Mathematical modelling of light propagation in the human eye

Adérito Araujo, Silvia Barbeiro and Milene Santos

This review paper surveys the application of Maxwell’s equations to
simulate light propagation in the human eye, using discontinuous
Galerkin methods for spatial discretisation. Understanding this
process is crucial for medical imaging and the early diagnosis
of eye diseases. Case studies involving corneal opacity, diabetic
macular edema, and retinal elasticity demonstrate the importance
of simulating this phenomenon considering realistic geometries
and material properties. Specifically, these simulations provide
valuable insight into how structural changes in the cornea and
retina affect light scattering and transparency, offering a useful tool
for non-invasive diagnosis. Curved anatomical features, such as
structures of the eye, require accurate boundary representation to
avoid loss of order of convergence of the numerical schemes. High-
order discontinuous Galerkin method combined with a polynomial
reconstruction technique enable an appropriate enforcement of
boundary conditions without relying on curved meshes.

1 Introduction

Light entering the human eye undergoes refraction and transform-
ation as it passes through layered media with varying refractive
indices, including the cornea, aqueous humour, lens, vitreous hu-
mour, and retina [17] (see Figure 1). These structures collectively
focus and guide light toward the retina, where photoreceptor cells
convert electromagnetic waves into neural signals for vision. Ac-
curately modelling light propagation through these structures is
essential not only for understanding the fundamental optics of
vision, but also for improving diagnostic imaging techniques and
uncovering biomarkers of disease.

Among modern ophthalmic imaging modalities, optical coher-
ence tomography (OCT) has become a widely adopted standard in
both research and clinical use. Since its introduction in the 1990s
[15], OCT has revolutionised the non-invasive evaluation of the ret-
ina by enabling cross-sectional imaging with high axial resolution. It
operates on the principle of low-coherence interferometry: a beam
of light is directed into the tissue and backscattered photons are
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Figure 1. Structure of the human eye. (National Eye Institute, CC BY 2.0)

captured to generate high-resolution cross-sectional images of the
tissue. As light propagates through tissue, scattering occurs at re-
fractive index discontinuities. The magnitude of the backscattered
light is influenced by factors such as the size and shape of the
scatterers, the incident wavelength, and local optical heterogeneity.
The OCT signal at each point is captured in an A-scan, and mul-
tiple A-scans collected laterally form a B-scan; three-dimensional
imaging is obtained by compiling a stack of B-scans across the
azimuthal plane (see Figure 2 and Figure 3).

OCT plays a central role in the diagnosis, staging, and monitor-
ing of major ocular diseases such as diabetic macular edema (DME),
age-related macular degeneration (AMD), and glaucoma [12]. Bey-
ond ophthalmology, OCT has also emerged as a valuable tool in
neurology, with retinal changes being increasingly recognised as
biomarkers of central nervous system disorders, including multiple
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Figure 2. Scheme for the principle of OCT [29].
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Figure 3. Example of an OCT volume (top left), B-scan (top right) and
A-scan (bottom) of a human retina [9].

sclerosis, diabetic retinopathy, Parkinson’s disease, and Alzheimer’s
disease [7, 24, 27]. However, despite its widespread use, OCT
has intrinsic limitations. The technique is primarily sensitive to
backscattered light intensity and does not provide direct access
to sub-cellular features or to the underlying optical parameters
(e.g., refractive index distribution, anisotropy) that drive contrast
formation in scattering tissues.

Understanding how microscopic changes, such as extracellular
fluid accumulation, cell swelling or microstructure organisation,
affect the macroscopic OCT signal is therefore a crucial step towards
improving the sensitivity and specificity of OCT-based diagnoses.
Many early pathological changes in both ocular and neurological
diseases are subtle and occur at scales below the resolution of OCT.
Accurately linking these microscopic changes to OCT signal patterns
requires detailed biophysical models of light propagation in the
eye, capable of resolving scattering and interference phenomena
in realistic anatomical geometries.
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Maxwell’s equations provide the most complete and physic-
ally consistent framework for modelling electromagnetic wave
propagation in biological tissues. However, their numerical solu-
tion in full three-dimensional ocular domains presents significant
challenges: the wavelength of light is several orders of magnitude
smaller than the overall domain size; the anatomical structures
involve curved, multilayered boundaries with sharp optical prop-
erty contrasts; and the resulting wave fields are highly oscillatory.
To address these complexities, we employ high-order discontinu-
ous Galerkin (DG) methods for spatial discretisation. DG meth-
ods combine the geometric flexibility of finite elements with the
high-order accuracy and local conservation properties of spectral
methods, making them especially well suited for simulating time-
domain wave propagation in heterogeneous biological media [14].
The use of low-storage Runge—Kutta time integrators further en-
ables long-time simulations while preserving computational effi-
ciency [31].

Anatomical accuracy is central to our modelling approach.
Optical phenomena such as forward and multiple scattering, or
subtle angular dependencies of the backscattered signal, can
be strongly influenced by small geometric features. Errors in
representing curved interfaces, such as the corneal surface or
retinal layers, can lead to misleading conclusions. While high-
order curved meshes offer one approach to improving geometric
accuracy, they often introduce significant meshing and com-
putational overhead. To address these challenges, we adopt
a polynomial reconstruction approach that applies boundary
conditions directly on smooth anatomical surfaces, maintaining
high-order accuracy without requiring curved mesh elements.
This enables precise modelling of the optical properties of the
eye, including complex light paths and tissue-specific scattering
behaviours.

In the following sections, we present an electromagnetic model
of the human eye, considering both scattered-field and total-field
configurations. We detail the DG spatial discretisation, the high-
order time integration scheme, and the implementation of realistic
anatomical geometries. Finally, we apply our methodology to three
clinically motivated scenarios: changes in corneal transparency,
light scattering in retinal layers affected by DME, and elastic-wave
propagation relevant to optical coherence elastography. These
case studies illustrate how high-order modelling can enhance
the interpretation of OCT data, support early diagnosis, and con-
tribute to a deeper understanding of disease mechanisms at the
microstructural level.

2 Maxwell’s equations
Maxwell’s equations describe how electromagnetic waves propag-

ate in a medium and are essential for modelling light transmission
through the eye [18]. The electromagnetic field involves four vector
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fields: the electric field E, magnetic field H, electric flux density D,
and magnetic flux density B. Constitutive relations link these fields
via D = €E and B = pH, where ¢ is the permittivity tensor and
U the permeability. In isotropic media, € = &/ with scalar ¢, and
U > 0 is typically close to the vacuum permeability in biological
tissues. These parameters determine the refractive index, wave
speed ¢ = 1/,/€fi, and impedance Z = \/u/, all critical for accurate
modelling of light propagation through the eye’s heterogeneous
structures.

Assuming zero charge density and zero current density, and
using the constitutive relations, Maxwell’s equations in a source-
free isotropic medium can be written as

oE
— =V XH, 1
€5 (1)
oH
— =—-V XE 2
M5 , (2)
where VX denotes the curl operator, E = (Ey, Ey, E,)" and H =

(Hx, Hy, H2) ™.

In the context of light propagation in the eye, the transverse
electric (TE) mode of Maxwell’s equations provides a simplified yet
physically relevant representation of electromagnetic wave beha-
viour. In TE mode, the magnetic field is assumed to be polarised
perpendicular to the plane of propagation (commonly taken as the
xy-plane). So the electric field lies entirely in the transverse plane
and has two components of interest, usually denoted by £, and E,,,
while the magnetic field has a non-zero component in the direction
of propagation, usually denoted by H,. This simplification suits
many biological optics applications, including the eye, where light
is often linearly or partially polarised with the electric field primarily
oriented in the plane defined by ocular structures. The properties
of tissues such as the corneal stroma and retina strongly influence
these in-plane fields [21]. The TE mode also enables realistic simula-
tion of polarisation-dependent phenomena, such as scattering and
absorption, which are crucial for advanced imaging techniques like
optical coherence tomography and polarimetry [12]. From a com-
putational standpoint, the TE mode reduces Maxwell’s equations
to a coupled system involving only three components, namely £,
E, and H,, facilitating efficient numerical implementations. In a 2D
TE mode setting, time-domain Maxwell's equations (1)—(2) can be
expressed as
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Thus, the TE mode offers an effective balance between physical
realism and numerical tractability for modelling light propaga-
tion in the eye. It accurately represents the in-plane electric field
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interactions with ocular tissues while simplifying the electromag-
netic problem, making it a preferred choice in many optical analyses
of the eye.

A comprehensive description of an electromagnetic problem
should include both the governing differential equations and
the corresponding boundary conditions. Since simulations are
performed within a finite domain Q with boundary 9Q, it is
essential to implement boundary conditions that accurately rep-
resent the behaviour of waves exiting the domain. Silver-Mdiller
absorbing boundary conditions simulate open boundaries that
allow outgoing waves to exit the domain without reflection. On
a boundary with outward unit normal vector n = [n,, ny]T, they
are given by

NXE=2ZnX (HXn) onoaQ.

These conditions are designed to replicate the effect of an
open domain by minimising spurious reflections at the compu-
tational boundary. Derived from plane wave solutions of Max-
well’s equations, they are particularly well suited for problems
in which electromagnetic waves radiate outward from the do-
main [18].

3 Discontinuous Galerkin method

Discontinuous Galerkin (DG) methods are a class of finite element
methods that combine the advantages of finite volume and finite
element schemes [14]. They are particularly suitable for solving hy-
perbolic partial differential equations, such as Maxwell’s equations,
because of their ability to handle complex geometries, adaptivity,
and high-order accuracy.

Let U = (Ey, Ey, H,)" denote the vector of unknowns. The
system (3)—(5) can be written in conservation form

du
Q§+V-F(U) =0, (6)

where V- denotes the divergence operator, and the flux tensor
F(U) and the material matrix Q are defined by

0 —H,
e 0
o ] el
E, —E H

The domain Q is meshed with K non-overlapping elements T,
k=1,...,K, leading to an approximate computational domain Q =
UK_, T¥. We seek a weak solution Uy, by requiring the residuals
to vanish in the following way

o,

QhQ ot

-qbdx+f V-F(Up) - pdx =0,
Qp

where ¢ is a test function from a discontinuous (piecewise poly-
nomial) finite element space. Next, we employ one integration
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by parts and replace the flux F by a numerical flux F. Applying
integration by parts again yields

gj (Q%d +V- F(Uh)) - ¢ dx

ij n-(F—F) - ¢ds,

where n is the outward unit normal vector of the contour.

Numerical fluxes are used in DG methods to manage discon-
tinuities at element interfaces. A common choice is the upwind flux,
which incorporates the wave propagation direction and ensures
numerical stability. Alternatively, central fluxes with penalty terms
may be employed. Introducing the notation for jumps of fields
[ul =u~ —u™, where — refers to the local cell and + refers to
the neighbouring one, we define the upwind flux as [14, 19]

Z;”; (Z*THnz] = (ny[Eny] — ny[Ep]))
Z*+Z (Z [th] - (nx[[Ehy]] ny[[Ehx]])) ’
Y++Y (Y (nx[[Ehy] - nyl]:EhX]]) - [[thﬂ)

with impedance Z* = ju¥/e* and conductance Y+ = 1/Z*.
These choices ensure that energy transmission and reflection at
interfaces are physically accurate. These flux expressions help main-
tain consistency, stability, and physical fidelity of the numerical
scheme. For Silver—Miller absorbing boundary conditions, we
consider at the outer boundary

n-(F—F) =

+ T
EhynX - Ehxny =7z HhZ/

which is equivalent to considering [Exnx] = Ef, [Eny] = Epy and
[Hn,] = Hp,. To complete the evaluation of fluxes at boundary
edges, we mention that the material properties at the boundary
aresetasZt =Z andY" =Y.

4 Time integration

The system of ordinary differential equations resulting from the
spatial discretisation of Maxwell’s equations using the DG method
takes on the form

dUn
prai Ly(Up),

where £, (Up) includes the contributions from element integrals,
numerical fluxes and the material matrix.

Explicit low-storage Runge—Kutta (LSRK) methods are particu-
larly well suited for time integration in wave propagation problems
due to their balance of efficiency, accuracy, and stability. Unlike
standard Runge—Kutta schemes that require multiple storage vec-
tors for intermediate stages, LSRK methods reuse just a few vectors
— typically two — through recursive updates. This leads to signific-
antly reduced memory usage, an important feature in large-scale
simulations.
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LSRK methods can achieve high-order temporal accuracy, typ-
ically fourth or fifth order, while maintaining favourable stability
properties for hyperbolic systems. Their explicit formulation makes
them easy to implement and naturally suited for parallel computa-
tion. Although there are several ways to implement LSRK methods,
we adopt the formulation introduced by Williamson [31], which
uses only two vectors — one for the solution and one for the resid-
ual — and is well suited to large-scale DG simulations. The method
proceeds as follows:

U@ =y RO =0

R = qR™Y + At £,(UD),

U =u" 48RP, i=1,..5s,
UZ+1 — U(S>,

where a; and 8; are method-specific coefficients chosen to achieve
high-order accuracy and favourable stability properties, At is the
time step, and s is the number of stages. The method reuses
the vectors U and R at each stage, thus achieving low memory
consumption. In this work, we consider the L(14,4) scheme by
Niegemann, Diehl, and Busch [22], a method of 14 stages and order
of accuracy 4. These methods were designed to minimise memory
usage while maximising stability, making them particularly well
suited for high-order spatial discretisations such as discontinuous
Galerkin methods applied to hyperbolic problems.

An alternative to LSRK methods for time integration of Max-
well's equations is the Leapfrog scheme, which is commonly used
due to its explicitness, simplicity, and time centred structure that
matches the staggered nature of Maxwell's equations [3,4]. In the
Leapfrog scheme, the electric field E = (Ey, E,) and magnetic field
H, are updated at staggered time levels. The electric fields Ey, E,
are computed at integer time steps t” = nAt and the magnetic
field H, is computed at half-time steps t"*'/2 = (n + 1/2) At. This
time-centred structure is second-order accurate and conditionally
stable under a CFL condition, which imposes a bound on the time
step At depending on the mesh size h and the wave speed. Theor-
etical results on stability and convergence may be found in [3, 4].
The Leapfrog method is particularly attractive for long-time simu-
lations due to its low computational cost and symplectic nature,
preserving energy in non-dissipative systems. However, it requires
care when dealing with complex geometries, boundary conditions,
and variable material properties, especially when combined with
DG spatial discretisations.

5 Case studies
Early detection of eye diseases is essential for effective treatment
and preserving vision. Conditions such as corneal disorders and

diabetic macular edema often involve subtle alterations of the
microstructure of the tissue. Optical coherence tomography (OCT)
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and optical coherence elastography (OCE) are two non-invasive
imaging techniques used in ophthalmology to detect abnormalities
in the eye. This section presents three case studies that perform
simulations based on Maxwell’s equations to model the effect of
these changes on OCT/OCE signals.

5.1 Corneal transparency problem

The cornea is the transparent outer layer of the eye, and it plays
a key role in directing and focusing light toward the retina. It is com-
posed of five layers: the epithelium, Bowman’s layer, the stroma,
Descemet’s membrane, and the endothelium (see Figure 1). Under
healthy conditions, these layers remain thin and well structured,
minimising light scattering. However, pathological modifications
to any of these layers can disrupt this structure, leading to in-
creased light scattering and a loss of corneal transparency [20].
Among the five layers, the stroma corresponds to nearly 90% of
the total corneal thickness and is mainly composed of collagen
fibrils with uniform diameters that are further gathered into col-
lagen lamellae. Among other functions, these collagen fibrils are
responsible for maintaining the structural regularity that supports
transparency [21]. Specifically, what is maintained is the uniformity
of the diameters of the collagen fibrils and the distances between
adjacent collagen fibrils. Alterations in either of these properties
may result in increased light scattering, compromising corneal
transparency.

Corneal opacity problem is a common issue in vision diseases,
particularly for ageing population, while decreased visual acuity
is associated with a reduced quality of life and life expectancy.
Diagnostic is based on cornea analysis using OCT.

Ageing of the ocular surface and corneal tissues causes major
eye diseases and results in substantial costs in both medical and so-
cial terms. Furthermore, often corneal edema occurs after surgery
for treating cataracts is performed. Understanding the mechanisms
of transparency loss requires understanding the structural bases
of corneal transparency itself, which ensure minimal scattering of
visible light. Scattering takes place when an incident light wave
encounters fluctuations in the refractive index of a material, char-
acterised by the matrix of collagen fibrils. Modelling and simulating
the cornea transparency loss is a critical digital tool to measure and
prevent possible illnesses.

Results in [2] illustrate that an increase in the diameter of
some fibrils causes an increase in backscattering. Therein, the
problem was studied considering a two-dimensional model of
backscattered light in two different scenarios (healthy and patho-
logical).

To simulate light scattering in the cornea, the scattered field
formulation for the transverse electric (TE) mode was adopted. This
involves decomposing the total electromagnetic field into two com-
ponents: the incident field U' = (£, E}, H2)", which represents the
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wave propagating in the absence of scatterers, and the scattered
fieldU® = (E, Ej, H:)T, which accounts for the perturbation caused
by the inhomogeneities. Thus, the total field is expressed as the
sum of the incident and scattered components.

Assuming the incident field satisfies the Maxwell equations
(3)—(5) with relative permittivity €9 and permeability o = p corres-
ponding to the background (scatterer-free) medium, we substitute
this decomposition into equation (3)—(5). This leads to the scattered
field formulation, which isolates the effect of the scattering medium
on the wave propagation:

OEy _ oH; _ Ok
€5, = 5 + (g9 — €) 5 7)
OF;,  OH: oF,)
€3t = T ax TG (®)

OH; _ OEx _ O
o =9 " ®)

For a computational (dimensionless) domain we took Q; =
[—1, 1]? with circles that stand for the collagen fibrils of the cornea.
In the healthy scenario, we considered that the diameter of each
fibril is 31 nm. In the pathological situation, the positions of the
fibrils were kept and eight fibrils were randomly chosen to have
doubled diameter. For the numerical simulations, the magnetic
permeability was set to u = 1, the electric permittivity of the free
space to &y = 1.3652 and ¢ is such that

) 1.4112, (x,y) € F, (x,y) € F',
elx,y) =
Y 13652, (x,y) EQNF, (x,y) €EQN\ F,

where ‘F denotes the union of circles that model healthy collagen
fibrils and F’ represents the pathological situation. The scattered
field formulation is completed with Silver-Miiller absorbing bound-
ary conditions and initial conditions defined by U*(x, y, 0) = 0 and
U'(x,y,0) = (0,cos(10(x —1)),0)7.

The spatial discretisation is done on meshes defined in Fig-
ure 4 using the DG method. Note that, when considering the
scattered field formulation (7)—(9), the conservation form (6) would
have an additional term G(U') that results from the incident field.
The low-storage explicit Runge—Kutta method, L(14,4), is applied
for time integration with step At = 1073, respecting the stability
constrains [5]. The intensity of the scattered electric field, /° =
J(EX)2 + (Ep)?, is represented in Figure 5 where the solution was
approximated by polynomials of order N = 4 and plotted for
different values of simulation time T.

As one can see in Figure 5, the planar characteristic of
the wavefront is significantly lost in the situation where we
double the diameter of 20% of the stromal fibres. One can also
observe an increase in backscattering in the case where the
organisation of the fibrils is not uniform, which subsequently
leads to corneal swelling and a loss of transparency, as predicted
in [21].
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Figure 4. Spatial meshes for the healthy and pathological scenarios. The
mesh in (a) is composed of K = 5072 elements, and the mesh in (b)
counts K = 4972 elements [2].

5.2 Simulation of diabetic macular edema changes on
optical coherence tomography data

Diabetes mellitus is one of the most prevalent diseases in developed
countries. According to the World Health Organization (WHO),
approximately 74 million adults in the WHO European Region are
living with diabetes, with prevalence rates of 11.9% among men
and 10.9% among women [32]. This marks a significant increase
from earlier estimates and underscores the growing public health
challenges posed by diabetes in Europe. Projections indicate that

by 2045 one in ten adults in the region will live with diabetes [16].
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Figure 5. Scattered electric field intensity [2].

A major complication in diabetes is diabetic macular edema,
one of the leading causes of visual impairment among diabetic
patients [8]. DME is defined as an increase in retinal thickness due
to fluid accumulation, which may occur intra- or extracellularly. In
intracellular edema, cells retain excess fluid, becoming enlarged,
whereas extracellular edema results from the accumulation of fluid
outside cells, often due to a breakdown in the blood-retinal bar-
rier [10]. Differentiating the type and severity of DME in its early
stages is often challenging.

OCT is a widely used imaging technique that provides high-
resolution views of retinal structure in vivo (Figure 6), making it
essential for diagnosing and monitoring DME. However, standard
OCT lacks the ability to directly capture microscopic changes at the
cellular level, particularly the morphological alterations linked to
intracellular and extracellular edema. Understanding how these
microscopic features influence the macroscopic OCT signal is there-
fore crucial. To address this, Correia et al. [9] developed a hybrid
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Figure 6. Section of the retina. From Henry Gray: Anatomy of the Human
Body (Philadelphia: Lea & Febiger, 1918). (In public domain at
bartleby.com.")

simulation framework that integrates physical models of light
propagation with biologically-informed retinal representations, fo-
cusing on a 3D optical model of the outer nuclear layer (ONL),
a region consistently affected in DME and amenable to modelling
via spherical scatterers.

Various methods have been proposed to describe the interac-
tion of light with retinal tissues. Most are based on single-scattering
theory [28], which is insufficient to fully capture the structural com-
plexity of the retina. The Mie solution to the equations in question
is among the most widely used techniques for modelling tissue
scattering at the cellular level [17]. However, Mie theory is lim-
ited to scattering by a single homogeneous sphere, restricting its
applicability to scatterers of different shapes or aggregates. This
limitation is partially overcome by the generalized multiparticle Mie
(GMM) theory introduced in [33], which extends Mie's solution
to account for multiple scattering in aggregates of spheres and
enables more accurate modelling of biological tissue. Nevertheless,
GMM is still confined to spherical structures.

More complex models need to be used when considering
scatterers of arbitrary shapes. The finite-difference time-domain
method is a numerical technique used to solve the Maxwell equa-
tions in the time domain that has been applied to a wide range of
electromagnetic problems, including light scattering from biological
cells[11,30]. In [25], Maxwell’s equations were solved on a small 3D
ONL domain using the DG method, coupled with a fourth-order, 14-
stage low-storage Runge—Kutta integrator. Silver—-Muller boundary
conditions were applied to suppress spurious reflections. The model
was validated against Mie's theory using identical parameters,
showing good agreement with errors of 0.37% for the scattering
anisotropy and 0.06% for the scattering cross-section [25].

An algorithm to simulate A-scans was also developed. A sinus-
oidal plane wave propagating in the z-direction excites the domain,

https://www.bartleby.com/lit-hub/anatomy-of-the-human-body
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and the DG model computes fields around a single spherical scat-
terer representing an ONL nucleus. Anisotropy (g) and scattering
cross-section (o) are obtained from the far-field scattering pattern
in spherical coordinates. A Monte Carlo simulation then launches
10° photons, simulating distances between interactions (using ds)
and angular deflections (using g). Photon paths reaching a 15 pm
radius detector within a 5° acceptance cone are recorded. Com-
paring simulated and experimental A-scans allows identification of
parameter sets that best reproduce the observed data.

The tool was applied to OCT scans (Cirrus HD-OCT, Carl Zeiss
Meditec) collected from healthy subjects and two DME patient
groups: DME | (increased ONL thickness) and DME Il (no apparent
ONL change). Literature-based parameters (Table 1) were used for
healthy tissue, while parameters d (nucleus diameter in DME I) and
p (nucleus density in DME Il) were adjusted to fit the measured
A-scans [9].

Group Nuclei diameter ~ Nuclei density Nuclei RI Medium RI
(um) (nuclei/um3)  (at 870 nm)  (at 870 nm)
Healthy 7.0 0.002 1.39 1.35
DME | d 0.002 1.39 1.35
DME Il 7.0 p 1.39 1.35

Table 1. Properties of the medium used in Monte Carlo simulations [9].

For each group, the ONL was segmented and B-scans were
aligned to the upper ONL boundary. Mean B-scans and A-scans
were computed and normalised to the maximum intensity at the
retinal pigmented epithelium. Final A-scans were cropped to the
minimum ONL thickness observed to ensure consistency (Figure 7).

Intensity

Figure 7. OCT processing algorithm (counterclockwise from upper left
corner). The ONL of a group’s B-scans are segmented and aligned to their
upper boundary. The segmented B-scans are averaged to produce

a demonstrative B-scan. The A-scans are averaged to obtain an A-scan
that fully describes the group [9].
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It was observed that DME group | (Figure 8(a)) consistently
exhibits a stronger intensity signal compared to healthy controls.
To replicate this condition in simulation, it was necessary to increase
the nuclei diameter by 14% relative to the healthy state. In [9], the
data for DME group | were successfully reproduced by increasing
the nuclear radius d from 7.0 pm to 8.0 um, while keeping all other
parameters unchanged.

In contrast, DME group Il (Figure 8(b)) shows a reduced backs-
cattered signal compared to healthy tissue, which is consistent
with theoretical expectations. A thicker layer containing the same
number of nuclei should result in a lower backscattering signal
due to the reduced density of scatterers. In [9], this behaviour
was replicated by reducing the simulated nuclei density by 40%.
Specifically, the density p was decreased from 0.002 um~ to
0.0012 um™~3, based on the assumption that the number of nuclei
remains constant while the volume of the ONL increases. This ad-
justment reflects the observed ONL thickness increase from 70 pm
to 117.2 um.

The results reported in [9] support the hypothesis that the two
types of edema, cytotoxic (intracellular) and vasogenic (extracellu-
lar), can be distinguished through OCT signal characteristics. In the
case of DME group |, the increased OCT signal is best explained by
an enlargement of the nuclei, which is compatible with intracellular
swelling. While alternative mechanisms, such as changes in nuclear
radius or the refractive index of the surrounding medium, could
also affect the signal, this preliminary study restricted the ana-
lysis to physiological alterations consistent with known biological
behaviour.

5.3 Elastography problem in the human retina
Understanding the mechanical properties of ocular tissues is es-
sential in the diagnosis of retinal and corneal pathologies. Optical
coherence elastography (OCE) is a promising imaging technique
that combines high-resolution structural imaging with mechanical
characterisation, providing valuable insights into tissue elasticity
[23]. There are different implementations of OCE, varying in the
type of mechanical loading of the tissue. Using a piezoelectric
actuator to induce tissue displacements is one of many possible
techniques.

In OCE, waves from a source propagate through the eye, in-
cluding the cornea, the lens, and the vitreous humour, to reach the
retina (see Figure 1). When the acoustic pressure interacts with the
retina, it generates an elastic wave within the tissue. This elastic
wave then propagates through the retina, potentially causing meas-
urable displacements and providing information about the mech-
anical properties of the tissue. By analysing how tissues respond to
acoustic excitations, it is possible to non-invasively infer variations
of mechanical properties that often indicate disease. In particu-
lar, the response of the retina to these excitations is of primary
clinical interest, and the accurate modelling of wave transmission
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Figure 8. Comparison between simulated A-scans (solid lines) and real
A-scans, both normalised, for healthy controls (blue) and DME patients
(red) [9].

through the anterior layers is essential for a correct interpretation.
An accurate interpretation of the measured displacements requires
a reliable numerical simulation of the wave propagation through
layered, curved, and heterogeneous ocular structures.

In [6], the eye is described as a narrow cylindrical layered do-
main, where each layer Q;, j = 1, ..., n, represents a different ocular
medium with distinct acoustic or elastic properties. The upper layer
Q,, corresponds to the retina and is modelled using an elastic wave
equation, and the other layers are governed by acoustic wave
propagation.

For the case of a piezoelectric actuator, electromagnetic fields
induce mechanical displacements. When considering a time-har-
monic emission in the source, the governing PDEs simplify signific-
antly.
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Let us now consider the mechanical deformation induced by
the piezoelectric actuator, via the piezoelectric coupling

—w’pu=V-(c-S—e'-E),

where w denotes the frequency of the wave, p is the density of
the medium, u denotes the mechanical displacement, c is the
stiffness tensor, S = 2 (Vu + Vu') is the strain tensor, and e is the
piezoelectric coupling tensor.

The time-harmonic acoustic pressure p; in the layer () satisfies
the Helmholtz equation

Apj+kip;=0, inQ, j=1,..,n-1,

where k; = w/¢; is the wavenumber, dependent on the frequency
w and wave speed ¢; in the layer ;. For the first interface, dQq,

one prescribes the boundary condition
1 8p1

— - =w’u-n,

1 o on 3Qg.

Between layers, one prescribes the relations

op; Op;j+1
=p; Q ol Y Q
pj =pj+1, onoQ;,  p a; Pj+1 Wit on 00,

where p; is the density of the layer Q; and v; is the outward unit
normal to 90);.

The Lamé equation describes the elastic displacement field u
in the retina:

UAU+ A+ ) V(V-u) +wpu=0, inQ,

where p denote the density in the retina, and the Lamé constants
are given by

E UE

=30+ AT aroa-)

with E the Young modulus and v the Poisson’s ratio. The acoustic-
elastic transmission condition is given by
l apn—1

Y on oQ,—1,
n n

= w?u-v,,

Pn—1Vn—1 = 0(U)v,, onoQ,_1,

where the stress tensor is given by
o) =u(Vu+ (Vu)") + AV - ul.

In [6], the method of fundamental solutions (MFS) was em-
ployed to approximate the solution in each layer, assuming ho-
mogeneity in each layer. The method was tested using physical
parameters representative for the human eye and the application
of the MFS to simulate the process of elastography seems feasible,
even in the presence of high frequencies.

For the case of heterogeneous layers, the MFS is no longer suit-
able (because the fundamental solutions are not available) and the
use of other types of methods, such as the DG method, is required.
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Although layered models with planar interfaces simplify the
geometry, real biological structures, such as the cornea and
retina, have curved geometries. To obtain a model that closely
resembles a real scenario, it is essential to capture these anatomical
features. However, dealing with domains with curved boundary
presents additional numerical challenges. It is well known that
meshing curved domains using polygonal elements introduces geo-
metric mismatches along the boundary. This discrepancy between
9Q and 9Qy, can significantly reduce the accuracy of numerical
schemes. In particular, standard finite element or discontinuous
Galerkin methods will be at most second-order accurate, regard-
less of the polynomial degree used for the numerical solution,
unless specialised techniques are employed to recover the op-
timal rate.

To address this issue, we propose a method called DG-ROD
(reconstruction for off-site data), presented in [26]. This approach
is based on specific polynomial reconstructions constrained for
the prescribed boundary conditions on the physical boundary 9Q.
The method recovers the optimal order of convergence of the DG
method without relying on curved meshes to approximate the
physical domain Q. The overall DG-ROD method is based on an it-
erative procedure that alternates between a classical DG solver and
a polynomial reconstruction step. In each iteration, a polynomial
reconstruction is performed to improve the accuracy of the solution
near the curved boundary. More specifically, for each boundary
element, a new polynomial is computed such that it is the closest
polynomial to the numerical DG solution on the computational
domain, and the new polynomial exactly satisfies the prescribed
boundary condition at a set of R points on the physical boundary.
This new polynomial is then used to correct the boundary condition
imposed on the computational polygonal boundary. The process is
repeated until convergence is achieved.

To illustrate the ideas and validate the approach, consider the
2D Helmholtz equation Au + k?u = 0 on a curved strip domain
given by

Q={xy) :=1<x<1, ha(x) <y <hi(x)},

such that the solution satisfies a Neumann condition on the upper
and lower parts of the boundary and a Dirichlet condition on the
left and right parts of the boundary. In this benchmark, we take
hy(x) = /1 4+ 2log(cosh(x)) and h,(x) = hy(x) — 0.2. Consider
the fundamental solution for the Helmholtz operator, with k = 1,
which is given by the Hankel function in 2D, u(r) = ﬁHé”(r), with
r = |x| and i the imaginary unit [1]. Simulations are carried out with
successively finer meshes generated by Gmsh (version 4.6.0) [13]
(see Figure 9). The fixed point iterative procedure for the DG-ROD
method stops when either the tolerance for the residual or the
maximum number of iterations is reached. In order to determine the
set of points used in the polynomial reconstructions, we consider
the vertical projection of the nodal points located on the upper
and lower computational boundaries onto the physical boundary.
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Figure 9. Unstructured mesh generated for the curved strip domain with
Dirichlet (blue solid line) and Neumann boundary conditions (green
dashed line).

Let u be the exact solution and uy, be the DG solution for a given
mesh Ty, and let £5(Th) = llu — unll2(1,) be the L2-norm of the
error. The method has order of convergence p if asymptotically

Ey(Th) < ChP,

with C a real constant independent of h. The L?-errors are assessed
at the node points of the elements of the mesh. Let T}, and T, be
two different meshes, with different mesh sizes h; and h;, respect-
ively. Then, the order of convergence between two successively
finer meshes is determined as

_ log(E2(Th,) /E2(Th,))
02T Tn) = = iogh by -

Note that each node on the computational boundary has
a corresponding node on the real boundary where the boundary
condition is prescribed. For the classical DG method, the value eval-
uated at the physical boundary point is used at the corresponding
node on the computational boundary. The results for the classical
DG method, reported in Table 2, demonstrate the deterioration of
accuracy from the geometrical mismatch without any specific treat-
ment for curved boundaries, and the error convergence is limited to
the second-order. On the other hand, Table 3 reports the errors and
convergence orders for the DG-ROD method. As observed, the con-
vergence orders improve according to the polynomial degree N and
the number of points used in the polynomial reconstruction in each
element with a boundary edge. More precisely, this improvement
occurs when the relation R = N + 1 is satisfied.

6 Conclusion

This review surveys a computational framework for modelling light
propagation in the human eye using Maxwell’s equations. The
study addressed how structural changes in the cornea and retina
influence light scattering and transparency, which are crucial for
vision quality. Case studies explored clinically relevant scenarios,
including corneal opacity, diabetic macular edema, and retinal
elasticity. In each case, the numerical simulations provided insight
into the structural changes, thereby facilitating early diagnosis.
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N=2 N=3 N=4

S g E; 0, E; 0, E; 0,

20 2.69E-01 9.79E-05 = 1.20E—-04 = 1.26E—-04 =
80 1.46E—01 2.55E—05 2.2 2.78E—05 2.4 285E-05 24
342 7.51E-02 6.42E-04 2.1 6.72E-06 2.1 6.79E-06 2.2
1454 3.94E-02 1.61E-06 2.1 1.65E-06 2.2 1.65E-06 2.2
5966 2.06E—02 4.02E-07 2.1 4.07E—-07 2.2 4.08E-07 2.2

Table 2. Errors and convergence orders for the classical DG method in the
curved strip domain.

K h N=2 R=3 N=3 R=4 N=4, R=5
E; 0, E; 03 Ey 0,

20 2.69E—-01 1.65E—04 -  2.85E—07 - 5.41E-08 -
80 1.46E—01 3.82E—05 2.4 3.81E—08 3.3 2.60E-09 5.0
342 7.51E-02 4.23E-06 33 231E-09 42 570E—-11 58
1454 3.94E—02 8.31E—07 25 1.24E—10 45 - -
5966 2.06E—02 1.79E—07 2.4 = = = =

Table 3. Errors and convergence orders for the DG-ROD method in the
curved strip domain.

Domains with curved boundary arise naturally in this prob-
lem setting due to the geometry of optical structures, such as the
cornea and retina, which exhibit a curved layered composition. It
is well known that curved domains require an accurate boundary
representation to avoid a reduction of the order of convergence
of numerical schemes. We considered a high-order discontinu-
ous Galerkin method combined with a polynomial reconstruction
technique. This approach enables an appropriate enforcement of
boundary conditions without relying on curved meshes, preserving
both computational efficiency and high-order accuracy.

Integrating accurate physical models with high-order numerical
methods is a promising approach to simulate light propagation in
the human eye. Future work will involve applying the method to
curved interfaces within a layered medium in order to mimic the
anatomy of the eye.
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