
On the shape that matters – topology and geometry in data science
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The seemingly simple question, “What is the shape of things?”,
gains precise mathematical meaning when examined through
the lens of modern topology and geometry. This paper surveys
a few methods of topological data analysis (TDA), a powerful
tool for characterising and predicting the shape of a dataset.
Extending beyond traditional statistics, we will present various
shape descriptors offered by TDA, elucidating their computation
and practical applications. Last but not least we will demonstrate
the effectiveness of the presented methodology through several
real-world examples.

1 Mathematics of numbers

Mathematics is often regarded as the art of numbers, laying the
foundational concepts of the discipline. This Platonic view facil-
itates counting of objects, regardless of their nature. Historically,
this journey commenced with natural numbers, later incorporating
zero to represent the absence of objects. Subsequently, the need
to deal with debts introduced negative numbers, and the necessity
for division and sharing led to the creation of fractions. The evolu-
tion of more complex mathematical calculations, often originating
from geometry, spurred the quest to solve increasingly intricate
equations. This positive feedback loop resulted in the development
of more sophisticated constructs: rational, irrational, real, complex
numbers, and quaternions. For instance, quaternions are employed
in modern three-dimensional computer graphics to describe the
rotation of three-dimensional objects.

A wide range of disciplines, particularly a substantial part of
mathematical modelling, are fundamentally grounded in num-
bers. Typically, when posing a practical mathematical question,
it revolves around a single number or a set of numbers that rep-
resent, for instance, a function that is the solution to the problem
at hand.

However, this numerical perspective represents just one facet
of comprehending the world around us. We possess the ability to
count and intuitively recognise the size of objects, but our percep-
tion also enables us to abstract away extraneous details and grasp
the essential features such as the shape of objects, even in the

presence of considerable noise. This phenomenon is prominently
featured in various artistic movements, ranging from Cubism and
Impressionism to abstract art. A tangible illustration of this is the
widely recognised drawing “The Horse” by Ali Bati (see Figure 1),
showcasing our capacity to perceive evolving forms and concepts
amidst significant deformation and noise.

Figure 1. Ali Bati’s “The Horse” strikingly demonstrates how the
fundamental concept or Platonic ideal of a horse’s shape can persist, even
in the presence of considerable distortion of its physical form. This
artwork showcases the resilience of shapes we perceive despite
significant structural changes.

This artwork, which has become a popular meme, encapsulates
the Platonic idea of shape. Despite significant deformation, we
can still discern the concept of a horse in there. This human obser-
vation raises a crucial question: Are there mathematical notions
that allow us to recognise a shape amidst substantial noise and
distortion? The paper will cover state-of-the-art tools that address
this query, delving into the basic formalism and algorithms. Addi-
tionally, various applications of the introduced methodology will
be discussed.
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Figure 2. Same statistics, different shapes, the Datasaurus dozen, see [13].

2 Always visualise!

Before driving into topology, it is crucial to acknowledge that stand-
ard statistics already provide a range of basic analytical tools for
discrete shapes. These include standard statistical moments, cor-
relations between dimensions, and one- or two-sample statistical
goodness-of-fit tests, which facilitate the comparison of various
samples (a.k.a. point clouds). Although these methods have robust
theoretical underpinnings and offer assurances of limit conver-
gence, they encounter a notable limitation: they tend to condense
the characteristics of often high-dimensional and complex shapes
into a single numerical value, a statistical representation of the
shape. From the era of Anscombe’s quartet [1] to the more recent
Datasaurus dozen [13] illustrated in Figure 2, comes a persistent
message urging for visualisation of data. This is because the sole
reliance on statistical values may not be sufficient. The Datasaurus
dozen, for instance, presents very different datasets that share
nearly identical summary statistics.

Visualisation proves to be straightforward when handling two-
dimensional samples. Yet, the vast majority of datasets are much
higher dimensional, rendering direct visualisation a challenging
task. To circumvent this issue, dimension reduction techniques
are commonly employed, though they inevitably cause some loss
of information. The topological methods discussed below offer
a novel pathway for the visualisation and comprehension of data’s
shape, effectively addressing the complexities associated with high-
dimensional datasets.

3 Second star to the right and straight on till morning

Many classical topological characteristics of spaces are invariant
under continuous deformations. This property has inspired a humor-
ous adage among topologists, stating that they cannot distinguish
between a coffee mug and a doughnut, as one can be continuously
deformed into the other. This analogy, viewed positively, under-

scores the robustness of topology against substantial amounts of
noise and deformation.

The study of invariants in topology dates back to 1758, when
Euler discovered that for a convex polyhedron, the number of ver-
tices (V), edges (E), and faces (F) are interconnected by the formula
V− E+ F = 2, regardless of the specific arrangement of vertices,
edges, and faces. Euler’s insight precipitated at least two signific-
ant breakthroughs: firstly, it facilitated the representation of space
using a finite set of information, thus effectively generalising the
concept of an abstract graph, also introduced by Euler on occasion
of solving the Königsberg bridge problem in 1736. Secondly, it
provided one of the earliest topological characteristics of a space,
which essentially states that every convex polygon has one con-
nected component and encloses one cavity. Consequently, shapes
with varying numbers of connected components or cavities exhibit
distinct Euler characteristics.

Traditionally, the Euler characteristic is defined for solids, while
typical inputs in data analysis comprise a finite point sample X⊂ℝn.
Formally, such a point sample represents a discrete collection
of points, lacking any inherent geometrical structure. However,
a metaphorical “squinting of our eyes” can reveal an underlying
shape, particularly evident when examining the upper right panel
of Figure 4.

There are many ways in which the process of “squinting eyes”
can be formalised. Let us start with the concept of an abstract
simplicial complex [9] – a collection of sets that is closed under
the operation of taking subsets. For instance, the collection 𝒦 =

{c}

{a,b, c}

{a,b}{a} {b}

{a, c} {b, c}

{{a}, {b}, {c}, {a, b}, {a, c}, {b, c},
{a, b, c}} satisfies this condition, as
every subset of each set from 𝒦 is
also an element of 𝒦. This particular
simplicial complex represents a geo-
metrically filled-in triangle. Elements
of the complex are referred to as sim-
plices. The dimension of a simplex
s ∈ 𝒦, dim(s), is defined as one less than its cardinality. The
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alternating sum of the counts of simplices of successive dimensions,
∑s∈𝒦(−1)dim(s), gives the Euler characteristic of 𝒦.

One of the earliest ways of constructing abstract simplicial
complexes from point samples is attributed to Vietoris and Rips [17].
Given a finite sample X equipped with a metric d and a proximity
parameter r, this approach connects with an edge points in X
that are at most r apart. Cliques in the resulting r-neighbourhood
graph correspond to simplices in the Vietoris–Rips complex. Since
a sub-clique of a clique is itself a clique, we obtain a well-defined
simplicial complex for every r.

Although the Vietoris–Rips complex is relatively easy to define,
it has a serious drawback. For sufficiently large r, the size of the
complex grows exponentially with respect to the cardinality of X.
To circumvent this problem, both topology and geometry need
to be taken into account. First, take the union of balls of radius r,
centred at points from X. Then restrict these balls to the Voronoi
cells of their centres. The n-fold nonempty intersections of those
restricted balls correspond to simplices in the so-called alpha com-
plex, see [9]. While more challenging to compute, alpha complexes
offer the clear advantage of having sizes, under mild assumptions,
proportional to the size of X. Moreover, they can be effectively
computed using CGAL and Gudhi, European software packages in
computational geometry and topology, respectively.

Both of the presented constructions depend on the distance
parameter r, which serves as the resolution parameter. Since there
is no canonical method for choosing a single value of r, a whole
range of radii, typically spanning from zero to infinity, is considered.
Given two radii r < r ′, the complex 𝒦r obtained at radius r is
a subset of the complex 𝒦r′ obtained at radius r ′. Since both 𝒦r

and 𝒦r′ are complexes, we say that 𝒦r is a subcomplex of 𝒦r′.
In this scenario, each simplex is equipped with the value of r at
which it appears for the first time, referred to as a filtration of the
simplex.

This approach transforms the point sample X into a multiscale
combinatorial structure of a filtered simplicial complex that ef-
fectively summarises the data and formalises the “squinting eyes”
process. For an example of filtered simplicial complex depending
on a growing proximity parameter, please consult Figure 3.

4 Summaries of filtration: ECC

The classical concepts of Euler characteristics and filtration come
together handily. By combining these methods and computing the
Euler characteristic for each radius in a filtration we get a function
called the Euler characteristic curve (ECC). It assigns to a radius
r ≥ 0 the Euler characteristic of a complex 𝒦r and constitutes the
most fundamental multiscale summary of the shape of the sample.
Figure 4 exemplifies the ECC for the point sample at the upper
right panel.

Figure 4. Points sampled from a circle with a bit of uniform noise (upper
right) and the corresponding Euler characteristic curve.

The Euler characteristic, advantageously positioned at the con-
fluence of topology, differential geometry (as exemplified by the
Gauss–Bonnet theorem), and vector calculus (illustrated by the
Poincaré–Hopf theorem), emerges as a versatile and universal tool
with a wide array of applications. Among its most notable uses is
in cosmology, where it aids in understanding the geometry of both

(1) (4) (5)(2) (3) (6)

1 4 52 3 6

Dimension 0
Dimension 1

Figure 3. Example of distance-based filtered simplicial complex. As the radius grows in steps 1–6, more and more simplices are added to the complex. At
the bottom, the persistence intervals in dimension 0 (blue) and dimension 1 (red) of the considered complex are presented.

EMS MAGAZINE 132 (2024) 7



the current and early universe [18]. In this study, we shall explore
another vital application, particularly pertinent to data analysis: the
use of ECC in statistics, with a focus on goodness-of-fit tests.

In the classical statistical framework, we encounter two primary
challenges: one-sample and two-sample goodness-of-fit problems.
The one-sample test is employed to determine whether a set of
points has been sampled from a known and explicitly defined
probability density. On the other hand, the two-sample tests involve
an additional finite sample, substituting for the probability density.
The aim here is to determine whether the two provided samples
are derived from the same probability density.

The availability of tools to address one-sample and two-sample
goodness-of-fit problems is heavily influenced by the dimension-
ality of the data. For one-dimensional cases, there is a plethora
of tools, including the Kolmogorov–Smirnov, Cramér–von Mises,
Anderson–Darling, chi-squared, and Shapiro–Wilk tests, to name
a few. These are supported by multiple efficient computational
tools implemented in various programming languages. In two-
dimensional cases, theoretical results for the Kolmogorov–Smirnov
and Cramér–von Mises tests are available, along with some imple-
mentations in Python and R. However, for higher-dimensional data,
while theoretical results for the Kolmogorov–Smirnov test exists,
only a handful of implementations are available.

Standard tests primarily rely on the cumulative distribution
function (CDF) of a real-valued random variable X that, at a given
point x, determines the probability of X being less than or equal to x.
Generalising this concept to higher-dimensional data poses signi-

ficant challenges with current implementations, as it necessitates
considering all permutations of the data axes.

However, topological characteristics of a sample, such as the
Euler characteristic curve, are invariant under multiple data trans-
formations, including permutations of the axes and affine trans-
formations. While providing slightly weaker invariants, they do not
encounter the same problems as traditional methods including
CDF. In our recent work [7], the ECC of a sample is utilised as
a surrogate for the cumulative distribution function, yielding an
efficient statistical test that surpasses the state of the art. This new
family of tests, referred to as TopoTests, has proven to outperform
existing methods even in low-dimensional and small data samples
scenarios.

To illustrate it, consider the matrices in Figure 5. The value
at position (i, j) in each matrix indicates the power of the test,
defined as the probability that the test successfully recognises that
a sample, in this case of size 100, taken from the distribution in
the i-th row, does not originate from the distribution in the j-th
column. When i = j, the value 0.05 on the diagonal represents the
confidence level for which the test was designed. It is therefore
supposed to reject the true hypothesis in 5% of cases.

Figure 5 showcases the performance comparison between the
Kolmogorov–Smirnov test (left) and TopoTests (right) for a three-
dimensional sample. In the colouring scale used in the figure,
a better test can be recognised as one with more yellow entries
in the matrix. In this instance, TopoTests consistently outperform
the standard Kolmogorov–Smirnov test, illustrating the potential
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Figure 5. Performance of the Kolmogorov–Smirnov test (left) and TopoTests (right) in the task of distinguishing various three-dimensional distributions (refer
to axis descriptions for details). Image obtained from [7].
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applicability of topological tools in statistical analysis. As described
in [7], TopoTests can be easily accessed and utilised through a public
domain implementation.

It is noteworthy that this approach comes with asymptotic
theoretical guarantees. It is also important to be mindful that in
some rare instances, the Euler characteristic curves of different
distributions may be quite similar, leading to less effective perform-
ance of the test. These occasional limitations are a trade-off for the
additional advantages offered by the proposed TopoTests. Please
consult [7] for further details.

Integrating topology with statistics offers an additional signific-
ant advantage: it extends the application of statistical goodness-
of-fit tests to a broader range of inputs, specifically those for
which an ECC can be calculated. For instance, inputs in the form
of a scalar-valued function on a bounded domain, such as an
image (referenced in Figure 6), can be processed in this frame-
work. In this figure we see a visualisation of three solutions of the
Cahn–Hilliard–Cook equation,

∂u
∂t

= −Δ(ε2Δu+ f(u)) + σnoise ξ,

where u(0, x) ≈ μ for every x in the domain of u (in this case, the
unit square). The constant μ is the total mass, see [8] for details. The
three solutions illustrated in Figure 6 represent u(t, x) for a fixed
t> 0 and the initial condition μ= 0.2, 0.2 and 0.12, respectively. It
turns out that the information about the initial condition μ as well
as the time t at which the solution is obtained can be recovered
from the topology of the patterns in Figure 6. In this case, the first
two images, corresponding to μ = 0.2, depict “drop-like” form-
ations, while the third image, associated with μ = 0.12, exhibits
a snake-like behaviour. For a preliminary study on this, refer to [8].
This example illustrates that the topological approach enables us
to broaden the scope of data types that can be analysed using
standard statistical methods

5 Summaries of filtration: persistence

While the ECC is nice and simple, TDA offers a more advanced
multiscale invariant of data: persistent homology. From persistent
homology, also referred to as persistence, one can easily obtain
the ECC, but not vice versa. Persistent homology is a multiscale
version of the homology theory briefly outlined below.

Suppose we have an abstract simplicial complex 𝒦 obtained
from a sample X for fixed radius r using either the Vietoris–Rips, or
the alpha complex construction. Homology recovers information
about connectivity of 𝒦 in different dimensions. At dimension 0,
homology recovers connected components of 𝒦. Focusing on the
filtration presented in Figure 3, in step (1) there are five connected
components (corresponding to points of X), three at the level (2),
two at level (3), and a single connected component since after.

Figure 6. Three solutions of the Cahn–Hilliard–Cook equation. The left and
middle image correspond to solutions obtained using the same model
parameters, resulting in “drop-like” patterns. The right one is derived
from slightly different parameter, resulting in a “snake-like” pattern.

Homological features of dimensions 1 are represented by classes
of one-dimensional cycles that do not bound any collection (or
formally, a chain) composed of two-dimensional simplices. Such
a cycle can be observed at the step (4) of the filtration. We can
intuitively think about them as bounding “one-dimensional holes”
in the complex. The story continues for higher dimensions, where
homology theory detects features, informally bounding higher-
dimensional holes in the considered complex.

Persistent homology enables tracking of the homological fea-
tures, such as connected components and holes of dimension one
or higher, as the filtration of the complex evolves. During this pro-
cess, homology classes are created and then some of them cease to
exist. Consider for example the one-dimensional cycle from step (4)
of Figure 3 – it appears (is born) at step (4) and ceases to exist (dies)
at step (5), becoming the boundary of two two-dimensional sim-
plices added in step (5). The persistence interval [4, 5), presented
in red in Figure 3, spans the filtration values in which the one-
dimensional topological feature exists. A similar narrative applies
to homological features in dimension 0. For instance, consider the
three leftmost points of X in step (1) of the filtration. They become
connected at step (2), forming a single component. Consequently,
two of them cease to exist, giving rise to two persistence intervals
[0, 1) in zero-dimensional persistent homology. The collection of
persistence intervals for the filtration at the top of Figure 3 is given
at the bottom of the figure. Persistence intervals of various filtra-
tions can be compared using for instance distances developed to
solve optimal transport problems.

In this short exposition we have barely scratched the surface
of persistent homology. For a comprehensive introduction, please
consider [9].

6 Questions you did not know you had

“Visualisation gives you answers to questions you didn’t know you
had” – this famous quote by Ben Shneiderman encapsulates a fun-
damental desire in various scientific fields: to discern patterns, for-
mulate hypotheses about underlying principles, and subsequently
verify them. Topological data analysis offers tools to visualise high-
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dimensional data through the so-called mapper algorithm. Intro-
duced in 2007 by Gunnar Carlsson and coauthors [16], the mapper
algorithm represents a given high-dimensional sample X as an
abstract graph, termed a mapper graph. Since its inception, the
mapper algorithm has had a significant academic and industrial im-
pact, boasting hundreds of successful applications and numerous
industrial implementations, including extensive work by Symphony
AyasdiAI.

1
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Figure 7. From point cloud to overlapping cover, its one-dimensional
nerve and a (colouring) function defined on it – a general scheme of
mapper algorithms.

A general method to derive a mapper graph from a point
sample X is straightforward: one needs to construct an overlap-
ping cover of X, namely, a collection of subsets C1,…, Cn such
that Ci ⊂ X and ⋃n

i=1 Ci = X. Subsequently, a graph called the
one-dimensional nerve of the cover is built. This abstract graph’s
vertices correspond to elements of the cover, and its edges repres-
ent the nonempty intersections of these elements, as illustrated in
Figure 7. The mapper graph models a space X upon which a func-
tion f ∶ X →ℝ can be visualised. This can be achieved, for example,
by calculating the average value of f for each Ci. The value at the
vertex of the graph corresponding to Ci can then be visualised
using an appropriate colour scale.

There are two main methods to construct such an overlapping
cover. The first one, proposed in [16], originates from the Reeb
graph construction. Initially, X is mapped into ℝ using a so-called
lens function l∶ X→ℝ. The interval l(X) is then covered by a series
of overlapping elements I1,…, Ik, with each consecutive pair having
a nonempty overlap. For each l−1(Ij), a clustering algorithm is then
applied, and the obtained clusters are used as cover elements. As
l−1(Ij) and l−1(Ij−1) overlap, this results in an overlapping cover
of X.

The second construction, proposed in [5], leading to a ball
mapper graph, involves a fixed ε> 0 and a metric d on X. An ε-net
is built on X, defined as a subset Y ⊂ X such that for every x ∈ X,
there exists y∈ Y with d(x,y)≤ ε. Consequently, X⊂⋃y∈Y B(y,ε)
and the family of balls B(y,ε) for y∈ Y forms an overlapping cover
of X.

Topological visualisation tools, such as mapper graphs, have
a plethora of applications across various fields. We have selected

two examples, one from social sciences and the other frommaterial
design.

In the realm of social sciences, we explore the phenomenon
of Brexit – the process leading to the outcome of the UK’s 2015
referendum, where a majority of voters decided for the UK to leave
the EU. Our analysis, presented in [15], is based on the 2012 census
data and superimposed it with the Brexit referendum results at the
constituency level.

Figure 8. Homogeneity to leave, heterogeneity to remain –
multidimensional view on the Brexit phenomena (colours represent Brexit
support in UK constituencies) [15].

The ball mapper graph, thoroughly discussed in [15], is depicted
in Figure 8. Despite the substantial aggregation of information,
several sociological observations emerge. The most notable among
them is the relative homogeneity (at a sociological level) of the
constituencies supporting Brexit (marked with yellow and orange),
contrasted with the vast heterogeneity of those favouring the
UK’s continued membership in the EU (marked with blue). This
observation, along with multiple other conclusions and hypotheses,
is elaborated upon in [15].

Our second example, elaborated in detail in [12], pertains to
descriptors of three-dimensional porous structures of hypothetical
zeolites. Zeolites are chemically-simple nanoporous structures de-
rived from SiO4 tetrahedra, assembled into hundreds of thousands
of different crystal structures. Although primarily used in detergents
to soften water, zeolites have the potential for applications in gas
capture and storage (such as methane and carbon dioxide), noble
gas separation, and other areas. Given their chemical simplicity, the
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defining factor for the properties of a given material is the shape
of its pores. In the study [12], this shape is characterised using
the persistent homology of points sampled from the pores’ sur-
faces. The persistence intervals of successive dimensions obtained
for a given material serve as the material’s features. They allow
inducing a distance function between different materials as the
distance between the persistence diagrams obtained from them,
see [9].

Figure 9. Landscape of more than 140,000 hypothetical zeolites coloured
by the heat of adsorption of the materials. Picture taken from [12].

The presented approach gives us a discrete metric space repres-
enting the considered database of hypothetical zeolites. A mapper
graph, representing the shape of this space, is illustrated in Figure 9.
The graph uses a colouring function based on the heat of absorp-
tion, which determines the temperature at which a given material
can absorb the maximum amount of gas, in this case, methane.
We observe that this property appears to be “continuously depend-
ent” on the material’s shape. Furthermore, different regions of
this space, denoted by distinct groups in the graph, correspond to
various humanly-interpretable geometries of pores. This research
highlights the synergy between statistics and machine learning-
friendly topological descriptors (such as persistent homology), and
topological visualisation. This combination provides a comprehens-
ive overview of the shape of the space of hypothetical zeolites.
The colouring function enables the identification of regions in the

space containing materials with the desired values of properties of
interest.

7 Multiple filtrations at once?

The filtrations considered thus far have focused on a single as-
pect of the data – either the mutual distances between points,
or the greyscale intensity values of an image’s pixels. However,
scenarios exist where examining multiple characteristics concur-
rently is necessary. For instance, in the context of images, one
might consider multiple channels, such as RGB. With point samples,

envision a set of points sampled
from a circle but contaminated with
a lower density of uniform noise in-
side the circle. While our brain is
adept at discerning the shape of
a circle despite the noise, a clear
persistent interval might not be ob-
tained with a filtration based solely
on distances. The inclusion of addi-
tional filtration parameters, like local

density, becomes necessary. However, effective generalisations of
persistent homology to multiple filtration parameters have proven
to be a serious challenge. This is due to problems rooted in repres-
entation theory, which pose an obstruction against the existence
of a counterpart to persistence intervals, see [3]. This is the case
despite the considerable collective efforts of the TDA community.

Addressing the challenges in generalising persistent homology,
we return to the foundational concept of the Euler characteristic.
Specifically, its parametric version, the Euler characteristic curve, at
a given radius r, is essentially an alternating sum of the number
of simplices of successive dimensions. Once a simplex s enters the
filtration, it remains therein, contributing to the alternating sum
and hence the ECC. Therefore, the contribution of simplex s to the
ECC is an indicator function; it equals 0 for all arguments below
the simplex’s filtration value and 1 thereafter. The ECC we have
considered so far is the alternating sum of such indicator functions.

This simple observation paves the way to generalise the ECC
for the case of multidimensional filtrations. It is conceivable that
a simplex s appears at one or several non-comparable points
f1(s),…, fk(s) ∈ ℝn in an n-dimensional filtration. In such cases,
simplex s will contribute a value of 1 at every point that is
coordinate-wise greater or equal to any of f1(s),…, fk(s), and 0 at
all other points. Through this method, we obtain a stable invariant
of an n-dimensional filtration, referred to as the Euler characteristic
profile, see [6] for further discussion and properties.

Let us consider a simple example of such a scenario: a problem
of analysing prostate cancer features on hematoxylin and eosin
(H&E) stained slide images. Our results are based on publicly avail-
able 5182 images, each of 512× 512 resolution, obtained from
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Figure 10. Prostate cancer ROI, left, the raw image; middle, the hematoxylin channel; right, the eosin channel. Image from [10].

the Open Science Framework [11], as analysed in [6]. These images
represent various regions of interest (ROIs) from prostate cancer
H&E slices, collected from 39 patients. The unique aspect of each
image is its annotation with a Gleason score, 3, 4, or 5, reflecting
the architectural patterns of the cancer cells. A higher Gleason
score is indicative of increased cancer aggressiveness.

Given such an annotated dataset, a natural question arises:
can a Gleason scale assigned by a histopathologist be deduced
from the shape of the structures visible in Figure 10 using appro-
priate regression techniques applied to topological characteristics
of images? For this purpose, methods of persistent homology and
Euler characteristics have been employed, achieving an accuracy of
approximately 76%. The utilisation of Euler characteristic profiles
utilising both H&E channels further enhanced the accuracy to 82%.
In both instances, random forest regression methods were applied.
This example illustrates that considering multiple filtrations simul-
taneously can lead to significant improvements in performance of
the data analysis tools.

8 Summary

“Data has shape, shape has meaning, and meaning brings value”
– this foundational quote by Gunnar Carlsson encapsulates the
essence of topological data analysis: to seek out rich and robust
features that summarise the geometric and topological structure of
complex and high-dimensional datasets. Now, after nearly 20 years
of development, the field boasts many success stories and offers
a wealth of tools to the community. In informal conversations,
I often refer to the tools we provide as “statistics on steroids” –
they go beyond relying on single numbers and embrace much
more complex features, while retaining (almost) all the properties
of standard statistics. In addition, they are directly applicable to
standard algorithms in statistics [2], machine learning [14] and
AI [4].

Among other initiatives, my Dioscuri Centre in Topological
Data Analysis is contributing new tools to the field and the whole
scientific community. We work closely with domain experts in
mathematics, medicine, economics, finance, physics, biology, and
more, aiming to integrate our new tools into the daily practice
of applied mathematicians and researchers utilising mathematics
in their fields. If you are interested in our research, please visit
our web page. All the theoretical tools described in this paper are
implemented and freely available at our GitHub page.1
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