
Cycles and expansion in graphs

Richard Montgomery

Cycles are fundamental objects in graph theory, where their inher-
ent simplicity belies the depth of even some simply stated questions.
In this article, I will discuss three problems on cycles in graphs
and recent progress on them. In each case, the progress has been
made by new and different tools involving graph expansion, itself
an important topic in extremal graph theory.

1 Eulerian graphs and the Erdős–Gallai problem

The advent of graph theory is often pinned to the Königsberg
bridge problem from the 18th century. At the time, Königsberg
had seven bridges connecting either side of the Pregel River and
the two islands within it (see Figure 1). Was it possible to walk
through the city while crossing each bridge exactly once? In 1735,
this problem reached Euler, who comprehensively solved it in full
generality. Representing each connected land mass by a vertex and
each bridge by an edge between the two vertices it connects, we
get a graph. Euler showed that there is a walk in a graph passing
through every edge exactly once if and only if it is connected1 and
at most two vertices have odd degree2 (if two such odd-degree
vertices exist they must be the start and end vertices of the walk).
Thus, there is no solution to the Königsberg bridge problem, as
the corresponding graph has four vertices with odd degree.

A slightly neater equivalent formulation of this general problem
is to ask when a graph has an Eulerian tour, which is a walk through
the edges of the graph, covering each edge exactly once, and
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Figure 1. The Königsberg bridge problem, its representation as
a (multi)graph and a walk crossing all but one edge/bridge.

1Any vertex can be reached from any other by a path in the edges.
2 The number of edges containing that vertex.

arriving back at the start. As Euler showed, there is an Eulerian
tour if and only if the graph is connected and every vertex has
even degree. Note that the general solution to the original bridge-
crossing problem can be deduced by applying this, after first adding
a fictitious edge between two odd-degree vertices when they exist.

Behind Euler’s work is a simple result: if all the vertex degrees of
a graph G are even, then its edges can be decomposed into cycles,
i.e., its edges can be exactly partitioned into cycles (see Figure 2
for a similar decomposition). As removing the edges of a cycle
maintains the parity of each vertex degree, this can be proved
easily by induction, as every graph with even vertex degrees and
at least one edge has at least one cycle (and on the other hand
any graph decomposable into cycles has even vertex degrees). To
reach Euler’s result, then, first decompose any connected graph
with even vertex degrees into cycles, C1,…, Ck. Then, start off
walking around the edges of C1 but follow the rule that whenever
we first encounter a vertex on a new cycle Ci, we break off and
start walking around that cycle, giving an iterative process that
can be seen to produce an Eulerian tour. On the other hand, the
existence of an Eulerian tour in a graph easily shows that it must
be connected and have even vertex degrees.

Above, in the space of a few lines, we have characterised with
proof exactly those graphs which can be decomposed into cycles.
However, with a slight change, we can reach a much deeper and
more challenging problem. First, let us note the following: so far
we have quietly been dealing with multigraphs, where a pair of
vertices can have more than one edge between. From now on,
every graph we consider will be assumed to be a simple graph,
with at most one edge between each pair of vertices. Now, what if
we ask for a decomposition of the graph into few cycles? In 1966,
Erdős and Gallai [17] conjectured that every n-vertex Eulerian graph
should have a decomposition into O(n) cycles, in the following
equivalent form.

Conjecture 1.1 (Erdős and Gallai). Every n-vertex graph has a de-
composition into O(n) cycles and edges.

Of course, if true, then this conjecture is tight up to the implicit
constant, as demonstrated, for example, by the n-vertex graph with
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Figure 2. A graph on the left decomposed into three cycles and four
(dotted) edges on the right.

all possible edges: when n is even any such decomposition needs
at least n/2 edges and at least (n− 2)/2 cycles. Erdős observed
that a construction of Gallai can be improved to show that at least
(3/2− o(1))n cycles and edges may be needed. Interestingly, the
number of cycles and paths required to decompose any graph
is well understood, thanks to an old result of Lovász [32], who
unimprovably showed that any n-vertex graph can be decomposed
into at most ⌈n/2⌉ paths and cycles.

As observed by Erdős and Gallai, O(n logn) cycles and edges
can easily be seen to suffice for decomposing any n-vertex graph.
Indeed, given an n-vertex graph G, you can iteratively remove
a longest cycle until no cycles (and thus at most n − 1 edges)
remain. Any graph with average degree d ≥ 2 has a subgraph
with minimum degree at least d/2 and thus a cycle with length at
least d/2 (seen, for example, by considering a longest path and
the neighbouring vertices of one of its endpoints, which must lie
within that path). Therefore, if we iteratively remove longest cycles
from a graph with average degree d, after removing O(n) cycles
the average degree will be below d/2. Tracing the decrease in the
average degree of G as longest cycles are removed, we therefore
will remove O(n logn) cycles before only edges remain.

It took around 50 years for this simple bound to be improved,
despite Erdős highlighting the problem in many of his problem
collections. Finally, in 2014, it was shown by Conlon, Fox and
Sudakov [9] that O(n log logn) cycles and edges suffice to decom-
pose any n-vertex graph. As discussed below, a critical concept
behind this breakthrough was expansion in graphs. More recently,
Bucić and I [7] were able to use a much more delicate form of
this, known as sublinear expansion, to push this bound lower.
Specifically, this allowed us to improve the log log n term to the
iterated logarithm function log∗ n, defined as the least k such that
the k-fold logarithm of n, log(log(… log(n))), is at most 1. That
is, we showed the following.

Theorem 1.2. Any n-vertex graph decomposes into O(n log∗ n)
cycles and edges.

Thanks to the result of Lovász quoted above, we know that any
n-vertex graph decomposes into O(n) cycles and paths. A potential
strategy – rooted in a variety of combinatorial techniques from the
last 50 years – would be to start by setting aside a small, perhaps
randomly chosen, selection of the edges. Then, decomposing the
remaining edges into a collection of few paths and cycles using

Lovász’s result, we could try to use the edges set aside to join the
paths in the collection into cycles. Hopefully, then, we would have
few cycles, and few edges remaining as well if we did not set many
edges at the start.

This strategy is hard to achieve, but essentially was done by
Conlon, Fox and Sudakov using a form of graph expansion. Ex-
panders – graphs satisfying some type of graph expansion condition
or other – are an important topic in their own right, both in com-
binatorics and in their application to computer science. Here we
will concentrate on the use of graph expansion as a practical tool
in extremal graph theory, and in particular for the study of cycles in
graphs. For details on expanders more generally, we recommend
the survey of Krivelevich [26] and its references.

In the simplest formulation, a graph expansion condition in
a graph G might be that, for every set U of vertices which is not
too large, there are plenty of vertices not in U which have at least
one neighbouring edge to U (see Figure 3). More specifically, we
might have, for some parameters m and α, that |NG(U)| ≥ α|U|
for every set U of at most m vertices, where NG(U) is the set of
vertices of G not in U which have a neighbouring edge to U (the
neighbourhood of U).

The possible utility of expansion here is that it can allow us
to find paths connecting any pair of vertices. For example, if G
has n vertices, m = n/3 and α = 3/2, we can consider iterative
neighbourhoodsNG(NG(…NG(x))) andNG(NG(…NG(y))) around
any vertices x and y, respectively, and use the expansion condition
to show that they grow in size exponentially until they each have
more than n/2 vertices and thus overlap (see Figure 3). Thus, there
must be a path from x to y, and moreover one which has length
O(log n). This is only one path, however, and in the above very
light sketch we would like to be able to connect many pairs of
vertices (from the endpoints of the paths) by paths simultaneously
while not using any edge more than once. Therefore, this is only
some indication of how we might start to use expansion conditions
to connect up paths into cycles, but the general principle is that
if the expansion conditions are strong enough, then it might be
possible even to find these connections iteratively in this fashion.

However, Conjecture 1.1 applies to all graphs, not just all graphs
which conveniently satisfy some expansion condition! Conlon, Fox
and Sudakov’s first step, then, was to partition a graph into sub-
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Figure 3. On the left, the neighbourhood NG(U) of a set U, the set of
vertices y not in U for which there is some x in U such that xy is an edge.
On the right, iteratively expanding about vertices x and y until a path
(here of length six) between them is found.

6 EMS MAGAZINE 138 (2025)



graphs which satisfied some expansion conditions, before carrying
out the outline above. This allowed them to show that, for any d,
if an n-vertex graph has average degree d (and thus dn/2 edges
in total), then O(n) edge-disjoint cycles can be removed from it
to leave a graph with average degree at most d1−ε, for some
small fixed ε > 0. Iterating this in O(log log n) steps then gave
a decomposition into at most O(n log logn) cycles and edges.

As so often, there is a playoff: the stronger the expansion
conditions we use, the easier it will be to connect up the paths into
cycles, but we will need more edges remaining at each iteration to
guarantee such strong conditions. Conlon, Fox and Sudakov used
a strong expansion condition, where the ingenuity of their proof
overall allowed them to work in subgraphs where, when they had
t vertices remaining, say, the expansion condition corresponds very
roughly to the above condition with α = t1−μ (though the precise
condition used involves the number of edges leaving the set rather
than the size of its neighbourhood).

In order to make much of an improvement to this, we need to
use expansion conditions that can be found in an n-vertex graph
with only logO(1) n edges. To do this we must allow α to be much
smaller. As α will need to be substantially less than 1, this is known
as sublinear expansion, which was introduced in the 1990s by
Komlós and Szemerédi [24,25]. For illustration, a basic example of
the type of expansion we might have here in an n-vertex graph G
is that |NG(U)| ≥ 1

log2n |U| for each vertex set U with at most n/2
vertices.

As this condition is so much weaker, whether or not we can
work with it to some desired end often rests delicately on the
details around the exact sublinear expansion conditions that can
be achieved, but for simplicity here we will avoid these technical-
ities (for more details, and many applications and methods, see
the recent comprehensive survey by Letzter [30]). Instead, let us
emphasise a key point. These conditions may be weak, but in
compensation essentially every graph has some subgraph satis-
fying some variation of these conditions. Indeed, as Komlós and
Szemerédi showed, any graph contains within it a subgraph which
has average degree not much smaller but which has some sublinear
expansion properties.

For Theorem 1.2, Bucić and I followed the broad outline of
Conlon, Fox and Sudakov [9] sketched above but using sublinear
expansion conditions in place of the much stronger expansion
conditions. To try this is a simple idea, the challenge is how hard
it is to work with these much weaker conditions and this is what
required considerable novelties and further work. It is particularly
hard to show that, in very sparse sublinear expanders, a randomly
chosen vertex set is likely to retain some expansion properties.
However, we were able to show that if an n-vertex graph has
average degree d, then we can remove O(n) cycles to leave a graph
with average degree logO(1) d. Thus, iterating this produces a graph
with O(n) edges in only O(log∗ n) rounds, and therefore uses only
O(n log∗ n) cycles and edges in total.

While the iterated logarithm function grows extremely slowly
with n, so that Theorem 1.2 comes within a hair’s breadth of
proving Conjecture 1.1, of course we should not be satisfied.
The fundamental issue we currently have in our techniques is the
iteration used, and more ideas appear needed, perhaps to decom-
pose the graph more efficiently when this iteration is required by
retrospectively lengthening the cycles found in previous rounds.
Conjecture 1.1 is very simple to state, but its truth or falsity ap-
pears to reflect something deep about the structure of graphs, and
its resolution may need to take into account different structural
extremes that we do not yet understand.

2 Cycle lengths and the Erdős–Hajnal odd cycle problem

Any n-vertex graph with at least n edges has at least one cycle,
but what can we say about its cycles? For any given k and n, how
many edges in an n-vertex graph are sufficient to guarantee a cycle
with length k, that is, with k edges? This (in wider generality) is the
fundamental Turán question and a central part of extremal graph
theory.

The case for odd cycles can be answered well without much
trouble. An n-vertex graph can have a great many edges – ⌊n2/4⌋
– yet contain no odd cycle (see Figure 6), and a single edge more
immediately gives any odd cycle with length less than around n/2.
Far fewer edges are needed to guarantee any specific even cycle.
Though, in this sense, it is easier to find an even cycle, getting a sat-
isfactory answer to the Turán question is much harder. It has been
known since the 1970s, due to Bondy and Simonovits [5], that, for
each fixed k, a bound of the form O(n1+1/k) on the number of
edges can be sufficient to guarantee a cycle with length 2k in an
n-vertex graph. However, while this is widely expected to be tight
up to the implicit constant multiple, this is only known for k = 2, 3
and 5.

In n-vertex graphs with n1+o(1) edges, we cannot guaran-
tee any particular cycle length k. Could we instead guarantee
a graph has some cycle whose length lies within some sequence
k1,k2,k3,…? Answering a question of Erdős, in 2005 Verstraëte [40]
showed that there is some such increasing sequence with limiting
density 0 for which there is some C such that, for any graph G with
average degree at least C, G contains a cycle of length ki for some
i ≥ 1. This proof was non-constructive and thus did not determine
any particular sequence of lengths k1,k2,…which has this property.
Erdős [15] asked in particular whether the powers of 2 might satisfy
this property. In 2008, Sudakov and Verstraëte [37] were able to
show that any n-vertex graphwith no cycle whose length is a power
of 2 must have average degree at most eO(log

∗n), where, again,
log∗ n is the iterated logarithm function. The powers of 2 in this res-
ult is only an example sequence: the proof works for any sequence
k1,k2,… of even numbers in which each term is at most C times the
previous term, for any fixed C > 0 (i.e., ki+1 ≤ Cki for each i ≥ 1).
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In the last few years, and using a new and fundamentally
different approach, Liu and I [31] were able to improve this to
answer Erdős’s question, as follows.

Theorem 2.1. There is some d > 0 such that every graph with
average degree at least d has a cycle whose length is a power
of 2.

My methods with Liu apply to an even wider selection of se-
quences than those of Verstraëte and Sudakov, requiring only
the sequence k1, k2,… consist of even numbers such that ki+1 ≤
exp(k1/10i ) for each i ≥ 1. The wide applicability of this result is
perhaps its strongest quality, as for the powers of 2 the result is
likely to hold for a much smaller constant than could be deduced
from our methods. Indeed, Gyárfás and Erdős [16] conjectured
that any graph with minimum degree at least 3 has a cycle whose
length is a power of 2, as follows.

Conjecture 2.2. Any graph with minimum degree at least 3 has
a cycle whose length is a power of 2.

Rather than only one cycle length from a sequence, we might
also be able to say something about the set of cycles more generally.
If a graph has average degree d and n vertices, then it may have
no cycle shorter than Ωd(logn). However, if it has no such short
cycles, then perhaps it correspondingly has many long cycles. Erdős
and Hajnal suggested the harmonic sum of the cycle lengths as
a measure of the density of the cycle lengths of a graph. Specifically,
in 1966, they asked whether imposing a condition on the chromatic
number3 of a graph G is sufficient to force ∑ℓ∈𝒞(G)

1
ℓ to be large,

where 𝒞(G) is the set of integers ℓ for which there is a cycle of
length ℓ in G.

Erdős later wrote that they felt a much weaker condition, one
only on the average degree, should actually be sufficient. In 1984,
this was confirmed by Gyárfas, Komlós, and Szemerédi [22], who
moreover showed that any graph G with average degree d satisfies
∑ℓ∈𝒞(G)

1
ℓ ≥ c logd for some small constant c > 0. This is tight

up to the value of c, as shown by the example of the complete
bipartite graph with d vertices in each class (see Figure 6 on the left
for a similar graph). This showed that c cannot be taken to be larger
than 1

2 here, and led Erdős [12] to suggest in 1975 that this should
be the best possible asymptotically. Using our methods behind
Theorem 2.1, Liu and I confirmed that this is the right bound and
c can be taken to be arbitrarily close to 1

2 for sufficiently large d.
That is, the following is true.

Theorem 2.3. Every graph G with average degree d satisfies
∑ℓ∈𝒞(G)

1
ℓ ≥ ( 12 − od(1)) logd.

3 The minimum number of colours required to colour the vertices so that
no edge lies between two vertices of the same colour.

As noted above, there is a sharp distinction between odd and
even cycles with regard to the Turán question, and graphs may
have a very high average degree indeed and yet no odd cycle.
Average degree in a graph G is therefore not the right parameter
to determine the appearance of cycle lengths from a sequence of
odd numbers. Here the original suggestion by Erdős and Hajnal
from 1966 to consider the chromatic number χ(G), as mentioned
above, is more promising. Let 𝒞odd(G) be the set of odd numbers
appearing in 𝒞(G). In 1981, Erdős and Hajnal [14] asked whether
∑ℓ∈𝒞odd(G)

1
ℓ → ∞ if χ(G) → ∞. This is a more difficult problem

than the corresponding question for average degree and all cycle
lengths and as such was widely open, though in 2011 Sudakov and
Verstraëte [38] showed that it is true under an additional condition
imposed on the ‘independence ratio’ of G. Using additional ideas
on top of the methods behind Theorems 2.1 and 2.3, Liu and I were
able to build on our techniques to answer this, giving the following
asymptotically-tight lower bound.

Theorem 2.4. Every graph G with chromatic number at least k
satisfies ∑ℓ∈𝒞odd(G)

1
ℓ ≥ ( 12 − o(1)) log k.

If G is a graph with k vertices and every possible edge, then G
has chromatic number k and ∑ℓ∈𝒞odd(G)

1
ℓ is the sum of the odd

numbers in the interval [3,k], and, thus, is equal to ( 12 −o(1)) logk.
Therefore, the constant 1

2 in Theorem 2.4 cannot be improved.
Unlike all the other results mentioned on and towards these

problems, the progress made for Theorems 2.1, 2.3 and 2.4 uses
sublinear expansion. Building on our previous work – both together
and apart – Liu and I showed that, for any sublinear expander H
with at least a large constant average degree, there is a long interval
in which 𝒞(H) contains every even number. As every graph G
with at least a large constant average degree contains a sublinear
expander with almost the same average degree, 𝒞(G) thus also
contains every even number from a long interval. These intervals
are long enough (relative to their start) that they will always catch,
for example, some power of 2. Moreover, summing the reciprocals
of the even numbers in any such interval will lead to a proof of
Theorem 2.3.

Again, the weak properties of sublinear expanders make them
very difficult to work with, and the methods introduced by Liu
and myself here required several key ideas that subsequently led
to other work (see, for example, [19], and again the survey by
Letzter [30]). While Conjecture 2.2 appears currently far beyond
our current techniques, progress continues to be made. Indeed,
in forthcoming work, Milojević, Pokrovskiy, Sudakov and I have
been able to answer, for large d, a question of Erdős [13] by giving
an exact extremal result corresponding to Theorem 2.3. That is,
there is some d0 such that for every d ≥ d0, among the n-vertex
graphs G with at least d(n− d) edges, ∑ℓ∈𝒞(G)

1
ℓ is minimised

exactly by the n-vertex graph with every possible edge between
a set of d vertices and a set of n− d vertices, and no other edges.
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3 Hamilton cycles in expanders

A Hamilton cycle in a graph is a cycle which passes through every
vertex exactly once. It is named for the Irish astronomer and math-
ematician William Rowan Hamilton, who considered the following
question in 1857. Can you walk along some of the edges of a do-
decahedron, pass through all the corners exactly once, and finish
where you started? Equivalently, does the graph formed from the
corners and edges of the dodecahedron contain a Hamilton cycle
(see Figure 4)?

Figure 4. The graph of a dodecahedron, and a Hamilton cycle in it.

Hamilton was sufficiently enamoured with this question to sell
the idea as a physical puzzle, which was sold in the UK and more
widely in Europe as the ‘Icosian game’ and challenged the player
to find such a cycle on a dodecahedron. Determining whether
a graph contains a Hamilton cycle is a computationally difficult
task. Indeed, this is one of Karp’s original examples of an NP-
complete problem. It is perhaps then ironic that Hamilton’s Icosian
game was a commercial failure in large part because it was too
easy to solve! Hamilton may wish to be remembered more, then,
for his invention of quaternions and his long period as the Royal
Astronomer of Ireland.

Hamilton cycles in polyhedra had been considered a little earlier
by the clergyman and amateur mathematician, T. P. Kirkman. Much
earlier still, Hamilton cycles arose in the knight’s tour problem,
whose history dates back at least to the 9th century in India. In this
problem, the knight is to make a sequence of legal moves around
the chessboard so that it occupies every square exactly once (see
Figure 5). This gives a path through every vertex (a Hamilton path)
in the graph corresponding to its possible moves, and, if this can be
done so that it can return immediately to its starting square, then
it gives a Hamilton cycle. The knight’s tour problem perhaps led
to the first examples of Hamilton cycles in modern mathematics,
with solutions for example given by Euler [18]. In the 20th century,
Hamilton cycles have been an increasingly important object of study,
with relevance for example to the travelling salesman problem.

The general difficulty of determining whether a graph has
a Hamilton cycle has led to a lot of attention on proving simple con-
ditions that imply a graph is Hamiltonian. For example, a stalwart

of many a first course in graph theory is Dirac’s theorem from 1953
that any graph with n≥ 3 vertices andminimum degree at least n/2
contains a Hamilton cycle. That this is tight is seen by two different
extremal examples – an unbalanced complete bipartite graph and
the disjoint union of two large complete graphs (see Figure 6).
It is easy to determine whether Dirac’s minimum degree condi-
tion for Hamiltonicity holds, or not, but it will only be satisfied by
graphs with very many edges. This condition has been generalised
to others concerning the degrees of the graph (for example, Ore’s
theorem), but all such conditions for Hamiltonicity require many
edges if they are to be satisfied.

A famous condition for Hamiltonicity that can apply to sparser
graphs is the Chvátal–Erdős condition from 1972. The correspond-
ing result states that if the connectivity4 of a graph G is at least as
large as the independence number5 of G, then it is Hamiltonian.
Any n-vertex graph with average degree d is known to have an
independent set with at least n/(d+ 1) vertices, and the connectiv-
ity can easily be seen to be at most the average degree d. Thus,
the Chvátal–Erdős condition can only hold in n-vertex graphs with
average degree Ω(√n).

Looking for conditions implying Hamiltonicity that apply to
sparser graphs still, it is natural to consider two difficult and widely
open conjectures from the 1970s. The first of these is by Chvátal
and suggests a link between the toughness of a graph and its
Hamiltonicity. A graph G is said to be t-tough if, for any s, the dele-
tion of any set of s vertices from G gives either a connected graph,
or one with at most s/t connected components. Any Hamiltonian
graph, then, can be seen to be 1-tough. In 1973, Chvátal sugges-
ted that any sufficiently tough graph should be Hamiltonian, as
follows.

Conjecture 3.1 (Chvátal). There is some t such that any t-tough
graph is Hamiltonian.

In 2000, Bauer, Broersma and Veldman [3] showed that the stronger
conjecture of Chvátal [8] that 2-toughness implies Hamiltonicity

N

Figure 5. On the left, a closed knight’s tour on a 6× 6 chess board, which
corresponds to a Hamilton cycle in the graph of legal moves on the right.

4 The minimum number of vertices whose removal disconnects G.
5 The maximum number of vertices with no edges between them.
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is false, and indeed if Conjecture 3.1 is true, then t must be at
least 9/4. Conjecture 3.1 remains wide open.

Perhaps even more difficult is an elegant conjecture due to
Lovász [33] from the 1960s, and a variant later given by Thomassen
(see, e.g., [21]). Lovász conjectured that any vertex-transitive graph6
which is connected contains a path that goes through every vertex
exactly once. Thomassen suggested that only finitely many such
graphs lack a cycle that goes through every vertex exactly once, as
follows.

Conjecture 3.2 (Thomassen). All but finitely many connected
vertex-transitive graphs have a Hamilton cycle.

There are only five known connected vertex-transitive non-
Hamiltonian graphs with more than two vertices, all of which
do not have many vertices. Note that the class of graphs which
Conjecture 3.2 applies to contains the graph of the dodecahedron
shown in Figure 4. Thus, in his very wide generalisation of the
‘Icosian game,’ Thomassen asks so much more of us than Hamilton
ever did!

That Conjecture 3.2 is very challenging can be seen by our pro-
gress on the following question. Given any n-vertex vertex-transitive
connected graph, how long a path or cycle can we find? (Hoping
to eventually find an n-vertex path or cycle.) The best bound on
this question for more than 40 years was that of Babai [2], who
showed that in such graphs a cycle with lengthΩ(√n) always exists.
Only in 2023 was this improved, to Ω(n3/5) in a breakthrough by
DeVos [10]. The current state of the art is that any n-vertex vertex-
transitive connected graph has a cycle with length Ω(n13/21), due
to Groenland, Longbrake, Steiner, Turcotte, and Yepremyan [21],
and a path with length Ω(n9/14), due to Norin, Steiner, Thomassé,
and Wollan [35].

Our discussion so far reflects the difficulty of finding sufficient
conditions for Hamiltonicity applicable to sparse graphs. The sublin-

Figure 6. Extremal graphs with high minimum degree yet no Hamilton
cycle. On the left, the graph with 11 vertices has no Hamilton cycle, as it
cannot alternate between the right and left due to the imbalance in the
number of vertices. On the right, the graph with 12 vertices has no
Hamilton cycle, as it is not connected.

6 I.e., a graph G in which, for any pair of vertices, there is an isomorphism
of G mapping one to the other.

ear expansion conditions we considered previously are not strong
enough. In particular, if a graph G is Hamiltonian, then any vertex
set A in G which contains no edges must satisfy |N(A)| > |A|. That
is to say, we could have a local problem at any scale that looks
like the first of the extremal examples in Figure 6 and prevents
the existence of any Hamilton cycle. It is natural, then, to consider
expansion conditions which might imply Hamiltonicity, as has been
done since the pioneering work of Pósa [36] on Hamilton cycles in
random graphs.

Building on Pósa’s work, whether a Hamilton cycle is likely to
appear or not in the most studied random graph models is very
well understood, due to work by Bollobás [4] and by Ajtai, Komlós,
and Szemerédi [1]. In all the corresponding methods, expansion
conditions (as are likely to occur in the random graphs) are used
in conjunction with random techniques. It is desirable then to
find simple properties likely to hold in random graphs which will
imply Hamiltonicity and avoid studying the random graph model
directly. That is, which pseudorandom conditions in sparse graphs
are sufficient to imply Hamiltonicity?

The study of pseudorandom graphs was begun by Thoma-
son [39] in the 1980s, creating an active and influential area of
research (for more on which, see, for example, the survey of Krivele-
vich and Sudakov [28]). A major class of graphs known to exhibit
pseudorandom properties are (n,d,λ)-graphs: n-vertex d-regular7
graphs satisfying a certain condition (governed by λ) on the ei-
genvalues of their adjacency matrices. In their foundational study
of (n,d,λ)-graphs in 2003, Krivelevich and Sudakov [27] conjec-
tured that if d/λ≥ C (for some universal constant C > 0), then any
(n,d,λ)-graph is Hamiltonian. As evidence, they showed that, if
d/λ ≥ logn (for large n), then any (n,d,λ)-graph is Hamiltonian.
For more details on this, and (n, d, λ)-graphs, see [27]. For our
purposes now, however, we will consider the following conjecture
(appearing, for example, in [6]), which implies the conjecture of
Krivelevich and Sudakov on the Hamiltonicity of (n,d,λ)-graphs,
and suggests pseudorandom expansion conditions for Hamilton-
icity.

Conjecture 3.3. There exists C > 0 such that any n-vertex graph
satisfying the following two conditions is Hamiltonian.
1. |N(A)| ≥ C|A| for any vertex set A of at most n/2C vertices.
2. For any disjoint vertex sets A,B of at least n/C vertices each,

there is an edge between A and B in G.

On a personal note, Conjecture 3.3 is a problem I first studied
when writing my PhD thesis in 2015. There, to aid a long argument
embedding certain graphs known as spanning trees into random
graphs [34], an answer to this question would have been very
convenient! In an example of how it is often easier to study random
graphs rather than pseudorandom graphs, I was able to avoid the

7 I.e., every vertex has degree d.
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difficulty of Conjecture 3.3 by working in random graphs directly
using some methods of Sudakov and Lee [29].

In 2009, Hefetz, Krivelevich, and Szabó [23] made progress
towards Conjecture 3.3, essentially showing this is true if the
constant expansion coefficient C is replaced by log n. In 2024,
Glock, Munhá Correia, and Sudakov [20] gave an improved bound
on the conjecture of Krivelevich and Sudakov on the Hamilton-
icity of (n, d, λ)-graphs, improving the condition d/λ ≥ log n to
d/λ≥(logn)1/3. Very recently, I was able to confirm the conjecture
in full with Draganić, Munhá Correia, Pokrovskiy, and Sudakov [11],
which followed from our positive resolution of Conjecture 3.3. This
confirms the most general, natural, conditions for Hamiltonicity
which apply to even very sparse graphs, but the openness of Con-
jectures 3.1 and 3.2 shows that much remains to be done in this
fascinating area.
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