite generating set of these characteristic
invariants of f was necessary for f to be homotopic to a homeomor-
phism, and further to be homotopic to a PL-homeomorphism if for
the mod n characteristic cycles of dimension four the division by 8
was upgraded to a division by 16 using Rochlin’s theorem. In higher
dimensions than four this vanishing and this refined vanishing were
also respectively sufficient in the simply connected case.

(This description for simplicity has absorbed the mod two Arf–
Kervaire invariants in dim 4k− 2 [first encountered for k = 1 by
Pontryagin in his misstep of 1942] into the mod two signature
invariants in dimension 4k by crossing them with ℝP2, described
in the work with John Morgan, Annals of Math., 1974.)

The refined vanishing sufficiency was achieved in 1966 for
the PL-homeomorphism case (“On the Hauptvermutung for Man-
ifolds” Bulletin of the AMS, July 1967) and the vanishing suffi-
ciency became valid for the homeomorphism case as a corollary
in 1969 of the general topological manifold theory achieved by
Kirby–Siebenmann.

The Rochlin refinement by 16 rather than 8 gave an order-two
class in the integral fourth cohomology of L canonically defined
when f is a homeomorphism. This heretofore unnamed class was
dubbed the Rochlin class in the proceedings of the Rochlin cente-
nary conference in St. Petersburg a few years ago.

In the hands of Kirby and Siebenmann, the entire difference
between the PL- and topological manifold categories in higher di-
mensions could be completely understood by the profound factor
of two implied by Rochlin’s 16. They proved in 1969 that the home-
omorphism f was connected by a path of homeomorphisms to
a PL-homeomorphism (higher dimensions and no simply connected
hypothesis required) if and only if a “mod two Rochlin class” in the
degree three cohomology of L with ℤ/2ℤ coefficients vanished,
and all of these classes, referred to as Kirby–Siebenmann classes,
are realized by geometric examples.

These two Rochlin classes, the mod two Rochlin type class in
degree three of Kirby and Siebenmann obstructing an isotopy of
the homeomorphism to a PL-homeomorphism and the integral
Rochlin class of order two in degree four obstructing a homotopy
of the homeomorphism to a PL-homeomorphism are related by
the integral Bockstein operation. The Bockstein operation takes an
integral cochain representative of the mod two class and forms
1/2 of its coboundary to obtain an integral cocycle in degree four
(so that two times it is obviously a coboundary).

This “Bockstein of the mod two Kirby–Siebenmann class is
the order-two integral Rochlin class” discussion is related to the
important recent discovery by Manolescu, reported at the Rochlin
Conference, of the existence of higher-dimensional topological
manifolds not homeomorphic to a triangulated compact space.

More information for the Rochlin problem and the Rochlin
conjecture
Work of Kirby and Edwards (mentioned above) and work of Kirby
depending on that of Novikov was used to show in 1976 that
topological manifolds in all dimensions, except for dimension four,
could be provided with unique Sobolev structures of either type.
This used a substitution of the d-torus used in those works by an
almost parallelizable closed hyperbolic d-manifold (D. S. “Hyper-
bolic Geometry and Homeomorphisms” in the book “Geometric
Topology,” Academic Press, 1979).

Interestingly, the existence of these almost parallelizable hy-
perbolic manifolds depends on an argument learned from work
of Deligne and Mazur that the algebraic topology modulo n of
a complex algebraic variety can be defined for the algebraic variety
reduced mod p for p prime and not dividing n, and not involved
awkwardly in the defining equations of the variety.

After the opposite results of Donaldson and Freedman in 1982
it was natural to ask about their results for the intermediate class of
Sobolev four-manifolds. The answer was: Donaldson theory works
for both classes of Sobolev four-manifolds (S. Donaldson and D. S.
“Quasiconformal 4-Manifolds,” Acta Mathematica, 1989).

In studying Rochlin’s theorem in the Sobolev context, it is useful
to know that the index theorem holds there (N. Teleman) and that
there are local representatives for the Pontryagin classes defined
using the bounded phase of the signature operator in Alain Connes’
perspective of non-commutative geometry (A. Connes, N. Teleman
and D. S. “Quasiconformal Mappings, Operators on Hilbert Space
and Local Formulae for Characteristic Classes,” Topology, 1994).

Considerations related to the construction of Dirac opera-
tors and the context of smooth versus Sobolev manifolds plus
a smoothability and a Dirac operator conjecture are discussed in
D. S. “On the Foundation of Geometry, Analysis and the Differ-
entiable Structure for Manifolds” in the book “Low Dimensional
Topology,” World Scientific, 1999.

III Solutions

269
Consider two positive integers n ≥ 1 and a ≥ 2 such that

a2n + an + 1

is a prime. Prove that n is a power of 3.

Dorin Andrica and George Cătălin Ţurcaş
(Babeş–Bolyai University, Cluj-Napoca, Romania)
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Proof by the proposers
Proof 1. Write

a2n + an + 1 = a3n − 1
an − 1

.

If our number is a prime, then all factors of a3n − 1 must be factors
of an − 1 and our number. Firstly, we will prove that 3 ∣ n. Suppose
this is not true. Then a3n − 1 is divisible by a3 − 1, and from
gcd(3,n) = 1 it follows that

gcd(a3 − 1,an − 1) = a− 1,

hence a3n − 1 is divisible by B = a2 + a+ 1. Now we have gcd(B,
an − 1) = 1 and

gcd(B,a2n + an + 1) = 1

(because a2n + an + 1 is a prime). This is a contradiction, which
implies that 3 ∣ n.

Assuming n = 3k and b = a3, we have

a2n + an + 1 = a6k + a3k + 1 = b2k + b+ 1.

Using the above argument we obtain 3 ∣ k, and the conclusion
follows.

Proof 2. We start by presenting the following classical result.

Lemma 1. Let p ≠ 3 be a prime. Then the polynomial X2 + X+ 1
divides X2p + Xp + 1 in ℤ[X].

Proof. Let ε be a non-trivial third root of unity. Then, since p and
2p have distinct residues modulo 3, it is readily seen that

ε2p + εp + 1 = ε2 + ε+ 1 = 0,

so ε is a root of X2p + Xp + 1. However, we know that X2 + X+ 1
is the minimal (hence irreducible) polynomial of ε over ℚ, therefore

(X2 + X+ 1) ∣ (X2p + Xp + 1)

in ℚ[X]. As the polynomials are monic with integer coefficients, it
follows that the divisibility holds over ℤ[X].

Returning to our problem, suppose that n has a prime factor
p ≠ 3. Write n = pm. Then, by Lemma 1,

(a2m + am + 1) ∣ (a2n + an + 1).

Since a ≥ 2, we have that 1 < a2m + am + 1 < a2n + an + 1,
therefore a2n + an + 1 is not prime.

We proved that if a2n + an + 1 is prime, then n = 3k.

Remark. A few computational experiments with MAGMA sug-
gest the following conjecture:

Conjecture. For every positive integer a ≥ 2 the numbers a2⋅3n +
a3n + 1, n = 0, 1,…, are square-free.

(i) The value a= 2 gives rise to the sequence Dn = 43
n + 23

n + 1,
n = 0, 1, 2,…. We have:
(1) D0 = 4+ 2+ 1 = 7, is a prime;
(2) D1 = 43 + 23 + 1 = 73, is a prime;
(3) D2 = 43

2 + 23
2 + 1 = 262657, is a prime;

(4) D3 = 43
3 + 23

3 + 1= 18014398643699713= 2593× 71119
× 97685839, it has three distinct prime factors;

(5) D4 = 43
4 + 23

4 + 1 is square-free, it has 16 distinct prime
factors, the smallest being 487;

(6) D5 is square-free, but not prime;
(7) D6, D7, D8, D9 and D10 are not primes, but we do not know if

they are square free.

(ii) The value a= 3 gives rise to the sequence En = 93
n +33

n +1,
n = 0, 1, 2,…. We have:
(1) E0 and E1 are primes;
(2) E2 = 109× 433× 8209;
(3) E3 = 3889× 1190701× 12557612956332313;
(4) E4 = 70957× 6627097

× 21835473162448454819220238921
× 19149704835029612299033896988868835457;

(5) E5 is square-free, but not prime;
(6) E6, E7, E8, E9, E10 are not primes, but we do not know if they

are square-free.

270
The Collatz map is defined as follows:

Col(n) ≔
⎧
⎨
⎩

n/2 if n is even,

3n+ 1 if n is odd.

Let

tm,x ≔ min(n > 0 ∶ Colm(n) ≥ x).

That is, tm,x is the smallest integer such that, if we apply the Collatz
map m times, the result is larger than x.
(a) Find t3,1000 and t4,1000.
(b) Show that, for x large enough (larger than (say) 1000), we have

t4,x ≡ 3 mod 4 or t4,x ≡ 6 mod 8.

(c) In general, for m odd and x large enough, there exists a con-
stant Xm,x such that tm,x is the smallest n > Xm,x such that
n ≡ cm mod Mm. Find Mm and relate cm to cm−1.

Christopher Lutsko (Department of Mathematics,
Rutgers University, Piscataway, USA)
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Solution by the proposer
(a) Note that, if n is odd, then 3n+ 1 is necessarily even. Thus, after
applying 3n+ 1 we need to apply n/2. Therefore, the map Col2(n)
is bounded by 3n/2+ 1/2. Similarly, Col3(n) is upper bounded by
approximately 9n/2+ 5/2. Thus,

n > 2000/9− 5/9 > 221.

Moreover, for Col3(n) to be as large as possible, both n and Col2(n)
must be odd. Therefore, we want n odd and

3n+ 1 ≡ 2 mod 4

or, equivalently,

n ≡ 3 mod 4.

The smallest n larger than 221 which is congruent to 3 mod 4
is 223.

Similarly, Col4(n) is bounded by 9n/4+ 5/4. Thus

n > 4000/9− 5/9 > 443.

Moreover, to ensure we apply the map x ↦ 3x+ 1 twice, there
are two possibilities: If n is odd, then we want

3n+ 1 ≡ 2 mod 4,

which implies

n ≡ 3 mod 4.

If n is even, then we want

3n/2+ 1 ≡ 2 mod 4,

which is equivalent to

n ≡ 6 mod 8.

The smallest such number is 446.

(b) The general formula follows from the same line of reasoning.

(c) The values Xm,x can be slightly tricky, because of the +1 in
the definition of the Collatz map; in general,

Xm,x = ⌊2
m−1/2x
3m+1/2 ⌋ or Xm,x = ⌊2

m−1/2x
3m+1/2 ⌋ + 1.

For m = 5, the same line of reasoning yields n ≡ 7 mod 8; for
m = 7 the solution requires n ≡ 3(2 ⋅ 7− 1) mod 16, where 3 is
the inverse of 3 modulo 16 (i.e., 11).

In general, for m odd, we have Mm = 2m+1/2 and

cm ≡ 3(2cm−1 − 1) mod Mm,

where 3 is the inverse of 3 modulo Mm.
A similar expression can be derived for m even, however, it is

more complicated since n could be either even or odd.

271
The light-bulb problem: Alice and Bob are in jail for trying to divide
by 0. The jailer proposes the following game to decide their free-
dom: Alice will be shown an n× n grid of light bulbs. The jailer
will point to a light bulb of his choice and Alice will decide whether
it should be on or off. Then the jailer will point to another bulb of
his choice and Alice will decide on/off. This continues until the very
last bulb, when the jailer will decide whether this bulb is on or off.
So the jailer controls the order of the selection, and the state of
the final bulb. Alice is now removed from the room, and Bob is
brought in. Bob’s goal is to choose n bulbs such that his selection
includes the final bulb (the one determined by the jailer).

Is there a strategy that Alice and Bob can use to guarantee
success? What if Bob does not know the orientation in which Alice
saw the board (i.e., what if Bob does not know which are the rows
and which are the columns)?

Christopher Lutsko (Department of Mathematics,
Rutgers University, Piscataway, USA)

Solution by the proposer
The strategy is as follows: Alice will choose ‘off’ for each light bulb
in a row, until the last bulb in each row which she will choose to
be ‘on.’ Now if the jailer chooses the final bulb to be ‘off,’ then
that row will be the only row with only ‘off’ light bulbs. If the
jailer chooses that the final bulb should be ‘on,’ then there will
be n ‘on’ light bulbs. Therefore, Bob’s strategy is, if there is a row
which is entirely ‘off,’ then he chooses that row as his n choices.
If each row has one ‘on’ light bulb, then he chooses all ‘on’ light
bulbs.

That strategy works because we have partitioned the n× n
grid into n rows of size n. If Bob does not know the orienta-
tion of the board when Alice completed it, then the problem is
trickier.

If n= 2, the same strategy works with the diagonals instead of
the rows (since the diagonals are rotationally invariant). If n = m2,
then the same strategy works, since we can divide the board into
n squares of size m×ms, and use those instead of the rows. If
n ≠m2, I do not have a rotationally invariant solution. I conjecture
that there is no winning strategy.

272
Let p and q be coprime integers greater than or equal to 2.
Let invq(p) and invp(q) denote the modular inverse of p mod q
and q mod p, respectively. That is, invq(p)p ≡ 1 mod q and
invp(q)q ≡ 1 mod p.
(a) Show that

invp(q) ≤
p
2

if and only if invq(p) >
q
2
.
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(b) Show by providing an example that, if 1 ≤ u < v are coprime
integers and α ≔ u/v, then the statement

invp(q) ≤ αp if and only if invq(p) > (1− α)q (1)

is not necessarily true.
(c) What additional assumption should p and/or q satisfy so that

the equivalence (1) holds?

Athanasios Sourmelidis (Institut für Analysis und
Zahlentheorie, Technische Universität Graz, Austria)

Solution by the proposer
(a) By coprimality, there are integers a and b such that aq+ bp= 1,
where a = invp(q) + tp and b = invq(p) + sq for some integers s
and t. Hence, we have

invp(q)q+ invq(p)p− pq ≡ 1 mod pq.

On the other hand, the left-hand side of the above relation lies in
the interval (−pq,pq). Consequently,

invp(q)q+ invq(p)p = 1+ pq. (2)

Therefore,

invp(q) ≤
p
2

if and only if invq(p) ≥
q
2
+ 1

p
.

However, the right-hand side of the above statement is equivalent
to saying that invq(p) > q/2.

(b) From relation (2) we deduce for a (rational) number
α ∈ (0, 1) that

invp(q) ≤ αp if and only if invq(p) ≥ (1− α)q+ 1
p

(3)

and

invq(p) > (1− α)q if and only if invp(q) < αp+ 1
q
. (4)

The first relation shows that

invp(q) ≤ αp implies invq(p) > (1− α)q.

However, it is clear from the second relation that the converse is not
necessarily true. Indeed, choose, for example, α = 3/7, p = 2 and
q= 5. Then inv5(2) = 3 > (1− 3/7)5 but inv2(5) = 1 > (3/7)2.

Generally, with no additional assumptions, it may happen that
αp+ 1/q is not an integer and invp(q) = ⌊αp+ 1/q⌋ > αp. Here
⌊x⌋ denotes the largest integer which is less than or equal to
the real number x. In particular, for rational α, the inequality
⌊αp+ 1/q⌋ > αp is equivalent to the inequality {αp} + 1/q > 1,
where {x} ≔ x − ⌊x⌋ denotes the fractional part of a positive
number x.

(c) In order to prevent the above scenario from happening, we
only need to add the assumption q ≥ v, v being the denominator
of α. Then, in view of relation (4), it suffices to show that

invp(q) < αp+ 1
q

implies invp(q) ≤ αp.

Indeed, we readily see that

invp(q) < ⌊αp⌋ + {αp} + 1
q
≤ ⌊αp⌋ + v− 1

v
+ 1

v
= ⌊αp⌋ + 1.

Hence, invp(q) ≤ ⌊αp⌋ ≤ αp.
We can instead assume that p ≥ v and employ relation (3) to

prove in a similar fashion the equivalence (1).
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Let cn(k) denote the Ramanujan sum defined as the sum of kth
powers of the primitive nth roots of unity. Show that, for any
integer m ≥ 1,

∑
[n,k]=m

cn(k) = φ(m),

where the sum is over all ordered pairs (n, k) of positive integers
n, k such that their lcm is m, and φ is Euler’s totient function.

László Tóth (Department of Mathematics,
University of Pécs, Hungary)

Proof by the proposer
We use the well-known formula

cn(k) = ∑
d ∣ (n,k)

dμ(n/d),

where (n, k) is the gcd of n and k, and μ is the Möbius function.
Let

S(m) ≔ ∑
[n,k]=m

cn(k).

Then for every m ≥ 1,

∑
d ∣m

S(d) = ∑
d ∣m

∑
[n,k]=d

cn(k) = ∑
[n,k] ∣m

cn(k)

= ∑
[n,k] ∣m

∑
δ ∣ (n,k)

δμ(n/δ) = ∑
n ∣m, k ∣m

∑
δ ∣n, δ ∣ k

δμ(n/δ)

= ∑
δaj= δbℓ=m

δμ(j) = ∑
δt=m

δ( ∑
aj= t

μ(j))( ∑
bℓ= t

1).

Here

∑
aj= t

μ(j) =
⎧
⎨
⎩

1, if t = 1,

0, if t > 1,
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and this gives

∑
d ∣m

S(d) = m.

Consequently, S(m) = φ(m), by Möbius inversion.
Alternatively, one can show that S(m) is multiplicative in m,

and

S(pe) = pe−1(p− 1) = φ(pe)

for any prime power pe (e ≥ 1).

Remarks
If F(n, k) is an arbitrary function of two variables, then

∑
[n,k]=m

F(n, k)

is called the lcm-convolute of the function F. Another example is

c(m) = ∑
[n,k]=m

(n, k),

representing the number of cyclic subgroups of the group ℤm ×ℤm.
More generally, if F(n1,…,nr) is a function of r ≥ 2 variables,

then the lcm-convolute of F is

SF(m) = ∑
[n1,…,nr]=m

F(n1,…,nr).

It can be shown that if F is multiplicative as a function of r
variables, then SF(m) is multiplicative in m. See [1, Section 6] for
some more details.
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Show that, for every integer n≥ 1, we have the polynomial identity

n

∏
k=1

(k,n)=1

(x(k−1,n) − 1) = ∏
d ∣n

Φd(x)φ(n)/φ(d),

where Φd(x) are the cyclotomic polynomials and φ denotes Euler’s
totient function.

László Tóth (Department of Mathematics,
University of Pécs, Hungary)

Proof by the proposer
More generally, let f ∶ ℕ → ℂ be an arbitrary arithmetic function.
We show that, for any n ≥ 1,

Mf(n) ≔
n

∑
k=1

(k,n)=1

f((k− 1,n)) = φ(n)∑
d ∣n

(μ∗ f)(d)
φ(d) , (1)

where μ is the Möbius function and ∗ denotes the Dirichlet convo-
lution of arithmetic functions.

By taking (formally) f(n) ≔ log(xn − 1) and using the well-
known identity

xn − 1 = ∏
d ∣n

Φd(x),

we deduce that

f(n) = log(xn − 1) = ∑
d ∣n

logΦd(x),

that is, by Möbius inversion,

(μ∗ f)(n) = logΦn(x),

and identity (1) gives

n

∑
k=1

(k,n)=1

log(x(k−1,n) − 1) = φ(n)∑
d ∣n

logΦd(x)
φ(d) ,

which is equivalent to the identity to be proved.
Now to prove the general identity (1) write

Mf(n) =
n

∑
k=1

f((k− 1,n)) ∑
d ∣ (k,n)

μ(d)

= ∑
d ∣n

μ(d)
n

∑
k=1
d ∣ k

f((k− 1,n)).

By using that f(n) = ∑d ∣n(μ∗ f)(d) (n ≥ 1), we deduce that

A ≔
n

∑
k=1
d ∣ k

f((k− 1,n)) =
n/d

∑
j=1

f((jd− 1,n))

=
n/d

∑
j=1

∑
e ∣ jd−1, e ∣n

(μ∗ f)(e) = ∑
e ∣n

(μ∗ f)(e)
n/d

∑
j=1

jd≡1 (mod e)

1,

where the inner sum is n/(de) if (d, e) = 1 and 0 otherwise. This
gives

A = ∑
e ∣n

(e,d)=1

(μ∗ f)(e) ⋅ n
de

= n
d ∑

e ∣n
(e,d)=1

(μ∗ f)(e)
e

.

Thus,

Mf(n) = ∑
d ∣n

μ(d)n
d ∑

e ∣n
(e,d)=1

(μ∗ f)(e)
e

= n∑
e ∣n

(μ∗ f)(e)
e ∑

d ∣n
(d,e)=1

μ(d)
d

,

with

∑
d ∣n

(d,e)=1

μ(d)
d

= ∏
p ∣n
p ∤ e

(1− 1
p
)

= ∏
p ∣n

(1− 1
p
)∏
p ∣ e

(1− 1
p
)
−1

= φ(n)
n

⋅ e
φ(e) .
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Consequently,

Mf(n) = φ(n)∑
e ∣n

(μ∗ f)(e)
φ(e) ,

which is identity (1).

Remarks
If f(n) = n (n ≥ 1), then (1) reduces to Menon’s identity

n

∑
k=1

(k,n)=1

(k− 1,n) = φ(n)τ(n),

where τ(n) = ∑d ∣n 1. See [2] for references, other generalizations
and analogs of these arithmetic identities.
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