
Every file is a program, but not the reverse

English translation of the article entitled “Tout fichier est un programme… et non l’inverse” and published in La Gazette des
Mathématiciens 176 (April 2023)

Baptiste Mélès

The concept of a program, unlike that of a file, is an informal one,
giving rise to inaccurate or even false assumptions. In this article,
we will contest two of them. First, using historical examples, we
will show that there are programs that are not files. Then, more
surprisingly, we will argue that any file can be seen as a program,
since all criteria characterizing programs hold true for files. In
particular, we will conclude that there is no technical reason to
distinguish between file/program and program/interpreter pairs.

1 Introduction: technical vs. informal concepts

Since scientific discourse does not rely exclusively on technical
concepts, it leaves certain questions to philosophy.1

By technical concepts, we mean those that have a precise defin-
ition enabling their exact usage within the internal framework of
science, i.e., a definite attribution to certain objects, their according
usage in justification procedures – demonstration, observation, ex-
perimentation – and finally in scientific statements; this is the case
for the concepts of integer, derivative, electron, mammal, zero-sum
game, etc. The definitions of technical concepts are always precise,
backed up by methods for verifying whether they can be applied
to objects.

The same cannot be said of certain more informal concepts
which, at the frontier between science and common experience,
are suited to approximate usage, such as the concepts of number,
calculation, living, etc. In the absence of an exact definition, these
are generally too approximate or too slippery for scientific use.
Whenever an attempt is made to provide these informal concepts
with a rigorous definition, it will always be open to discussion.

It is true that scientists sometimes propose a rigorous definition
of a hitherto informal concept; but whether the proposed defini-
tion correctly and completely translates common intuition remains
an open question, belonging to philosophy rather than science.
So, when Gentzen calls his formal system of logical deduction
a “natural deduction,” when Turing claims that his machines can

1Of course, this does not mean that philosophy cannot also have its say
on technical concepts.

compute everything and not only what is ordinarily called “comput-
able,” both are developing technical concepts based on the prior
analysis of informal concepts [3,4,12]: a philosophical approach,
not a scientific one. Scientific theories of proof and computability
can then be developed on this basis, but the philosophical debate
will continue on the starting point, namely the definition of what
it means to deduce naturally and what it means to compute.

Indeed, the study of informal scientific concepts in their relation
to technical concepts calls for properly philosophical methods such
as conceptual analysis and dialectical discussion, if by the latter we
mean the contradictory examination aimed at gaining knowledge
of things beyond their first appearance. Thus, for example, in
a famous article, James H. Moor showed that three conceptual
oppositions commonly found in computer discourse – software
and hardware, digital and analogue, model and theory – did not in
fact correspond so much to distinct entities but rather to different
ways of looking at the same thing [9]. The informal concepts used
in scientific discourse call for philosophical methods.

It is precisely at this frontier between sciences and philosophy
that we will study the relationship between two central concepts
of computer science: file and program.

2 What you may have heard about programs and files

Let us first define the terms “file” and “program,” before summar-
izing what one commonly assumes one knows about them.

The term “computer file” is a technical term, and as such, is
susceptible to precise definition. A file is a sequence of binary digits
(bits) denoted in a computer system by an identifier – typically
a name or a number.2 One distinguishes between plain text files

2 The Multics designers define a file as follows: “A file is simply an ordered
sequence of elements, where an element could be a machine word,
a character, or a bit, depending upon the implementation” [1]. Andrew
Tanenbaum suggests the following definition: “A Unix file is a sequence
of 0 or more bytes containing arbitrary information” [11]. However,
a more technical definition of “file” is simply that it contains source code,
according to the Unix source code inode structure [6, lines 5659–5675].

EMS MAGAZINE 133 (2024) — DOI 10.4171/MAG/205 5

(conventionally given the extension .txt, …), word-processing
documents (.odt, .doc, …), spreadsheet documents (.odc, .xls,
…), audio files (.ogg, .mp3, …) and video files (.mpg, …), as well
as directories and some “special files,” which under Unix family
systems denote printer, screen, scanner, processor temperature
and so on [10, p. 367] and [2].3 This precise definition makes it
technically easy to determine whether a given object is a file.

The concept of a program, however basic it may seem in com-
puter science, is an informal one. We can, of course, propose
formal interpretations of it, typically dependent on an arbitrarily
chosen computational model: a program will sometimes be defined
as a term of the λ-calculus, sometimes as the set of transitions of
a Turing machine starting from an initial state, and so on. But these
concepts do not characterize what a program is: they simply attest
that λ-terms or Turing machines can be seen as programs, and that
any program could in absolute terms be seen as the analogue of
a λ-term or a Turing machine… albeit with some translation. But
when one calls a C-language source code a “program,” one is not
thinking about λ-terms, and one is convinced that we are in the
immediate presence of a program.

So what does one usually think of as a program? We consider
that a common-sense definition of a program is a layout of symbols
that is supposed to determine the behaviour of a machine? 4

Like any real definition, this definition requires a few explana-
tions. First, we will say that a program is a “layout of symbols” in
general, since it can be a chart, a diagram or a punched card, as
well as a text made up of letters and other typographical symbols.
The “machine” itself can then be situated in a particular environ-
ment made up of human actors as well as physical objects and
other machines. Finally, the program is only “aimed” at determining
the expected behaviour because, as the etymology indicates, the
program is written before it is executed, and it can also be faulty
yet still be a program. We will not use the notion of programming
language, as it would be perfectly tautological to define a program
as something written in a program-writing language.5 Our current
aim would be achieved if our definition were not deemed too
contrary to common sense.

Now let us look at what one generally assumes to be obvious
about programs. They would be texts written in a “programming”
language; they would intrinsically consist of a sequence of instruc-
tions, which enables them to be executed; being composed of
“instructions,” they would be intrinsically active objects. In all this,

3 For a philosophical analysis of what is a file in UNIX, see [8].
4A similar intuition is, e.g., expressed in Clarisse Herrenschmidt, Les
Trois écritures : langue, nombre, code, Paris, France, Gallimard, 2007,
p. 404: “Qu’est-ce qu’un programme ? Un programme est un texte où
sont consignées les instructions données à un ordinateur, un texte écrit
dans un langage.” (What is a program? A program is a text in which
the instructions given to a computer are recorded, a text written in
a language. [Our translation])

they would be opposed to data, which are inert objects, containing
no instructions and only playing a role in an active process when
passed as an argument to a program; they would therefore be
intrinsically passive. A special case of data are the files, which can
be passed as input to a program, but which in most cases are not
programs, given that they do not contain instructions enabling
them to be executed by a system.

The following two theses will be widely shared:
1. Judging by the programs that populate our hard disks, all

programs are files.
2. A few trivial examples, such as plain text files and audio files,

demonstrate that the reverse is not true; in other words, not
all files are programs.

×

P F

×

Figure 1. The relation between file and program according to common
sense.

We will show that these two common-sense assertions do not
stand up to technical scrutiny, which will lead us to the following
two theses:
1. Not all programs are files.
2. All files are programs.

3 Not all programs are files

In today’s computer practice and culture, we might be tempted to
support the first common-sense thesis, according to which every
program is a file. In support of this thesis, we can invoke the
following intuitive argument: all we have to do is look in our hard

5 That is what the ISO does by defining a program as a “syntactic unit that
conforms to the rules of a particular programming language and that is
composed of declarations and statements or instructions needed to solve
a certain function, task, or problem”… before defining “programming
language” as an “artificial language for expressing programs?” [our
emphasis]. It is also worth noting that this definition omits the concept of
the machine, which seems essential to us (International Organization for
Standardization, 2015: Information technology – Vocabulary. (ISO/?IEC
Standard 2382:2015(en)), https://www.iso.org/obp/ui/#iso:std:iso-
iec:2382:ed-1:v2:en, accessed 06/15/2022).

6 EMS MAGAZINE 133 (2024)

https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v2:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v2:en

disks, and we’ll see that all the programs we can find there are
files, whether binary files or scripts, i.e., text-mode program files
intended for mechanical interpretation.6

However, this argument is not sufficient to prove this thesis,
for two reasons.
1. The argument is based on an improper generalization. It is

based on experience, which always allows us to form existential
theses, but never – except in the finite case – universal theses.
Since one cannot conclude from the existential affirmative to
the universal affirmative, one can derive from experience the
statement “some programs are files,” but not “all programs are
files.”

2. The argument is circular. The experiment in question implicitly
assumes the context of programs found in our modern com-
puters, where programs happen to be stored in a memory
structured by… a file system.7 If we make this context explicit
in the above formula, we obtain the following tautology: “Every
program file is a file.”
Let us go a step further and refute not only the intuitive ar-

gument, but the first common-sense thesis itself: history attests
to the existence of programs that were not files. File systems did
not appear until the 1960s, with the CTSS and Multics operating
systems [1], even though programs already existed: a punched card
from a Jacquard loom, a barrel organ or, more recently, a batch-
processing machine is a program, but not a file – not even in
retrospect, since it is not part of a file system. The programs that
Turing supplies to his universal machine in the form of a “standard
description” – e.g., the program
;DADDCRDAA;DAADDRDAAA;DAAADDCCRDAAAA;DAAAADDRDA;

which alternates between 0 and 1 – are not files either. So, against
the first common-sense thesis, we can assert that not all programs
are files.

6 Generally speaking, it is difficult to provide references for common-sense
theses: theses that are taken for granted have virtually no author. One
example among a thousand, no more representative than any other,
is a text signed under the pseudonym StackLima, entitled “Différence
entre programme et fichier” (Difference between program and file
[our translation]) and dated 07/05/2022 (URL: https://stacklima.com/
difference-entre-programme-et-fichier/; accessed 10/28/2022), stating
the following definition of programs [our translation, our emphasis]:
“Programs, as their name implies, are simple executable files containing
a set or collection of instructions used by the computer to execute or
perform particular tasks and to produce desired results.” It must be
stressed that we are not dealing here with a scientific text, which explains
and even excuses its many inaccuracies.

7A file system (e.g. FAT32, NTFS, ext4, etc.) is a device for structuring
computer memory into files, i.e., sequences of characters. This device
specifies the memory segmentation mode, data structures for referencing
files, an overall topology (typically a tree structure), file manipulation
functions (creation, deletion, modification, dating, etc.) and various other
functions (logging, rights management, encryption, network adaptation,
etc.).

× ?

P F

×

Figure 2. Not all programs are files.

4 All files are programs

Let us turn now to the second common-sense thesis, according
to which not all files are programs, or in other words, some files
are not programs. Like the previous one, this thesis can be based
on an intuitive argument: videos, text files, etc. are indisputably
files, but they are not programs.8 This time, the empirical argument
is safe from any improper generalization, since a single example
suffices to demonstrate an existential thesis.

However, against this intuitive argument, we are going to show
that every file is a program. We will do this by analysing successive
file types, from the most obvious to the most general case: first,
we will study the trivial case of program files, in order to reveal by
which criteria we judge a file to be a program; then we will take
a closer look at data files to show that these criteria apply just as
well to them. In other words, if the former are programs, then the
latter should be too.9

4.1 Why are program files programs?
Why wasting time demonstrating such a trivial thesis as program
files are programs? Because what we are interested in here is not
simply revealing that this thesis is true, but rather what makes
this thesis true: we will see later that these criteria, once admitted,
actually apply far beyond these obvious cases.

8 The text on the difference between program and file quoted above
distinguishes in two columns the supposedly distinct characteristics
of programs and files. On one of the lines, we read the following
two sentences, implicitly presented as an opposition [our translation]:
“Program types include application programs, system programs such as
word processors, operating systems, database systems, etc. File types
can be JPEG, PNG, GIF, PDF, MP4, etc.” With this reference, we simply
intend to illustrate an informal opposition between programs and files
that seems to us to be fairly widespread.

9We are not denying a difference in nature by arguing a difference in
degree: we could just as easily have gone straight to the last case, which
is the most general; however, for pedagogical purposes, we have opted
for a more progressive approach.

EMS MAGAZINE 133 (2024) 7

https://stacklima.com/difference-entre-programme-et-fichier/
https://stacklima.com/difference-entre-programme-et-fichier/

We will treat three types of program files, from the simplest to
the less obvious: (a) binary files, (b) files to be compiled, (c) files to
be interpreted.

Because they are machine-executable
The most obvious type of program is the binary program file.

A binary program file is a sequence of instructions in machine
language, i.e., directly interpretable and executable by the machine
without any intermediary. It is made up of sequences of 0s and 1s,
and is generally not displayable in text form: if you try to display
it, you will generally get a mindless succession of strange symbols
– graphic symbols, emoticons, punctuation marks, characters of
all alphabets and even signs that cannot be viewed because they
have no equivalent in ASCII or Unicode coding.

Clearly, any binary program file trivially satisfies what we con-
sider as the common-sense definition: “a layout of symbols aimed
at determining the behaviour of a machine.” The machine executes
this program directly, and it is written in the very language of its
processor.

We have got a first conclusion to draw from this: Anything that
can be directly executed by the machine is a program.

Because they are translatable into executables
However, not all programs can be directly executed by the machine.
What makes them programs nonetheless?

Let us look at the case of program files to be compiled. A binary
program file is often produced from a text file written in a so-called
“programming language” such as C or Java. Here is a short classic
example of a program file to be compiled, written in C:

#include <stdio.h>

int main()

{

printf("Hello world.\n");

return 0;

}

Can we say that program files to be compiled are programs in
the same sense as binary program files? Common intuition does not
put this in doubt: it is not uncommon to say “my program” when
referring to what is in fact only the source code of a binary program.
The only difference with binary program files is that the program
files to be compiled do not directly modify the behaviour of the ma-
chine: they do it only after a translation stage, called compilation.

This leads us to the following thesis: a file can be a program,
even if it is not directly executable and its execution presupposes
a prior extrinsic step.

This concession is important, as it shows that a program is not
always an intrinsically active object. A compilable program is merely
a text file which, in order to become active, must be supplied to

another program. The above-mentioned common conception of
programs and data, as opposed to one another, proves thus to be
wrong: some data turn out to be programs if there is a suitable
translator. In at least some cases, it is a condition extrinsic to the
program file itself – the existence of the compiler – that turns the
file into a program. The opposition between programs and data is
therefore not intrinsic.

It may be objected that, once compiled, the file is transformed
into a binary program, making it “directly executable” by the
machine. A compilable file is, in this sense, “indirectly directly
executable.”

Because they can be interpreted as executables
However, program files are not restricted to binaries and compil-
ables: one also commonly groups interpretable files in this category.

An interpretable program file is a program that is intended
to be executed as it is read by a specific program. Shell scripts
are interpreted by a shell, batch files by MS-DOS, Perl, Python etc.
scripts by the respective interpreters of these languages, and so
on. Here is an elementary example of a shell program:

#!/bin/zsh

for nephew in Huey Dewey Louie

do

echo "Hello $nephew!"

done

Can we say that interpretable program files are programs in the
same way as binary or compilable program files are? Unlike binary
or compilable program files, interpreter program files do not directly
modify the behaviour of the machine, even after an intermediate
step: they modify the behaviour of an intermediate program that is
currently running, namely the interpreter. But since the interpreter
is itself running, any change in its behaviour modifies the behaviour
of the machine. The program files to be interpreted, which common
intuition calls programs, therefore always respect our definition
of a program as “a layout of symbols aimed at determining the
behaviour of a machine.”

The following thesis can be drawn from this: a file can be
a program even if it requires the execution of an intermediate
program to modify the behaviour of the machine.

The files in this class qualify as programs only in an entirely
indirect way, since at no point are they transformed into directly
executable files. Their program status is – and remains – purely
extrinsic, since it depends on the existence and execution of the
specific program, namely the interpreter.

Conclusion: the high price of a trivial thesis
Analysis of these three trivial cases – binary, compilable and in-
terpretable programs – leads us to the unsurprising conclusion

8 EMS MAGAZINE 133 (2024)

that program files are programs. But this assertion is not without
concessions, since we have to admit that a program may not be
directly executable by the machine – as compilables prove – and
may even never be transformed into a machine-executable file –
as interpretables prove. There is a certain price to pay for adhering
to this seemingly trivial thesis.

We will now show that this apparently obvious thesis opens
a Pandora’s box: Any file can be seen as a program.

4.2 Why not consider data files as programs, too?
While it is easy to admit that program files are programs, in the case
of data files this thesis seems not only less obvious, but downright
false. Yet we are going to demonstrate that everything that classifies
program files as programs also applies to data files.

Again, we will proceed in three stages, from the simplest to
the least obvious, successively examining (a) document files to be
compiled, (b) structured data files and (c) any files.

We will first show that not every compilation produces an
executable; then that any structured data can also be seen as an
instruction; finally, that any data can be seen as structured, in other
words as an instruction.

Not every compilation produces an executable
A document file to be compiled is a file written in a language that
allows it to be automatically translated into a file of a given format,
which is generally not intuitively recognized as a program. This is
the case, for example, with a TEX – not LATEX – file as the following
one, from which one can obtain a viewable or printable file in DVI,
PS or PDF format:

Hello, {\it world}!

\bye

The resulting PDF file is generally not considered a program. But
what about the TEX file it comes from?

A document to be compiled like this one contains mainly text
– in this case “Hello” and “world” – but also instructions, such as
the italics command \it, which will be graphically translated into
italics in the compiled document, or the \bye command, which
indicates to finalize the document. So it is immediately obvious
that compilable documents contain at least some instructions –
just like program files.

Perhaps someone will argue that these files “mix” instructions
with simple data? That would be a mistake. The instructions indic-
ated in TEX by a backslash are only one small part of the iceberg:
the documents to be compiled are entirely made up of instructions.
As Donald Knuth pointed out in the TEX language manual, even
the smallest letter is a command [5, p. 267]. After explaining that
any occurrence of the letter b in a TEX document can be replaced
by the command \char98, Knuth reveals that this is actually TEX’s

underlying mechanism: it interprets the letter b as an alias for this
command. TEX simply reads a document as a sequence of instruc-
tions. The words “Hello” and “world” are likewise sequences of
instructions. TEX is in fact a particularly powerful language, since it
is Turing-complete: Anything that can be written in any program-
ming language can be written in TEX – which does not mean it
would be a good idea to do so.

So, can we say that compilable documents are programs? As
a sequence of instructions, they determine the machine, via com-
pilation, to produce a certain file. This leads us to admit that
a document to be compiled is a program even if it is not writ-
ten in a so-called “programming” language, and its output is not
generally considered to be a program.

All structured data is an instruction
Let us now consider the case of interpretable document files. We
refer to structured documents, i.e., files written in a document
presentation language such as HTML, roff, Markdown or SPIP. Here
is a very basic example of an HTML file:

<html>

<head>

<title>HTML page</title>

</head>

<body>

<p>This is an HTML page.</p>

</body>

</html>

A structured document contains not only text, but also in-
structions such as <body> and . These commands are
interpreted by the browser, just as LATEX compiles the \it instruc-
tions and the shell interprets the echo command. Even “purely
textual” parts such as the words This is an HTML page are
instructions for the program responsible for displaying it. So if inter-
preted programs (e.g., shell scripts) and compiled documents (e.g.,
TEX files) are programs, then interpreted documents are programs
in two respects. An HTML file is a program for browsers, a PS file is
a program for printers, and even PDF, video, etc. files are programs
for viewers of various kinds.

This thesis is worth emphasizing, as it is probably here that
common sense will put up the most resistance. According to ordin-
ary intuition, there are data, programs and interpreters; the first
are generally not the second, and the second are generally not the
third. Yet what we see from the case of structured files – which
by definition always obey a syntax no less rigorous than that of
program files – is that a structured file supplied to a program does
not technically differ from a program supplied to an interpreter.

We can thus conclude that not only the texts written in a so-
called programming language are programs, but also any text

EMS MAGAZINE 133 (2024) 9

written in a given syntax, even if it is a “document structuring”
rather than a “programming” language.

All data is an instruction
Let us turn now to plain text documents, i.e., files that encode
a simple sequence of characters, as for example the following text
file named aeneides.txt:

Arma virumque cano, Troiae qui primus ab oris
Italiam, fato profugus, Laviniaque venit
litora, multum ille et terris iactatus et alto
vi superum saevae memorem Iunonis ob iram;
multa quoque et bello passus, dum conderet urbem,
inferretque deos Latio, genus unde Latinum,
Albanique patres, atque altae moenia Romae.
Any plain-text document opened in any program, even a simple

text editor, qualifies as a program for this interpreter. It is structured
data – even if it is at the zero level of structure, reduced, for
example, to its encoding – and as such it is an instruction in its
own right. For example, the file aeneides.txt represents the
following sequence of instructions for a text editor, or for any
other program that is supposed to manipulate it (display with the
cat command, search with grep, etc.): display “A,” display “r,”
display “m”… just as an HTML file without italics is a program
interpreted by the browser. Any plain text file, provided it can be
opened by any program, is consequently an interpreted program
in its own right.

It is now easy to move on to the general case of any file: Any
sequence of bits, whether readable in text mode, behaves like a pro-
gram as long as it is supplied as input to a given program, which
in turn behaves like an interpreter. Every file therefore respects the
intuitive definition of a program as “a layout of symbols aimed
at determining the behaviour of a machine.” All that is needed is
at least one user mechanism – whether a machine or a running
program – which adapts its behaviour to the contents of the file.

Before being opened, a file is only potentially a program, but
this is also the case for interpretable files. To take such reasoning to
the limit, only a file that is not intended to be opened at all might
not be a program. We dare to claim – albeit without proof – that
there is no such case.

5 Conclusion: An extrinsic characterization of programs

Contrary to the common intuition that all programs are files, but
some files are not programs, we have argued that some programs
are not files, but that all files can indifferently be considered as
programs.

Indeed, we have shown that a program is not necessarily dir-
ectly executable by the machine, that it does not even always
enable the production of a directly machine-executable file, and
that it sometimes depends on the underlying execution of another

program. The result is that any data file supplied as input to a pro-
gram can be seen as a program supplied to an interpreter, without
there being any technical way of distinguishing the two situations.

A program is therefore not defined intrinsically: What character-
izes it as such is a context of execution and use, which is extrinsic
to it.10

×

P F

×

Figure 3. The connection between file and program as defended here.

6 Discussion

Perhaps these conclusions will seem to be counter-intuitive. It will
then probably be necessary to develop a more restrictive definition
of the concept of program than the one we used.

One option might be to require that a program be written in
a “programming language,” a concept that will have to be defined
in its turn – obviously without circularly appealing to the concept
of program – so as not to reopen Pandora’s box.

(a) Will we define a programming language as a complete
language in the Turing sense, i.e., capable of expressing any al-
gorithm computable in a Turing machine? We will have to justify
the heterodox exclusion of Coq, a deliberately incomplete lan-
guage that admits only the strict subset of the class of terminating
functions.

(b) Should we call any language that tolerates recursion a pro-
gramming language? In that case, we would have to accept the
inclusion of all TEX files, since the TEX language offers all the control
structures common to programming languages. Conversely, we
would have to exclude the Catala language, developed by Denis
Merigoux to formalize the French Tax Code, which does not have
a general recursion structure [7, p. 11].

10A corollary of this conclusion is that the same file can be used for several
programs at the same time. An empty file, i.e., of length 0, for example,
is both a program for a text editor and for interpreters such as Shell,
Perl, Python, etc. A C source code, for its part, causes different machine
behaviour depending on whether it is submitted to a compiler – which
will produce a binary program file – or to a text editor – which will
produce a text display.

10 EMS MAGAZINE 133 (2024)

Pending a better definition, we will have to accept that there is
no technical criterion for distinguishing the file-program pair from
the program-interpreter pair, and that their distinction depends
solely on the context of use and the purposes of the agent who
manipulates them.11

Acknowledgements. The Magazine of the EMS thanks La Gazette
des Mathématiciens for authorisation to republish this text, which
is an English translation of the paper entitled “Tout fichier est un
programme… et non l’inverse” and published in La Gazette des
Mathématiciens 176 (April 2023). The author thanks J.-B. Bru and
M. Gellrich Pedra for the English translation.

References

[1] R. C. Daley and P. G. Neumann, A general-purpose file
system for secondary storage. In Proceedings of the
November 30–December 1, 1965, Fall Joint Computer Conference,
Part I, pp. 213–229, ACM, New York, USA (1965)

[2] O. Daudel, /proc et /sys. O’Reilly, Paris, France (2006)

11 This text was written in the context of the ANR program What is a pro-
gram? Historical and philosophical perspectives (PROGRAMME, ANR
JCJC, ANR-17-CE38-0003-01, 2018–2022). It was greatly enriched
by discussions with the project leader, Liesbeth De Mol, and Henri
Stéphanou, as well as by comments from the rapporteurs of the Gazette
des Mathématiciens.

[3] G. Gentzen, Untersuchungen über das logische Schließen. I.
Math. Z. 39, 176–210 (1935)

[4] G. Gentzen, Untersuchungen über das logische Schließen. II.
Math. Z. 39, 405–431 (1935)

[5] D. Knuth, The TEXbook. Addison–Wesley, Reading, MA, USA (1984,
1996)

[6] J. Lions, Lions’ commentary on Unix, 6th edition with source code.
Annabook, Poway, CA, USA (1996)

[7] D. Merigoux, N. Chataing and J. Protzenko, Catala: a programming
language for the law. In Proc. ACM Program. Lang., vol. 5, article
no. 77 (2021)

[8] B. Mélès, Unix selon l’ordre des raisons : la philosophie de la
pratique informatique. Philos. Sci. 17, 181–198 (2013)

[9] J. H. Moor, Three myths of computer science. Brit. J. Phil. Sci 29,
213–222 (1978)

[10] D. M. Ritchie and K. Thompson, The UNIX time-sharing system.
Comm. ACM 17, 365–375 (1974)

[11] A. S. Tanenbaum, Modern operating systems. (2nd. ed.), Prentice
Hall, Upper Saddle River, NJ, USA (2001)

[12] A. M. Turing, On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc. (2) 42, 230–265
(1936)

Baptiste Mélès is a researcher at the CNRS in the Archives Henri-Poincaré,
Université de Lorraine, University of Strasbourg.

baptiste.meles@univ-lorraine.fr

EMS MAGAZINE 133 (2024) 11

https://doi.org/10.1145/1463891.1463915
https://doi.org/10.1145/1463891.1463915
https://dx.doi.org/10.1007/BF01201353
https://dx.doi.org/10.1007/BF01201363
https://doi.org/10.1145/3473582
https://doi.org/10.1145/3473582
https://doi.org/10.4000/philosophiascientiae.897
https://doi.org/10.4000/philosophiascientiae.897
https://doi.org/10.1093/bjps/29.3.213
https://doi.org/10.1145/361011.361061
https://dx.doi.org/10.1112/plms/s2-42.1.230
https://dx.doi.org/10.1112/plms/s2-42.1.230
mailto:baptiste.meles@univ-lorraine.fr

	Every file is a program, but not the reverse (Baptiste Mélès)
	1 Introduction: technical vs. informal concepts
	2 What you may have heard about programs and files
	3 Not all programs are files
	4 All files are programs
	4.1 Why are program files programs?
	4.2 Why not consider data files as programs, too?

	5 Conclusion: An extrinsic characterization of programs
	6 Discussion
	References

