p-ellipticity and nonautonomous integrals

Cristiana De Filippis

u-ellipticity is a form of nonuniform ellipticity arising in various for C2-solutions u to (2). This a priori estimate is an essential tool
contexts from the calculus of variations. Understanding regularity in the proof of existence theorems of classical solutions, see [40,
properties of minimizers in the nonautonomous setting is a chal- Theorem 13.6]. The functional in (1) is an example of a general
lenging task fostering the development of delicate techniques and integral of the calculus of variations of the type
the discovery of new irregularity phenomena.
we F(w, Q) = J;) F(x, Dw) dx, (4)
The classical area functional, given by where F: Q X R” — R is a Carathéodory integrand? having linear
growth, in the sense that F(x, Dw) = |Dw| for |Dw| large, see [5].
w L) 1+ [Dw|?dx (1 Another such example is provided by the integral
and its Euler-Lagrange equation, the celebrated minimal surface w L“ +pwImmdx,  m > 1. ()
equation
Next, consider the superlinear, p-growth classical model
—div(%) 0 inQ @)
1+ 10ul w I (1 + |DW|?)P/? dx, p>1. (6)
are classical objects of study in the modern calculus of variations ?
and in theory of elliptic partial differential equations.” Their pecu- Also in this case we have a neat a priori gradient estimate for
liarities allowed to build a rich and large existence and regularity minimizers u, namely
theory and have fostered generations of mathematicians to tackle 1p
difficult analytical questions. Equation (2) is intimately linked to IDu(X)| Sn,p (m . (X>\Du\p d}’> +1
the classical Plateau problem, which has historically driven the ¢ ‘
development of geometric measure theory. Foundational contribu- which can be derived as in the fundamental work of Ural’tseva [70]
tions by De Giorgi, Reifenberg, Federer, Fleming, Almgren, Simons, and Uhlenbeck [69]. Functionals with superlinear growth as in (6)
Bombieri, Miranda, and Giusti have shaped the field. In this note are at the core of a vast part of by now classical literature. Here
we are particularly interested in gradient estimates for solutions we shall mainly concentrate on a class of borderline integrals lying
and minimizers of integral functionals featuring ellipticity properties in between those with linear growth as in (1) and (5) and those
connected to the ones of (1). As for (1), we would like to single with standard polynomial growth as in (6). These are function-
out here a particularly elegant result of Bombieri, De Giorgi and als of the form (4) with so-called nearly linear growth, i.e., such
Miranda [10], see also Trudinger [68], asserting the validity of the that
pointwise gradient estimate i Flx,2) _ ’ i Flx,2) _ o forall p>1. @)
1DUG)| <, exp (C(n) sup luly) —u)| ) 3) I~ |2 ol ~ o |2IP
Y EBo(x) 0
—_ 2That is, x = F(x, z) is measurable for every fixed z and z — F(x, 2)
" Unless otherwise specified, in this note we shall always assume that is continuous for a.e. fixed x. This ensures that the composition x
Q C R"is a bounded open set and n > 2. Moreover, we shall denote F(x,D(x)) is measurable whenever D: Q — R” is a measurable vector
Bo(x) ={y ER" ! ly — x| < p}. field.

4 EMS MAGAZINE 137 (2025) — DOI 10.4171/MAG/263



A typical example belonging to such a class is the Llog L functional

w I [Dw|log(1 + [Dw]) dx, (8)
Q

and its iterated versions

w J L+ 1(Dw) dx, 9)
Q

where, forintegeri > 0, the integrands L, 1 are inductively defined
via

Co(lz]) = Iz|,
Cir1(1z]) =1log(1 + ¢;(|z])) for i =0, (10)
Li+1(2) i= [z|€i+1(12]) for i =0,

for all z € R". As a consequence of the superlinear growth in (7),
the functionals we shall consider in the following pages will always
be defined on the Sobolev space W', where in this situation
direct methods of the calculus of variations apply. Indeed, we shall
consider situations where

- G(z)
where |lim ———= =
|z| > 00 |z|

G(|z]) S F(x,2), 0, (11)

which implies the first condition in (7); this allows to recover
weak compactness in W' of minimizing sequences via the clas-
sical Dunford—Pettis theorem. This is for instance the case of (6),
(8) and (9). Accordingly, a function u € W' (Q) will be called
a local minimizer® of the functional F if for every ball B € Q we
have F(-,Du) € L'(B) and F(u, B) < F(w, B) holds for every
w Eu+ W, (B).

1 Anisotropic u-ellipticity

In view of (7), a natural way to quantify the ellipticity properties
of the functional in (4), and in such a way to cover all the models
considered above, is to use the concept of (anisotropic) u-ellipticity.
We assume that z — F(-,Z2) is Cz-regular and satisfies

1€1° (1+g(z)[€?

(|z|2 ¥ 1)#/2 s (aZZF(X{Z)Ela 5 (‘Z‘z + 1)(2_q)/2

(12)
forallz,§ € R”, x € Q, where u € [2 — g, ), g = 1 are fixed
numbers and g: [0, ) — (0O, o) is a continuous, nondecreasing,
possibly unbounded function, with at most power growth at in-
finity. Related equations of the type —divA(x, Du) = 0 arising in
connection with the Euler-Lagrange equation of the functional
in (4), i.e.,

—divad,F(x,Du) =0, (13)

3 From now on, simply a minimizer.
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can be also considered. In this case we can use assumptions (12)
with 9,,F replaced by 9,A, where A: R” — R" is a C '-vector field.
Note that the integrand appearing in (1) fits (12) withu =3,g > 1,
g(lz]) = 1, while the one in (8) verifies (12) with p =1, g = 1
and g(|z]) = log(1 + |z|).* The integrands L;11 in (9)—(10) in-
stead satisfy (12) for any u > 1, ¢ = 1 and with g(|z]) = €41 (I12]),
cf. [22,24,33,64]. Finally, (6) satisfies (12) withuy =2 —p,g=p > 1
and g(|z|) = 1. Functionals of the form (8)—(9) appear, for in-
stance, in the theories of Prandtl~Eyring fluids and plastic materials
with logarithmic hardening, [64], see also [8] for more examples
and a detailed discussion. The Orlicz space L log L(Q), defined via
f € LlogL(Q) if and only if |f| log(1 + |f]) € L'(Q), directly con-
nects to the functional in (8) and plays a crucial role in modern
analysis, especially for its relations to Hardy spaces and maximal
operators [67].

2 Nonuniform ellipticity and degeneracy

u-ellipticity is a degenerate type of nonuniform ellipticity in the
sense that the lowest eigenvalue of 9,,F might, in principle, admit
no positive lower bound. This follows by considering the so-called
ellipticity ratio, defined as

Ry (x,2) -= Dighest eigenvalue of 3;,F (x,2)
lowest eigenvalue of 9,,F(x, z)

(14)

The boundedness of such a quantity is the condition defining clas-
sical uniform ellipticity for equations and functionals [66], and, in
that setting, it is crucial to derive a priori estimates for solutions.
Here the situation is different. Condition (12) implies that the only
a priori available bound on the ellipticity ratio is

Re(x,2) S g(lz])|z|H*T972, for |z| = 1, (15)

which yields no uniform control for |z| - oo (when p + g > 2
and when p + g = 2 and g(|z|) = oo for [z| - o). This oc-
currence pushes p-elliptic problems out of reach for regularity
techniques of standard use in the uniformly elliptic setting [36-38,
69, 70]. Degeneracy represents another pathological feature of
u-ellipticity. As indicated by (12), the smallest eigenvalue of d,,F
- which characterizes the ellipticity of the operator — has a power-
type decay at infinity with respect to the gradient variable z.
This, due to severe loss of ellipticity, makes the regularity the-
ory of u-elliptic problems very challenging, rich and technically
delicate.

4The integrand in (5) verifies (for |z| # 0 when m < 2)
min{m — 1,1}1z|™ 2] max{m — 1, 1}z|™~2|¢|?
(1+|z|m)271/m (1+|z|m)171/m
so that (12) are satisfied withyu =m + 1, g = 1 and g(|z|) = 1 provided
|z| = 1. Functionals as in (5) are studied for instance in [6,61].

< (0z:F(2)§, &) <




3 The autonomous case

The first general gradient regularity result for general p-elliptic
integrals available in the literature is the following theorem.

Theorem 3.1 (Fuchs and Mingione [33]). Let u € W,>'(Q) be
a minimizer of the functional (4) with F(x,z) = F(z) satisfying
F(z) S1zI9+1, (1) and (12) withg(-) =1,g€ (1,2), 1 <u<2
such that

u+g<2+2/n. (16)

Then u € W, (Q).

This covers the models L; in (10). In most of the results on
nonuniformly elliptic problems we shall consider, the core point
is actually to prove that Du is locally bounded. Once this is se-
cured, we are in a sense back to the uniformly elliptic setting,”
and more standard, yet delicate methods can be adapted to ob-
tain higher regularity of minima, and, in particular, local Holder
continuity of first derivatives of minima (see [21, Section 10], [22,
Sections 5.9-5.11], [23, Section 5]). In the case of Theorem 3.1,
the local Holder continuity of Du follows, i.e.,

C%'-estimates = C'8-estimates (17)

and, in the case of Theorem 3.1, for every 8 € (0, 1). In view of (15),
conditions of the type in (16) obviously limit the growth of the
ellipticity ratio R (-, Du) with respect to Du, while in fact proving
that the gradient is locally bounded. In order to enlarge the rate of
nonuniform ellipticity of the problem considered, that is, to allow
a larger value of u + g, it is possible to incorporate interpolative
information, such as, for instance, some a priori boundedness on
solutions.® This has the ultimate effect of dropping the dimensional
dependence on the growth of the ellipticity ratio, i.e., (16) can be
replaced by

U+qg<a, u € L5.(Q). (18)

For results of this type we refer to [8, Section 5.2]. Theorem 3.1
rests on an anisotropic version of Moser-type iteration, whose con-
vergence is ensured by (16). In the (18)-variant case, this method
also involves a careful use of certain interpolation-type inequalities
aimed at maximizing the integrability gain, eventually leading to
the relaxed bound in (18). In both cases, the first step of the proof
consists in differentiating the Euler-Lagrange equation (13), which
unavoidably breaks down when considering nonautonomous integ-
rands with nondifferentiable coefficients, like for instance, when

®Indeed, by (15) the ellipticity ratio R (x, Du) cannot blow up when
Du € L®. Therefore, the problem behaves as it was uniformly elliptic
when considered on Lipschitz solutions.

8This is for instance implied by the maximum principle, when minimizers
are found solving Dirichlet problems with bounded boundary data.

x = 9;F(x, -) is only Hélder continuous. In this case, scheme (17)
is not viable using standard methods and novel ideas must be de-
veloped, as we shall see in the next sections. For further literature
on the autonomous case we recommend the interesting work of
Marcellini and Papi [58].

Remark (Vectorial problems). In this note we deal with the scalar
case, i.e., when minima and competitors are scalar functions.
Nevertheless, a large literature is available on the vectorial case,
depending on the kind of regularity one is interested in. In general,
and already in the uniformly elliptic case, solutions to elliptic sys-
tems and minima of vectorial functionals might exhibit singularities
even in the most favourable situation of smooth, autonomous
integrands. What is usually done in those cases is proving partial
regularity, i.e., regularity of minima outside a negligible closed
subset whose Hausdorff dimension can be eventually proven
to be smaller than the ambient dimension; we refer to [34] for
an account of this theory. Additional structural assumptions on
the integrand allow to prove everywhere regularity in the in-
terior. For instance, Theorem 3 extends to vector valued solutions
provided L is assumed to have a so-called Uhlenbeck structure [69],
i.e., L(Dw) = £(|Dwl). Partial regularity results in the vectorial
case under p-ellipticity conditions were established by Bildhauer
and Fuchs [9]. Key advancements are due to Gmeineder and
Kristensen [43], who developed a unified, sharp approach to the
almost everywhere regularity of minima of anisotropic multiple
integrals covering also nonconvex, possibly signed functionals; see
also [41, 42, 63] for earlier results, and [17] where optimal par-
tial regularity criteria are inferred via nonlinear potential theory.
Finally, dimensionless bounds as g < p + 2 have been employed
in the vectorial case in [13] by means of certain tricky penalization
methods.

3.1 Superlinear nonuniform ellipticity

The bounds relating the size of ¢ and g in (16) and (18) are the nat-
ural counterpart of those appearing in the theory of nonuniformly
elliptic problems with superlinear growth. Specifically, they parallel
those available for so-called functionals with (p, g)-nonuniform
ellipticity [56, 57], formulated as

€%

(212 + 1) @12

€12

S 0F D6 = o yeman

(19)

forall x € Q, z, £ € R" and exponents 1 < p < g. Accordingly,
(p, g)-growth conditions refer to similar conditions, but this time
prescribed directly on the integrand, i.e.,

zIP—c S F(x,2) S |z194+1, c=0. (20)

Conditions (19) and (20) are often verified together when con-
sidering autonomous, convex integrands. In such situations uni-
form ellipticity in ensured only when p = g. Formally, conditions
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(12) and (19) coincide letting 4 = 2 — p. Restrictions on the
size of the so-called gap q/p are necessary for minima to be
regular.

Theorem 3.2 (Giaquinta [35]; Marcellini [56,62]). LetQC {x € R":
Xn > 0} be an open, bounded set. With n > 3 and q > 2, the
function’

g L
. Cnqun q-2
o= (st y7 3
NP @
where
c __(n—1_ 2 )((]—2)‘7‘1
M \g=1 q-2)\ ¢
is a minimizer of the functional
1S
we | (5 D Ibwl? + =Dwl|9 ) dx, (2)
a\2,5 q
provided
s 2n=1) (23)
n—3

The integrand in (22) satisfies condition (20) with p = 2, and
the function u is obviously unbounded on the line (0, ..., 0, x,).
Similar examples can be produced with functionals satisfying (19)
with p = 2, see [47] and [56], thus offering instances of convex,
scalar, regular integrals, with nonsmooth minimizers. This stands
in sharp contrast with the classical literature, where in the case
p = g solutions and minimizers typically have Holder-continuous
gradient [70]. On the positive side, in violation of (23) with p = 2,
we have the following theorem.

Theorem 3.3 (Hirsch and Schaffner [46]). Let u € W) (Q) be
a minimizer of the functional (4), where the autonomous integrand
F: R" — R s strictly convex and satisfies (20) with

1 1
- =< .
qg n—1

1<p=<gq, (24)

1
p

Thenu € Lj5.(Q).®

7We denote points x € R" as x = (X1, ..., Xp).

8In [46], Hirsch and Schaffner consider nonautonomous Carathéodory
integrands F: Q X R” — R, and assume convexity of z = F(+, 2)
and F(-, 2z) < F(-,2). This is in line with the traditional De Giorgi—
Nash—Moser theory, where, for the level of regularity of solutions
considered here, coefficients are allowed to be just measurable. The ver-
sion reported here can be obtained by combining the a priori estimates of
Hirsch and Schaffner with an approximation argument as for instance the
one in [23, Section 8].
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Theorem 3.3 builds on earlier results of Bella and Schaffner [7].
Note that in this case no assumptions on second derivatives of
the integrand F of the type in (12) are imposed, and nonuniform
ellipticity is implicitly described by the growth conditions in (20). Ac-
cordingly, no gradient regularity of minima is involved. The interest
in the previous result, making it standing out in comparison to the
previously published literature, rests on the optimal condition on
the exponents (p, g) in (24). Similar general sharp results remain
unknown when switching to gradient regularity and considering
assumptions (19), while positive results on gradient boundedness
arein [7,57]. However, for certain large classes of functionals it is
possible to derive sharp bounds on g/p, as shown in the work of
Koch, Kristensen and the author [18], who cover autonomous integ-
rands F(x, Dw) = F(Dw) that are convex, even polynomials, with
nonnegative homogeneous components and lowest homogeneity
degree larger than p > 2. Indeed, the peculiar structure of convex
polynomials allows for a finer nonuniform ellipticity measurement,
referred to in [18] as Legendre (p, g)-nonuniform ellipticity, which
quantifies the subtle interplay between the gradient of minima and
the stress tensor. This is analysed via convex duality arguments and
related regularity techniques. The following theorem is a model
result.

Theorem 3.4 ([18]). Let u € W\ (Q) be a minimizer of

n
W J (IDWI" + ZID,-W\"’) dx, 2<p<qi<-<gy. (25)
Q

i=1
Assume that

pn—1)

<
an n—3

ifn=4 (26)

and no other condition if n = 2,3. Then u € W|2,’CO°(Q).

Theorem 3.4 covers the models originally considered by
Marcellini [56, 57]. If p = 2 in (25), the bound in (26) reduces
tog < 2(n—1)/(n — 3), which is precisely the threshold violated
by (23), so that Theorem 3.4 is sharp for polynomial-type integ-
rals with quadratic growth from below. In two and three space
dimensions no condition on p, g is needed, as implicitly suggested
by (26). Concerning the superlinear counterpart of (18), Choe [15]
and Esposito, Leonetti and Mingione [30] showed different gradient
regularity results for a priori locally bounded minimizers provided
thatg < p + 1and g < p + 2, respectively, consistently with (18)
when formally letting u = 2 — p.

4 Uniformly elliptic Schauder estimates
The focus of Schauder theory for elliptic equations or variational

integrals is to quantify the effect of external data, i.e., coefficients,
on the regularity of solutions.



4.1 Classical Schauder (a model case)

By Weyl's lemma, L'-regular distributional solutions to the Laplace
equation —Au = 0 are smooth. This easily extends to linear elliptic
equations with constant coefficients. The subsequent question is
how much of this regularity is preserved when plugging in non-
constant coefficients, or, more precisely, how the regularity of
coefficients affects that of solutions. Specifically, with A: Q — R"*"
being a bounded and elliptic matrix, i.e., l,x, = A in the sense of
matrices, what can be said on the regularity of weak solutions®
to

—div(A(x)Du) =0 in Q? (27)

Since A and Du stick together in (27), a natural guess is
Ac bR = pue 2R, (28)

which is in fact true for all 8 € (0, 1). Results in the spirit
of (28) were obtained by Hopf, Caccioppoli, Giraud and Schauder
(1929-1934), including global versions. Later on, streamlined and
different approaches were found by several other authors. All the
methods available unavoidably exploit the quantitative information
on the power-type decay of the modulus of continuity of coeffi-
cients (Holder continuity), to show that energy solutions to (27)
are close at all scales to harmonic-type maps, such as for instance
their A(xo)-harmonic lifting v in B,,

—div(A(xo)Dv) = 0in B,, vV =uon dB,.

Indeed, ellipticity yields the homogeneous comparison estim-
ate

IDu—DVIdeSrZBJ: |Du|? dx. (29)
8 5

On the other hand, standard theory for linear elliptic equations
with constant coefficients grants homogeneous decay estimates
as

g\2
, ov—(©vs, P dx < (2) ][Bpmv— (Dv)s,2dx,  (30)

for all concentric balls B, C B, C B,. Estimates (29)~30) can be
matched and iterated to deliver

][ |Du — (Du)g, | dx < r?8
B,

for all balls B, € Q, which implies the local 8-Hdlder continuity
by certain integral characterization of Holder continuity due to

9 Although this is not strictly necessary in the linear case when coefficients
are Holder continuous, here we assume to deal with energy solutions,
that is, distributional solutions that belong to the reference energy space
W'2(Q). These are usually called weak solutions.

Campanato and Meyers.'® This line of proof extends to W 'P-reg-
ular distributional solutions to nonautonomous, quasilinear oper-
ators, such as

—div(y(x)|DulP~2Du) = 0 in Q, (31)

with 1 S y(-) € c28(Q), 6 € (0,1) and 1 < p < . This is due
to the work of Manfredi [55], Giaquinta and Giusti [36—38], and
DiBenedetto [26]. Also in this case Du is locally Hélder continu-
ous."” Note that Schauder estimates obviously imply Lipschitz

estimates:

C"6-estimates = C% '-estimates (32)

and this is in general the only way to get Lipschitz estimates in
the presence of Holder continuous coefficients, since the equa-
tions considered cannot be differentiated. The key point the above
techniques rely on is that all the a priori estimates involved, such
as (29)—(30), are homogeneous, and, as such, can be iterated. In
turn, this is a feature of uniform ellipticity. When uniform ellipticity
fails, a priori estimates are in general not homogeneous and these
classical schemes fail as well.

4.2 More uniformly elliptic Schauder
The double phase functional’?

w - J (IDw|P + a(x)|Dw]|9)dx
a (33)

1<p=gq, 0<a(-) € CYQ), a € (0, )

was first considered by Zhikov in the context of homogenization
of strongly anisotropic materials and of the study of the Lavrentiev
phenomenon [49]. It only satisfies nonstandard growth conditions
of (p, q) type as in (20) but it is still uniformly elliptic in the sense
that, with F(x,z) 1= |zIP 4+ a(x)|z19, the ellipticity ratio R¢(x, 2)
remains uniformly bounded. Indeed, Schauder-type results hold as
in the following theorem.

Theorem 4.1 (Baroni, Colombo and Mingione [4, 16]). Let u €
W|l'c1 (Q) be a minimizer of (33) witha € (0, 1]. If

- eitherq/p <1+ a/n,

coru€lp(Q)andqg <p+a,
then Du is locally Hélder continuous.

1°The one described here is in fact Campanato’s classical approach to
Schauder estimates [12].

"1 Gradient Holder continuity of energy solutions holds but, in general, not
with the sharp exponent Du € €8, due to the fact that the equation is
degenerate.

12\\e denote €4 = clal.a—lal \yhen g is not an integer, and [a] denotes
its integer part.
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The key of the proof is that the uniform ellipticity of the double
phase functional (33) allows to implement a few more refined,
nonstandard perturbation arguments. Specifically, recalling the
discussion in Section 4.1, minimizers to frozen functionals of the

type

w - (IDWIP + a(xo) |Dw|9)dx (34)
Br(xo)

have locally Hélder continuous gradient and enjoy good reference
estimates. This is in fact a consequence of the fact that functionals
as in (34) are uniformly elliptic for every choice of xo. On the
other hand, the aforementioned nonstandard growth conditions,
impacting solely on the comparison estimates, can be compensated
via certain delicate schemes of reverse Holder inequalities and
higher integrability lemmas. Eventually, the approach of [4, 16] was
extended in [1, 44, 45] to treat large classes of uniformly elliptic
integrals with nonstandard growth conditions, such as the double
phase one; see also [19], where the bound g < p + a is proved to
be effective also in the vectorial case.

4.3 Soft nonuniform ellipticity and hard irregularity

One might argue that Theorem 4.1 is incomplete since, the double
phase functional being uniformly elliptic, Schauder-type results
should hold with no restrictions on p, g, a. Surprisingly enough, as
first discovered in [31], the conditions imposed on such quantities in
Theorem 4.1 are necessary and the result is sharp. In fact, building
on certain Zhikov's two-dimensional examples [49] in the setting
of the Lavrentiev phenomenon, in [31, 32] a novel, sharp phe-
nomenology was disclosed, demonstrating the failure of Schauder
estimates in general, notwithstanding the uniform ellipticity of the
problem considered.

Theorem 4.2 (Fonseca, Maly and Mingione [32]). For every choice
of the parameters

a € (0, o)

1<p<n<n+a<qg<o,
{ p g a5

n=>=2, >0

there exist a double phase integral (33), a related minimizer
u € WP (Q) NLE.(Q), and a closed set S C Q with dimy(S) >
n — p — ¢, such that all the points of ¥ are non-Lebesgue points
of the precise representative of u.

In fact, in the same range (35), non-W "9-regular, yet bounded
minima of (33) with one-point singularity were constructed by
Esposito, Leonetti and Mingione in [31]. New constructions of
singular minimizers eventually came, combining and improving the
above features.
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Theorem 4.3 (Balci, Diening and Surnachev [2,3]). For every choice
of the parameters

q >p+amax{1,i%;l},

a € (0, ©), p>1 (36)
there exist a double phase integral (33) and a related minimizer u €
WP (Q) N LE(Q), such that u & W9 for any d > p. If p <n,
there exists a closed set = C Q of non-Lebesgue points of u with

dimy(2) =n—p.

The occurrence of irregular minima is not only explained in
terms of (p, g)-growth conditions. More is actually there, i.e.,
a softer form of nonuniform ellipticity hidden in (33), that cannot
be detected by using the classical ellipticity ratio Re(x, z) in (14),
but rather considering a larger, nonlocal quantity accounting for
the contribution of coefficients to the ellipticity of the functional
over sets of positive measure. Specifically, with B C Q being a ball,
we consider the nonlocal ellipticity ratio [20] defined as

sup, < g highest eigenvalue of d,,F (x, 2)
inf, ¢ g lowest eigenvalue of 9,,F(x, 2)

’_RF (z,B) := (37)
for |z| # 0. Observe that Re(x,z) < Re(z, B) for x € B and that
the best upper bound obtainable on Rg(z, B) is this time

Re(z,B) Spg 1+ llalli=@1z|97".
Moreover, if a(+) vanishes at some point in B, then
lalli=@12177P < Re(z,B),

so that Re(z) = o as |z| — oo if a(-) does not vanish identically
in B. This could be considered as a weaker form of nonuniform
ellipticity, eventually generating singular minimizers, although in
the presence of regular coefficients and classical uniform ellipticity.
Indeed, note that Rg(z, B) remains bounded when a(-) stays
quantitatively away from zero on B, and in this case the same
proof of Theorem 4.1 implies that Du is locally Hélder continuous
in B, this time with no restriction on p, g, a.

4.4  Fractal cones and malicious competitors
The key to Theorems 4.2-4.3 (we concentrate here on the second
one, case p < n) is in the blending of three main ingredients.

« A merely W-P-regular map u. — the malicious competitor — at-
taining opposite values m and —m on the top and the bottom
of Q = [—1,1]" and whose singularities can be distributed
along a Cantor-type fractal C whose Hausdorff dimension
dimsr equals n — p. Here m = 1 is a large constant.

« A Lipschitz-regular boundary datum ug, with ug = u. on 9Q.

« A nonnegative, a-Hélder continuous coefficient a(-) vanishing
where [Du.| is positive, see Figure 1.

The last bullet point means that a(x)|Du«|? = 0in Q, and therefore
u- is a finite energy competitor in the Dirichlet problem driven by
integral (33), with p, g, a as in (36), and boundary datum ug. Basic



direct methods of the calculus of variations yield the existence of
a unique solution

uw min
Weuo+Wg’p

JQ(IDWVD +a(x)|Dw|9) dx,
Q)

whose energy is set low, being controlled via minimality by the p-en-
ergy of u.. Recalling that up — u. € W&'”(Q) and that ug reaches
opposite values on the top and the bottom of Q, a sufficiently large
choice of m ensures that the minimum u “does not have enough
energy” to cover the gap between the lower trace —m and the
upper one m without developing discontinuities. In other, more
accurate terms, a delicate combination of energy and trace estim-
ates allows proving that 2, the set of essential discontinuity points
of u, contains a piece of fractal C, thus forcing dim4s(%,) = n —p.
This implies'® that u & W|2;cd(Q) forall d > p, showing that higher
Sobolev regularity is in general unattainable under condition (36).
This construction is paradigmatic of the idea that, once identified
the right (bad) competitor, and a related geometry of the coeffi-
cient, minimality can be used to produce singularities rather than
proving regularity properties. The strength of these examples lies
in the following aspects:
» Minimizers, which are simply as bad as any other competitor.
« Scalar setting. This is a genuinely nonstandard growth con-
ditions phenomenon, in contrast with standard cases, where
to produce singularities one needs to look at vectorial prob-
lems [25] or to violate the initial energetic information [65].
+ No degeneracy issues [70]. The integrand can be further made
nondegenerate by replacing [Dw/| with (|Dw|? + 1)"/2,
« Lipschitz domains and boundary data.

Competitor ux

Coefficient a(+)

Figure 1. Competitor ux vs coefficient a(-). Figure 1 is a modification of
the one in [3].

13The Hausdorff dimension of the set of non-Lebesgue points of a W '4-
regular function does not exceed n — d, d < n.
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5 Schauder estimates and p-ellipticity

The perturbation-based circle of ideas and techniques discussed
in Section 4.2 breaks down when genuine nonuniform ellipticity
is involved: both reference and comparison estimates become
nonhomogeneous, and the perturbative approaches, based on
iterations, become unviable. The validity of Schauder estimates in
the nonuniformly elliptic setting was a longstanding open problem
raised at various stages in the literature: see, e.g., [48, Page 7] on
classical results of Ladyzhenskaya and Ural’tseva [53], Giaquinta
and Giusti's paper [38], and its MathSciNet review'* by Lieber-
man. A complete solution eventually appeared in [21, 23] in the
(p, g)-setting, and in [22, 24] in the nearly linear, u-elliptic one.
The novel techniques introduced in [21-24] reverse the classical
paradigm in (32) to obtain gradient estimates when dependency
on coefficients is Holder continuous. Indeed, for the first time gradi-
ent L®-bounds are not derived as a consequence of C'-%-bounds
(in turn obtained via perturbation), but are rather derived directly,
and eventually used to prove C"6-estimates. In other words, we
return to (17), although the functionals and the equations con-
sidered here are nonautonomous and nondifferentiable. We shall
try to give an overview of some of the ideas leading to estab-
lishment of Schauder estimates for certain classes of functionals
with nearly linear growth. As explained immediately after The-
orem 3.1 and displayed in (17), we can concentrate on Lipschitz
estimates.

5.1 Nearly linear Schauder and intrinsic Bernstein functions
The main models to initially keep in mind are the logarithmic ener-
gies (8)—(9), but now also featuring Holder continuous coefficients.

Theorem 5.1 ([22]). Letu € W, (Q) be a minimizer of functional

w J (yx)|Dwl log(1 + [Dw|))dx, (38)
Q
where 1 S y(+) € C%6(Q), 8 € (0,1). Thenu € C(Q) "

Analogous results hold if in (38) the LlogL integrand is replaced
by the iterated logarithmic one in (10). Theorem 5.1 is actually
a special case of a more general result covering nonautonomous

14 Math. Rev. MR0749677.

"> 1n fact, in [22] we proved that u € Cﬂo'f/z(o), but the improvement to
the full exponentu € C|1o'c6(0) can be easily reached, see [24], by arguing
as in [23, Section 5]. The main point in Theorem 5.1 is as usual to get
that Du € L., although the adaption of the standard perturbation
methods to get gradient Holder continuity once Du is known to be locally
bounded still requires care.
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u-elliptic functionals, like for instance those exhibited by nearly
linear double phase integrals of the type

w - J (IDwllog(1 + [Dwl) + a(x) (IDw|? + s2)7/?)dx
a (39)

1<q, 0<a() echuq), 0<s<1.

This can be considered as the borderline configuration of (33) as
p — 1, while actually approaching nearly linear growth conditions.
A key point here is that, in contrast to (33), the functional in (39)
is not uniformly elliptic. This is easily seen at those points x where
a(x) = 0, where the integrand reduces to |Dw| log(1 + [Dw/),
which is nonuniformly elliptic. Nevertheless, also in this case it
is possible to achieve maximal regularity for minima, and under
optimal structural conditions regulating nonuniform ellipticity. Fur-
thermore, this extends to larger classes of functionals, to which
(39) belongs to, of the type

W j (YOOT(OW) + a(x) (IDWI? + 52)972)dx,
Q

where y(-) is as in Theorem 5.1 and

€17

(1212 + 1)472

|€1°

S 0LDEO S

is assumed to hold for u = 1 (i.e., for 1 <u <pm =um(n,q,a) <2)
and every choice of z, £ € R”, see [22] for details. For instance, all
models featuring iterated logarithms as

W J (Lix1(DW) + a(x) (IDw|? + s2)7?)dx (40)
0

are included, where s € [0, 1], and a(-) and g as in (39). In this
respect, the following holds.

Theorem 5.2 ([22, 24]). Letu € W,%'(Q) be a minimizer of func-
tionals in (39) or in (40) with a € (0, 1). If

- eitherg <1+ajn,

coru€ly(Q)andqg <1+a,
then Du is locally Holder continuous in Q. Moreover, in the nonsin-
gular case s > 0, we have u € Cx(Q) for (39), and u € C,%(Q)
for (40).

The bound g < 1 + a turns out to be sharp, as the following
holds true.

Theorem 5.3 ([24]). For every choice of the parameters a, e > 0,
g > 1, such that g >1+a 0<e<minfg—1—a,n—1},
there exist a double phase integral (39) and a related minimizer
u € W Q) NLE.(Q) such that u & WP (Q) forall p > 1 +&.
In particular, the Hausdorff dimension of the set of non-Lebesgue
points of the precise representative of u is at least equal to

n—1—e.
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Although the outcome is formally the same, the approach to
Theorem 5.2 is completely different from the one of Theorem 4.1.
Indeed, while the functional in (33) is uniformly elliptic, the func-
tionals in (39) and (40) are not. Therefore, perturbation approaches
of the type considered in [1,4, 16, 44, 45] fail to deliver results and
more complicated, completely different routes are necessary. In
this respect, note that the functionals in (39)-(40) globally satisfy
assumptions (12) for any u > 1 (actually, we can take u = 1 in
case (39)), but the simple appeal to such properties is not sufficient
to prove Theorem 5.2 and more is needed. There are in fact three
main points in the proof of Theorem 5.2 and in the following we
shall restrict for simplicity to the case where the bound g < 1 +a
is considered. A first key idea is to fully exploit the specific structure
of the functional to rebalance the significant loss of ellipticity due
to degenerate nonuniform ellipticity. This is achieved via a novel,
intrinsic version of the Bernstein technique combining fractional
estimates and nonlinear potential theoretic methods. In the uni-
formly elliptic case of functionals of the type (6) one observes that
a function of the type

v(x) = (IDu(x) |2 + 1)P2 (GAD)

is a subsolution to a linear, uniformly elliptic equation, and, as such,
it is bounded. This follows from the possibility of differentiating the
related Euler-Lagrange equation and the fact that the functional
is uniformly elliptic. Both things fail for (40). Indeed, recall that
Euler-Lagrange equation to (40) is

—div(3;Li+1(Du)) — gdiv(a(x)(s? + |Dul?)9=2"2py) = 0

and therefore is it not differentiable by the Holder continuity of
the coefficient a. The idea is then to replace the function v in (41)
by another, more intrinsic Bernstein function, incorporating larger
information on the structure of the integrand and its ellipticity,
namely

] 2 T-p/2 _
E(x).—z_#[(IDu(X)I + T H2 1]

+ (1= 1/@)a) [(IDu(x)|? +s2)9? —59],

where in fact u € [1,2) is the one for which (12) is satisfied. In
turn, this function is shown to satisfy a renormalized, fractional
Caccioppoli-type inequality,'® i.e.,

PLE =002y, SH [ (B 0% dx
" (42)

+ M22p2a - (1py|™ + 1) dx
B,

holds for any k > 0, all balls B, C Q with radius r, suitable numbers
8 € (0,a), by,bz,m = 1 and M such that M = [|Dull;~(s,). On the

16 Of course (42) makes sense as an a priori estimate and must be fixed via
an approximation argument where original minimizers are the limit of
minima of certain more regular, uniformly elliptic functionals.



left-hand side in (42) there appears the classical fractional Gagliardo
norm, which is defined as

_ 2
V1350 ::J lv(x) —vy)l

ala |x—yln+26

dx dy

whenever A C R" is an open set and v: A — R is a measurable
function. The term renormalized accounts for the fact that inequal-
ity (42) is homogeneous with respect to E, despite the fact that
the integrals (39)—(40) are not. This is exactly the feature allow-
ing to apply the nonlinear potential machinery mentioned above.
The price to pay is the appearance of multiplicative constants de-
pending on [[Dull;~,) (via M). Such constants must be carefully
kept under control all over the proof and reabsorbed at the very
end. This will be a point where the bound g < 1 + a assumed in
Theorem 5.2 plays a crucial role. The validity of (42) is established
via a nonlinear dyadic/atomic decomposition technique, finding
its roots in [51], that resembles the one used for Besov spaces in
the setting of Littlewood-Paley theory. Fractional Caccioppoli in-
equalities of the type in (42), first pioneered in [60] in the setting of
nonlinear potential theory, eventually allow to prove boundedness
of E via a nonlinear potential theoretic version of De Giorgi's itera-
tion, which made its first appearance in [50]. In this respect, here
a more delicate and quantitative form of such ideas is needed [21].
The boundedness of E obviously implies the one of Du. Back to
the proof of the boundedness of E, we point out that the nonlin-
ear potentials used in the estimates are of the type introduced by
Khavin and Maz'ya [59], and deeply studied by Adams, Hedberg,
Meyers and Wolff. Specifically, these are of the form

sdo
0

PSfixn = | o 1 dy)

1Bo 0 a0
for parameters o, 9 > 0 and f being an L' (B,(x))-reqular vector
field. Suitable choices of o and 9 give back the standard Riesz po-
tential Iy and the Wolff potential W1 ,, [52]. The mapping properties
of potentials among function spaces are known. Specifically,

IPSf; +, Dlli=is,) S Wfllfngs, .., 43)

holds whenever n9 > 0, m > nd/0 and B;+, C Q, [21,23]. In
contrast with previous foundational contributions [50, 52], where
potentials are employed as ghosts of the representation formula to
derive optimal regularity of solutions from data, in [21-24] poten-
tials fit the fractional nature of (42) and sharply quantify how the
rate of Holder continuity of coefficients interacts with the growth
of the terms they stick to towards L*-estimates. Another main
idea in this setting is a fractional Moser’s iteration in Besov spaces
already employed for problems with polynomial growth in [23],"7
and which allows reading the Hélder continuity of the coefficient
a(-) as fractional differentiability. This allows to gain arbitrarily high

7 See [11, 27] for similar Besov spaces techniques in the context of
degenerate integro-differential equations.
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gradient integrability and therefore, in a sense, to quantitatively
reduce the rate of nonuniform ellipticity of (39)-(40). However,
further obstructions arise due to the severe loss of ellipticity in
integrals at nearly linear growth. These require a limiting version
of the aforementioned fractional Moser’s iteration in [23] yielding
hybrid reverse Holder inequalities of the form

llulli=s,) \b
) (1 4+ Ipulllfl), @4

IDullire,y < M2(1+
which is valid for all 1 <t < o0, w € (0, 1), some b > 0, any
ball B, C Q, and, as in (42), again M = [|Dull;~(s,). Estimate (44)
is a sort of borderline interpolation inequality, and, when com-
bined with (42), allows working under the maximal ellipticity range
g < 1+ a. Once again, the price to pay is the appearance in the
bounding constants of M*, with w that can be picked to be arbit-
rarily small, to compensate the loss of ellipticity and trade between
an arbitrarily high power of the modulus of the gradient and its
L'-norm.

Remark (Obstacles). The techniques devised for Theorem 5.2 are
flexible enough to deal with variational obstacle problems. Spe-
cifically, they allow to bypass the classical linearization procedure
pioneered by Duzaar and Fuchs [28, 29] and to prove gradient
regularity in nondifferentiable, nonuniformly elliptic variational
inequalities. Duzaar and Fuchs’s approach turns constrained min-
imizers of homogeneous integrals into unconstrained minima of
forced functionals whose right-hand side is a function of the second
derivatives of the obstacle and of the gradient of coefficients. This
again requires that x — 9,F(x, +) is differentiable, which is not the
case in the present setting. Alternative techniques, as those used
by, for instance, Choe [14], only work in the uniformly elliptic case.
On the other hand, the scheme supporting Theorem 5.2, based on
fractional differentiation and use of nonlinear potentials, can be
tailored to account for obstacles in order to deliver sharp results
also in the constrained case. For this we refer to [24].

5.2 Back to the beginning

We finally highlight a few formal connections between results of
the type in Theorems 5.2-5.3 and some classical counterexamples
to regularity for linear-growth functionals constructed by Giaquinta,
Modica and Soucek [39]. Consider the generalized'® Dirichlet prob-
lem involving the area functional in one dimension,

:
W minj 1+ y()Iw’|2dx,
-1 (45)

w(—=1) = —wy, w(1) = wo,

8By “generalized” we mean that problem (45) must be extended to BV
and the functional appearing in (45) is actually replaced by a suitable
relaxed form in which boundary data are penalized, [5, 39].
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where y(x) 1= 1+ xz(log(Z/le))4 and wgp > 0 satisfies

L 1

00 > Wo > J_1 \/mdx.
The minimizer has a jump at zero, making W' "-regularity fail. The
function y is not C2-regular. In contrast, C2-coefficients guarantee
the possibility of a priori estimates [54] in the style of (3). This
situation resembles the one of Theorems 4.2, 4.3 and 5.3. In this
respect, the construction of Theorem 5.3 extends to linear-growth
double phase integrals such as

w J;)((1 + [DW|™Y™ + a(x) |Dw|9) dx (46)
with 1 <m,gand 0 < a(-) € C%(Q)." This means that there is no
hope of pointwise gradient regularity for minima of (46) whenever
g > 1+ a. An important point is that this information comes only
from the growth conditions of the integrand, and not from its ellipt-
icity, i.e., the growth of the eigenvalues of the second derivatives.
On the other hand, the bounds relevant in order to prove a priori
estimates come from conditions on second derivatives like (12)
or (19). While these scale accordingly to the growth conditions
of the integrand in superlinear growth regimes — like in the (p, q)
case, cf. (19) and (20) — there might be a detachment when ap-
proaching the linear case: the integrand keeps growing linearly,
but its derivatives can decay very fast (consider (5) with large m).
In view of Theorem 5.2, and proceeding formally, the condition for
a priori regularity gradient estimates looks as g < 2 — u + a. In the
case of anisotropic area-type functionals as in (46), itisu =m + 1.
Coupling this with g > 1 leads to a > g + m — 1, which, for m
close to two, matches the need of C2-regular coefficients in clas-
sical papers such as [54] and also aligns with counterexample (45).
On the other hand, further imposing the restriction a € (0, 1) and
then recalling that one must have g < 1+ a, leads tou = 1, exactly
as considered in [22, 24], cf. Theorem 5.2. This suggests that the
functionals (39)—(40) might be the limiting configurations for the
validity of Schauder theory in the presence of Holder coefficients,
convex anisotropy and p-ellipticity.

Acknowledgements. The author thanks Professor Anna Balci for
sharing the drawings in Figure 1 and Professor Lorenzo Brasco
for comments on a preliminary version. This work is supported by
the European Research Council, through the ERC StG project NEW,
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9 Again, as above, one has to interpret this in a suitably relaxed way,
considering competitors in BV and a relaxed form of the functional.
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