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The aim of this article is to encourage debate of issues of the
applications of modern methods of mathematical analysis in fluid
dynamics. A recent surprising result derived by convex integration
techniques shows non-uniqueness of weak solutions in initial value
problems of the Navier–Stokes equations. The question of relev-
ance of such a result to physical observed flows allows a variety
of answers, some of which are discussed below.

1 Introduction

Convex integration techniques, introduced in the context of dif-
ferential geometry by Nash [39] and Gromov [27], have been later
applied to fluid dynamics by De Lellis and Székelyhidi in the path-
breaking papers [14,15]. Subsequently, these techniques have been
used with great success by many researchers to prove inter alia non-
uniqueness of weak solutions of Euler and Navier–Stokes equations.
A recent review of the technique is provided in the monograph
by Markfelder [37]. Below we refer to weak solutions obtained by
convex integration techniques as wild solutions.

The question of present concern is what relevance these out-
standing mathematical results have for the prediction and explana-
tion of observed physical phenomena. For definiteness, consider
the striking result proved by Buckmaster and Vicol [10]:

Theorem 1.1 ([10, Theorem 1.2]). There exists β > 0 such
that for any non-negative smooth function e(t)∶ [0, T] → ℝ≥0,
there exists a weak solution of the Navier–Stokes equation in
C 0
t ([0, T];Hβ

x (𝕋3)) such that its velocity v(x, t) satisfies

∫
𝕋3

|v(x, t)|2 dx = e(t)

for all t ∈ [0, T].

A remarkable feature of this result is that the function e(⋅) does
not have to be decreasing in time. The Buckmaster–Vicol theorem
implies non-uniqueness of weak solutions of the Navier–Stokes
equations on the 3-torus 𝕋3 as e(⋅) can have compact support.
These wild velocity fields exhibit a strong degree of irregularity.

Although this theorem is clearly a great achievement of 21st
century analysis, its relevance to turbulence and other observed
fluid behaviour is not obvious and indeed is disputed by some. It is
a potentially rich topic for discussion.

Thus, with the aim of making available to the wider scientific
community differing views on this important subject, we1 ap-
proached for their opinion a representative cross-section of leading
practitioners not only in mathematics and physics, but also in
philosophy of physics and mathematics.

Accordingly, we invited answers to the following specific ques-
tion:

How, in your opinion, does the theorem of Buckmaster and
Vicol relate to the prediction of observed fluid flows?

Section 2 contains the replies we have received. Section 3
summarises the discussion and contributes some concluding re-
marks.

To give the reader some guidance, we now describe how
the contributors see their scientific outlook. Gregory Eyink and
Nigel Goldenfeld are theoretical physicists with a wide range of
interests, who, to quote Eyink, try “to talk with everyone and under-
stand everyone, including philosophers, mathematicians, physicists,
chemists, engineers, etc.”; Ondřej Kreml is primarily a mathem-
atician with a background in physics and mathematical modelling;
Ilya Karlin and Florian Kogelbauer are applied mathematicians and
mathematical physicists; Colin McLarty is a philosopher and a math-
ematician; Simon Markfelder defines himself as a mathematician,
Mikhail Osipov is a theoretical physicist and an applied mathem-
atician. We (understood in the sense of footnote 1) see ourselves as
mathematicians who worry about the connections of mathematics
with the natural world.

2 Expert opinions

This section reproduces in full the replies received to our invitation.

1 Here and in Section 3 “we” means H. Gimperlein, M. Grinfeld, R. J. Knops
and M. Slemrod.
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2.1 Gregory Eyink and Nigel Goldenfeld
The question posed is whether there is any physical relevance
of the convex integration techniques of Nash and Gromov, as
successfully applied by De Lellis and Székelyhidi [14, 15] to the
mathematics of the partial differential equations of continuum fluid
mechanics. A particular focus is the remarkable result of Buckmaster
and Vicol [10] proving non-uniqueness of incompressible Navier–
Stokes solutions for fixed initial data. In fact, they proved the
existence of weak Navier–Stokes solutions whose kinetic energy is
any prescribed non-negative function. Here, as requested, we point
out what aspects of this body of work are likely to be physically
relevant to hydrodynamics, and which are of purely mathematical
interest. We focus on turbulence in particular. Our conclusion is
that the potentially important application of convex integration
to hydrodynamic turbulence is to show the non-uniqueness of
solutions of the Euler equations, not the Navier–Stokes equations!
The reason is that it is the Euler solutions which describe the inertial-
range cascade at asymptotically large Reynolds numbers [40], and
the convex integration proofs of their non-uniqueness establish
a prerequisite for the conjectured phenomenon of spontaneous
stochasticity induced by thermal fluctuations [4,21].

As physicists, our perspective is based on the physical relev-
ance and structural stability of the starting assumptions, specifically
the deterministic incompressible Navier–Stokes equations. These
equations have been traditionally assumed in the fluid mechanics
community to be valid at all scales down to the mean free path,
where hydrodynamics must break down. However, molecular noise
is required by the assumption of local thermal equilibrium and
such noise produces many experimental effects in laminar flows
that are missed by the deterministic equations [50]. It was realised
already by Landau and Lifschitz [34] that hydrodynamic equations
need to incorporate thermal fluctuations together with viscous
dissipation, and they formulated a successful theory of “fluctuating
hydrodynamics” consistent with the fluctuation-dissipation the-
orem of statistical physics. Using a shell model of these equations,
we recently showed, in a high-Reynolds turbulent flow at para-
meters relevant to the atmospheric boundary layer, that thermal
fluctuations become significant already at the Kolmogorov scale,
orders of magnitude larger than the mean free path length [3]. Our
result was subsequently confirmed by a numerical simulation at
much lower Reynolds numbers, corresponding to a gently stirred
vial of water, using the full Landau–Lifschitz equations [7]. Thus,
we doubt the physical importance of the non-uniqueness results of
Buckmaster and Vicol [10] because the deterministic Navier–Stokes
equations which they study are based on an unphysical continuum
approximation. The Landau–Lifschitz equations, on the contrary,
are easily proved to have strong, pathwise-unique solutions (e.g.,
see [1]), because they are understood to be a mesoscopic effective
field theory with an explicit high-wavenumber cutoff.

Our claims may appear in contradiction with rigorous mathem-
atical derivations of incompressible Navier–Stokes as a deterministic

PDE by means of a hydrodynamic scaling limit, e.g., in stochastic
lattice gas models [41]. These rigorous results support the so-called
“macroscopic fluctuation theory” [8], according to which velocity
fields evolve by deterministic Navier–Stokes, with probability going
to one. This theory attempts to incorporate thermal fluctuations
by probabilistic large deviations theory, in which spontaneous
fluctuations arise in thermal equilibrium by “instanton solutions”
governed by time-reversed Navier–Stokes equations with negative
viscosity [8]. In that setting, the Buckmaster and Vicol wild solutions
might be accorded physical significance, because, under time re-
versal, they could describe a very rare fluctuation in which the fluid
spontaneously cools down and the lost thermal energy is converted
into macroscopic kinetic energy. The Buckmaster–Vicol theorem
suggests that such macroscopic thermal fluctuations could arise
in a strictly finite time from the rest state of the fluid and likewise
could decay back to rest in a finite time, whereas smooth Navier–
Stokes solutions require infinite time [43]. See Gess et al. [24] for
a recent discussion of the Buckmaster–Vicol theorem in the context
of macroscopic fluctuation theory. However, this interpretation of
the Buckmaster–Vicol theorem is also unphysical in our opinion,
because the “hydrodynamic scaling limit” invoked in macroscopic
fluctuation theory is essentially impossible to achieve in any real-
istic molecular fluid. Indeed, the numerical counterexamples of
Bandak et al. [3] and Bell et al. [7] showed that the thermal fluc-
tuation effects can never be removed in practice even if the flow
were scaled by ridiculously large factors of millions or billions!

In our opinion, convex integration techniques have physical
relevance for turbulent fluids not when applied to Navier–Stokes
but instead to Euler equations. Unlike the Navier–Stokes equations,
the inviscid Euler equations have a precise physical regime of validity,
since their weak solutions plausibly describe the inertial range of
turbulent flows at very high Reynolds numbers ([40]; for a detailed
review, see [20]). The inertial range is described by continuum PDEs
not because the size of the smallest turbulent eddies shrinks below
the molecular scale, but instead because the Kolmogorov length is
much smaller than the outer scale of energy injection in the limit of
large Reynolds numbers. Of particular physical significance are the
convex integration proofs of non-uniqueness of weak solutions of
the incompressible Euler equations with fixed initial data, even after
imposing reasonable admissibility conditions such as dissipation of
kinetic energy [12,13]. The non-uniqueness of the Euler solutions
suggests an intrinsic unpredictability or “spontaneous stochasticity”
of turbulent flow at high enough Reynolds number. In fact, in recent
work we have provided strong numerical evidence in the context
of a shell model of the turbulent cascade that such stochastic
behaviour with fixed deterministic initial data may be triggered by
vanishingly small thermal noise [4]. Furthermore, we have proved
using the physical Landau–Lifschitz equations that such persistent
stochasticity requires non-uniqueness of the Euler solutions [21],
exactly the condition established by the breakthrough methods of
convex integration theory.
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2.2 Ilya Karlin and Florian Kogelbauer
Convex integration is a powerful mathematical tool that allows for
the construction of exotic solutions to partial differential equations
– solutions that defy classical intuition and exist even when standard
methods fail or when uniqueness is lost [11]. Originally introduced
by Nash in the study of isometric embeddings [39], the technique
was later expanded by Gromov and Eliashberg [27] in the realm of
geometric PDEs.

Its impact on fluid dynamics became evident with the ground-
breaking work of De Lellis and Székelyhidi [14,15], who applied
convex integration to construct weak solutions of the unforced
Euler equations. Building on their insights, Buckmaster and Vicol
revealed something striking: the existence of weak solutions to the
unforced Navier–Stokes equations with arbitrary energy growth,
as described in Theorem 1.1 above.

The existence of wild solutions ties deeply into the phenomenon
of anomalous dissipation in turbulence. Onsager’s famous conjec-
ture states that weak solutions of the Euler equations with regularity
above the critical C 1/3 threshold conserve energy, while rougher
solutions may dissipate it anomalously [40]. Could a similar Onsager-
type condition emerge for the Navier–Stokes equations, delineating
when turbulent energy cascades lead to dissipation [18]? Despite
their mathematical validity, wild solutions pose another important
question: Are they physically observable? Can their bizarre beha-
viour – such as unbounded kinetic energy growth – be reproduced
in a real-world experiment? Or is there some physical obstruction
that prevents their manifestation in nature?

It seems that the puzzling properties of wild solutions, especially
the loss of uniqueness, are contradictory to physically observable
fluid flows and thus require further restrictions on the fluid ini-
tial conditions, i.e., a selection criterion similar to stability for
dynamically observable states [46]. A recent variational admissibility
principle proposed for the Euler equations [25] may serve as a step
toward addressing this issue in the Navier–Stokes setting as well.

From a broader perspective, the Navier–Stokes equations arise
as a scaling limit of the Boltzmann equation in the regime of vanish-
ing Knudsen number – the ratio of the mean free path to a system’s
characteristic length scale [5, 26, 35, 36]. At the kinetic level, en-
tropy translates into kinetic energy at the fluid scale, meaning that
unrestricted energy growth in the Navier–Stokes framework would
be in conflict with the second law of thermodynamics [47].

The previously raised question can thus be reformulated as:
How do wild solutions of the Navier–Stokes equations relate to
solutions of the Boltzmann equation? We know from the iterative
structure of convex integration that these solutions involve extreme
oscillations at very fine spatial scales [11]. However, at any finite
Knudsen number, the hydrodynamic description is constrained by
a critical wave number beyond which the Navier–Stokes model
may break down [32].

Building on these insights, we propose the following conjec-
ture: There exists a critical Onsager-type regularity threshold for

Boltzmann equation
∂tf = −v ⋅ ∇f + Q[f, f]

thermodynamically
admissible f ?

Navier–Stokes equation
∂tu+ (u ⋅ ∇)u = νΔu−∇p

wild solutions
u ∈ C 0

t ([0, T],H β
x )

relation to second law?

scaling limit Kn→0

convex integration

embedding into

kinetic theory

Schematic depiction of the relation of the Navier–Stokes equation to the
Boltzmann equation: How do wild initial conditions translate to
thermodynamically admissible kinetic states?

Navier–Stokes solutions beyond which anomalous dissipation is
no longer possible. Moreover, wild solutions of the Navier–Stokes
equations cannot be derived from thermodynamically admissible
kinetic states within the Boltzmann framework. In other words,
the extreme irregularity and energy growth of these solutions may
be fundamentally incompatible with the underlying kinetic theory
governing physically observable fluids.

2.3 Ondřej Kreml
Recent convex integration results in the analysis of systems of
partial differential equations describing fluid flows remind us that
the equations we work with are merely simplified models of reality,
and scientists should treat them as such. These models are highly
useful in some scenarios, while in others, they may simply be
unsuitable. This is evident in the case of the Euler equations, as
physical fluids always have some nonzero viscosity, but to a certain
extent, it also applies to the Navier–Stokes system.

Theorems stating the existence of infinitely many solutions to
systems of equations used as models of reality suggest that the
very definition of a solution may need careful reconsideration. It is
well known that in the case of hyperbolic conservation laws, merely
satisfying the weak formulation of the equations is insufficient to
single out a unique solution. Additional admissibility criteria must
be considered to determine what can be regarded as a physically
meaningful solution. For the compressible Euler system in multiple
space dimensions, identifying the correct notion of a solution that
possesses the desired properties remains an open problem.

It may well be that, similar to hyperbolic conservation laws,
the theorem by Buckmaster and Vicol for the Navier–Stokes equa-
tions establishes the existence of solutions that are not physically
relevant. Only one – or perhaps none – of these solutions may
accurately describe the behaviour of real fluids. While the theorem
is a fascinating mathematical result with significant implications for
the analysis of PDEs, its most important contribution to predicting
real fluid behaviour may lie in reminding us that further work may
be needed to identify the correct notion of a physical solution for
some models describing physical processes.
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2.4 Colin McLarty
It is an understatement to say convex integration gives beautifully
motivated proofs of surprising geometric results. Beyond surpris-
ing, these results have been called “wild,” and “paradoxical,” and
a Quanta magazine headline says they mark “where shapes give
way” [10, 42, 48]. So the question arises: have these results any
physical relevance? In particular, De Lellis and Székelyhidi [14], and
then Buckmaster and Vicol [10], use convex integration for strik-
ing, mathematically revealing, physically shocking solutions to the
Euler and Navier–Stokes equations. A fluid completely stationary
for some time, and subject to no external force, suddenly bursts
into rapid motion, and after some time moving with however high
kinetic energy you choose, it returns to complete rest. No one ex-
pects to see this in real fluids. Does that make the results irrelevant
to real fluid dynamics?

History and philosophy of science have developed terms for
discussing this kind of novelty, as for example in Thomas Kuhn’s
Structure of Scientific Revolutions [33]. This book is not all about re-
volutions. To the contrary, Kuhn says a successful science normally
has a widely accepted theory, together with recognized means of
interpreting that theory in observational data, and specific research
problems, accepted research methods, and landmark successes.
He calls the bundle of a theory, problems, methods, and exemplary
achievements a paradigm.2 A productive science normally faces
some empirical problems applying the theory to observed facts,
and also conceptual difficulties extending the theory and saying
exactly how the theoretical terms are meant to connect with obser-
vations. Kuhn [33, Chapter IV] compares these problems to puzzles
in this sense: Facing a new crossword or jigsaw puzzle you cannot
immediately solve it, but you assume it has a solution of known
form, which can be found by skilful use of the known rules. Most
often in a successful science that is what happens. Every once in
a while a problem, which might not even seem like a big problem
at first, grows in prominence to a point where practitioners feel
it cannot be ignored, yet neither can it be settled by any of the
standard means. It becomes a crisis and may eventuate in a revolu-
tion where the previously normal theory, methods, and questions
give way to fundamentally new ones.

For our purposes the theory of fluid motion would be the Euler
and Navier–Stokes equations [23, p. 3]:

Till a few decades ago (early 1930s), there was unanimous
opinion that the Navier–Stokes equations were useful (in
agreement with the experiments, that is) only at “low”
velocity regimes. It is also thanks to the efforts of outstanding
mathematicians such as Jean Leray, Eberhard Hopf, Olga
Ladyzhenskaya, and Robert Finn that they are nowadays
regarded as the universal foundation of fluid mechanics.

2 Kuhn refined his terminology in later editions, but we can use the
original.

In the vast literature on this theory the top questions are: Do the
equations have smooth global solutions? Can this framework model
turbulence? Convex integration points away from smoothness, but
bears directly on turbulence [10,14,42,44,48].

The theory is not the whole paradigm. The Euler and Navier–
Stokes equations per se do not specify what kind of functions count
as physically meaningful (weak) solutions [38]. This is wide open
today. Restricting to smooth functions is too narrow for applica-
tions. Taking all Schwartz distributions is too broad. Moderately
rough functions produce the paradoxical flows.

Villani notes the most direct way to rule out these paradoxical
solutions to the Euler equation would be to explicitly require kinetic
energy be conserved. Or more likely just require it not to increase,
since a long tradition suggests turbulence dissipates kinetic energy.
This is related to requiring solutions to be at least moderately
smooth. Villani discusses the problems at length [48, pp. 105,
127f., 130]. These have got sharper with the recent work on Navier–
Stokes, where viscosity also dissipates energy [6,10].

Shnirelman offers an opposite approach: Instead of requiring
moderately smooth solutions, allow even rougher initial con-
ditions than Schwartz distributions. He suggests finer analytic
tools (e.g., Young measures) might make the known paradox-
ical solutions less paradoxical, by revealing the fluid in them is
not really at rest initially, but is just so “infinitely-fast oscillating
in space” that even Schwartz distributions cannot resolve the
motion [44, p. 3].

From our Kuhnian point of view, then, yes, the paradoxical
uses of convex integration are an integral part of current fluid
dynamics. They are at least a puzzle. A given researcher in either
pure theory or applications might not be interested in the wild
solutions—if they do not need any theory of turbulence. But the
decisive points are: First, we have so far no articulable paradigm
for fluid mechanics doing justice to current applications while
either ruling out the paradoxical ones or clearing them of the air
of paradox. And second, the paradoxical solutions fit within the
current paradigm in the sense that they are publicly discussed
by the normal means in the subject. This note will not speculate
on whether this puzzle could one day grow to a crisis requiring
a revolution in fluid dynamics.

2.5 Simon Markfelder
The question of the physical relevance of the theorem by Buck-
master–Vicol is strongly related to the question what is the right
solution concept for the PDEs of mathematical fluid mechanics. The
same holds for all the other results achieved by convex integration
in the context of fluid dynamics.

Since the equations are supposed to model the real world
(i.e., they should describe and predict what happens in nature), one
at least expects existence and uniqueness of solutions. For the 2-D
incompressible Euler and Navier–Stokes equations, strong solutions
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(i.e., solutions which are sufficiently differentiable) exist globally
in time. Consequently, one may regard strong solutions as a good
solution concept in this case. However, for the compressible Euler
and Navier–Stokes equations, as well as the 3-D incompressible
Euler equations, strong solutions only exist for small times and
may blow up afterwards, see e.g., [45], [49] and [19], respectively.
Thus, in these cases the study of weak solutions (or even weaker
solution concepts, see below) is unavoidable. Note, that for the 3-D
incompressible Navier–Stokes equations whether smooth solutions
exist globally in time or smooth solutions may blow up in finite
time is an outstanding open question and is one of the famous
millennium prize problems.

When considering weak solutions, an energy or entropy in-
equality has to be imposed in order to rule out unphysical solutions.
This is a well-known fact in the context of systems of hyperbolic
conservation laws like the compressible Euler equations. Moreover,
energy/entropy inequalities can be justified from physics by thermo-
dynamical explanations. Interestingly, both for the incompressible
and the compressible Euler equations, the resulting concept of an
admissible weak solution (i.e., a weak solution which complies
with the corresponding energy/entropy inequality) does not lead to
a unique solution, as shown by convex integration, see e.g., [14,15].
The result by Buckmaster and Vicol on the incompressible Navier–
Stokes equations is of similar type, with the difference that their
solutions do not satisfy the usual energy inequality (i.e., they are
not Leray–Hopf weak solutions). This is due to the fact, that in the
context of the Navier–Stokes equations, one needs some minimal
regularity in order to make sense of the energy inequality, as it
involves terms on the gradient of the solution. And the solutions ob-
tained by Buckmaster and Vicol do not have this minimal regularity.
Still they comply with any prescribed energy profile.

So, strictly speaking, there is still hope that the non-uniqueness
issue raised by the Buckmaster–Vicol theorem does not have great
relevance. Namely, if it turns out that strong solutions exist globally
in time, then one may question the importance of weak solutions.
Moreover, Leray–Hopf solutions might still be unique. And in this
case, one may argue that the solutions obtained by Buckmaster
and Vicol are just too weak, and thus irrelevant. On the other
hand, in view of the aforementioned results, one should better not
bet on either of the two possibilities. In addition to that, for the
Euler equations we know already that neither the consideration
of strong solutions, nor the study of admissible weak solutions
leads to existence and uniqueness. So in my opinion, one has to
discard the classical notion of admissible weak solutions, and look
for novel solution concepts instead. I will discuss some of them in
the sequel.

In the context of the Euler equations, people have studied ad-
ditional criteria with the goal to select one among the infinitely
many admissible weak solutions, e.g., one has considered the solu-
tion whose energy dissipation is maximal. So far, such additional
criteria have however not led to a satisfactory solution concept.

What people find quite promising in this direction, is the vanishing
viscosity method. This would however require well-posedness for
the corresponding viscous model, e.g., the Navier–Stokes equa-
tions. Another problem is that sequences of approximate solutions
(like vanishing-viscosity sequences) usually exhibit oscillations and
concentrations. Thus, the sequences in general only converge with
respect to weak topologies. Moreover, by understanding the (weak)
limit as a conventional function, one forgets the oscillatory and con-
centrative behaviour of the corresponding approximate sequence.
A nice way to capture oscillations and concentration is to under-
stand the limit as a (generalised) Young measure, which yields
a probability distribution at each point in space-time instead of
a particular value. This leads to the notion of a measure-valued
solution, see e.g., [2, 17]. It is in many situations not difficult to
prove that approximate sequences converge to measure-valued
solutions, which yields existence of the latter. This is in contrast
to admissible weak solutions, which are—at least for the Euler
equations—not known to exist. Moreover, the generalisation of
weak solutions to measure-valued solutions also seems more plaus-
ible when turbulent flows are considered, since the statements of
turbulence theory are of statistical nature.

However, the consideration of measure-valued instead of weak
solutions does not solve the non-uniqueness problem. Quite the
contrary is true, namely there are even more measure-valued solu-
tions than weak solutions. For this reason, one has tried to impose
selection criteria similar to the ones mentioned above in the context
weak solutions, in order to identify the relevant solutions among
the possibly many measure-valued solutions, see e.g., [9,22]. Even
though a satisfactory selection criterion has not been found yet,
I feel that this approach is the most promising in order to find
a good solution concept.

2.6 Mikhail Osipov
From the theoretical physics point of view, the theorem of Buck-
master and Vicol does not take into consideration that the Navier–
Stokes equations are not a law of nature, but are approximate
equations which are derived from the more general framework of
molecular-statistical theory (e.g., from the BBGY chain of equations)
using some important assumptions. In particular, these equations
(as all classical hydrodynamics) are formally derived in the limit
k → 0, where k is the wave number. More subtle assumptions
involve a properly imposed thermodynamic limit as discussed in
classical works of Khinchin [30,31]. In practice, such equations are
used at finite k to describe real physical flows, but they are most
likely incorrect even qualitatively in the opposite limit of large k.
One notes also that the macroscopic fluid velocity is not an aver-
age over some small volume but is actually a statistical average of
molecular velocity with a one-particle distribution function which
is generally smooth. Thus, the average velocity is also smooth at
small scales and can behave violently only on the macroscopic scale.
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Therefore, any solutions of these equations that vary strongly on
smaller and smaller scale are simply outside the limit of applicability
of these macroscopic equations and are of purely mathematical
significance. They do not have any direct relation to real physical
flows.

This situation can be illustrated by a simple example from liquid
crystals (my field of expertise; in this example this is elasticity but
in the hydrodynamics the situation is similar). Indeed, continuum
equations of elasticity of nematic liquid crystals yield point sin-
gularities in the orientational director field which correspond to
point defects observed in real systems. However, continuum theory
cannot describe the radius of the defect core as there is no length
scale. In fact, the defect core has finite radius which is calculated
approximately from a statistical theory.

It is possible to obtain formal mathematical solutions of the
continuum equations for the director distribution sufficiently close
to the point discontinuity. However, these solutions have no rela-
tion to the real physical defect because in this domain we are inside
the finite defect core with a completely different structure. The
macroscopic theory simply breaks down because of large gradients
which increase on approach to the singularity and the mathem-
atically correct solutions in this domain lose their physical validity
because they are obtained outside the range of validity of the con-
tinuum equations. One has to describe the system in this domain
within a different framework of a molecular statistical theory which
yields the results which correspond to the experiment.

3 Discussion

We suggest that the Buckmaster–Vicol theorem can be viewed in
three main ways.

The first is that the result is solely of mathematical interest
and whether or not it has physical relevance is of no concern. It is
unnecessary to consider the requirements of fluid dynamics. It is
only essential that the result is rigorously proved.

The second way is to accept that the result is a contribution
to fluid dynamics but the implications, especially in relation to
turbulence, are not yet fully understood. What, for example, is
the connection to the work of Kolmogorov and Onsager? A dis-
cussion of this aspect is presented by De Lellis and Székelyhidi
in [16].

The third point of view accepts that the Buckmaster–Vicol
results might have no physical relevance. The difficulty here is that
there are many potential reasons for this lack of physical relevance,
by which again we mean observability in nature or in experiments,
and some of these are discussed below. Being able to rule out some
of the reasons and deciding between the ones that still remain (if
any), appears to be an important task for mathematics, physics,
and the philosophy of science. In particular, we assert that this
debate is a fruitful one for philosophy of science in its rôle as the

logic inspector of the scientific enterprise, and that issues raised in
this particular debate have a broader domain of application.3

Below we shall briefly review what seem to us as, for now,
legitimate reasons to doubt physical relevance of the Buckmaster–
Vicol result. The list is as exhaustive as we could make it; we can
envisage it becoming both longer and shorter in the future: longer
due to the failure of our imagination, and shorter as arguments
become available to rule out some of the possible grounds for
criticism.

3.1 Classification of reasons
The possible reasons for lack of physical relevance are of different
levels of depth. At the “shallowest” (not used pejoratively) end of
the spectrum are grounds that agree with the approach and its use
of the object of enquiry (the Navier–Stokes equations), but find fault
with the result itself in the sense of not accepting the wild solutions
obtained as being of physical relevance. At the next level of depth
lie objections that have to do with the applicability of convex
integration to the specific object of interest. The deepest objections
have to do with the structure of matter (fluids in particular) at very
short scales that the convex integration technique as a technique
of analysis, does not respect a priori.

3.2 Result-level reasons
Here we are dealing with arguments that accept that the con-
vex integration techniques can be applied to the Navier–Stokes
equations but still find the results (such as the Buckmaster–Vicol
theorem) wanting in physical plausibility.

As an example of such an argument, let us consider admissibil-
ity criteria. While there certainly are wild solutions that satisfy the
entropy admissibility criterion [37], there is not one known instance
of a situation where any admissibility criterion yields a unique pre-
ferred wild solution. This is trivially true as wild solutions are created
in physically indistinguishable (uncountable) equivalence classes.
Hence, if one accepts that there should exist a mechanism that
selects a unique solution of the Cauchy problem, such a mechanism
will never select a wild solution; see for example the discussion
in [25].

However, first of all, this suggestion invites the rejoinder that
there is no a priori binding principle that requires such a property
of solutions in order to force uniqueness; perhaps “God plays dice”
at the macro-level. At the same time, the question arises why in
all known cases even equivalence classes of wild solutions do not
satisfy admissibility criteria. In other words, at this level objections
are consequences of objections at a deeper level.

3An example would be a discussion of the gelation phenomenon in
coagulation-fragmentation equations derived under the assumption of
solute diluteness.
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Another point of view, articulated in the contributions by Kreml
and by Markfelder, is that the concept of weak solution is not
appropriate here. Again, the questions arise why this framework,
so often productively used in PDEs, is inappropriate in the partic-
ular case of Navier–Stokes equations and what other framework
(measure value solutions, or considering ensembles of weak solu-
tions as opposed to working with individual ones) should come to
replace it.

3.3 Object-level reasons
In this class of reasons one claims that the possible physical im-
plausibility of results such as the Buckmaster–Vicol theorem follows
from flaws in the Navier–Stokes equations and/or the application
of convex integration techniques to it. This class naturally splits
in two.

For the first subclass, one could claim that convex integration
is applicable but that the flaw lies in the Navier–Stokes equations
themselves, and that there exists another version of the equations,
e.g., one involving thermal noise modifications as advocated by
Eyink and Goldenfeld, or incorporating higher-order spatial terms
or nonlocal/peridynamics ones, in which results would be more
intuitively realistic.

In the rest of this subsection and in the next one we discuss
arguments based on the conviction that the convex integration
techniques should not be in principle applied to inter alia the
Navier–Stokes equations or any other continuum formulation of
laws of fluid motion; see also the contributions by Karlin and
Kogelbauer and by Osipov.

To do that we need a one-sentence summary of the convex
integration technique; the reader should consult [37] for all the
necessary definitions and details. It is this: starting with a suitable
initial function (a sub-solution of an equation), we iteratively obtain
a (family of) weak solutions to the equation in question in the limit
by corrugating the sub-solution at ever decreasing scales.

It is therefore debatable if modifications at every scale can
be made to a solution representing the velocity of a fluid, i.e.,
one may ask what it means for two such solutions to differ at
the sub-Planck length scale. Observe that the incompressibility
condition that assumes a well-defined macro-variable (density) and
the definition of viscosity (that involves density as well) do not
make sense at too short scales [29].

The main question that arises here is how an equation derived
by making the assumption of continuum can be manipulated at
scales where the assumption no longer holds.

Note that the formal object of enquiry bears no indication of
the cut-off scales beyond which it cannot be manipulated.

We also observe that any analysis, such as the fundamental
work of Onsager [40], that assumes that the velocity field contains
information about the flow at all scales, appears open to the same
criticism. See [20,21] for a defence against this criticism.

This argument may harbour a hint to what concept of solution
is appropriate for matter made of atoms and voids that is being
analysed using a continuum description.

3.4 Structure of matter level reasons
The real numbers ℝ provide a suitable setting for differential geo-
metry, which is scale-free. However, it is arguable that a description
of matter needs a fundamentally discrete setting at very short
length scales (Planck length is of order 10−35 m and Planck time
is of order 10−42 s). Without entering into details, we quote C. J.
Isham [28, p. 189]:

The general assumption is that something “dramatic” happens
to the nature of space and time at these fundamental scales.
Precisely what that dramatic change might be, has been the
source of endless speculation and conjecture. However, there
is a fairly widespread anticipation that insofar as
spatiotemporal concepts have any meaning at all in the
“deep” quantum-gravity regime, the appropriate mathematical
model will not be based on standard, continuum differential
geometry.

3.5 Final remarks
We are aware that not all the possible views on the subject have
been presented. Hence, reader comments and opinions are wel-
come, for example, on computational aspects of wild solutions.
These comments can be sent to m.grinfeld@strath.ac.uk. If a lively
debate ensues, a continuation paper on the subject will be con-
sidered by the EMS Magazine.
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