
Introduction

The aim of this book is to explain in full detail the proofs of Uhlenbeck’s weak
and strong compactness theorems. They were proven by Karen Uhlenbeck in 1982,
c.f. [U1, U2]. Another textbook reference is [DK] by Donaldson and Kronheimer.
Uhlenbeck’s compactness results play a fundamental role in gauge theory. The
strong and weak compactness theorems both concern sequences of connections on
principal bundles with compact structure groups. The strong compactness theo-
rem deals with Yang-Mills connections whereas in the weak compactness theorem
the connections are not required to satisfy any equation.

An elementary observation in gauge theory is that the moduli space of flat
connections over a compact manifold with a compact structure group is compact
in the C∞-topology. This is obvious from the fact that the gauge equivalence
classes of flat connections are in one-to-one correspondence with conjugacy classes
of representations of the fundamental group. (Here the bundle is not fixed but
rather is also determined by the representation.) The weak Uhlenbeck compactness
theorem is a remarkable generalization of this result. It asserts, in particular,
that every sequence of connections with uniformly bounded curvature is gauge
equivalent to a sequence, which has a weakly W 1,p-convergent subsequence (for
any fixed p). In the case of abelian groups the proof reduces to Hodge theory, but
in the nonabelian case it is highly nontrivial. This theorem lies at the heart of
the compactness results for many equations in nonabelian gauge theory, such as
the Yang-Mills equations, the vortex equations, or the rank two Seiberg-Witten
monopole equations.

Uhlenbeck’s strong compactness theorem asserts that every sequence of Yang-
Mills connections with uniformly bounded curvature is gauge equivalent to a se-
quence, which has a C∞-convergent subsequence. This result can be reduced to
the weak compactness theorem as follows: The weak limit is again a Yang-Mills
connection and hence is gauge equivalent to a smooth connection. Now one can
put the sequence into relative Coulomb gauge with respect to the limit connection.
Then C∞-convergence follows from the fact that the Yang-Mills equation together
with the gauge fixing condition form an elliptic system. By the same argument one
obtains similar compactness results for all gauge theoretic equations that together
with the relative Coulomb gauge form an elliptic system.
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An important application of Uhlenbeck’s theorem is the compactification of the
moduli space of anti-self-dual instantons over a four-manifold. These compactified
moduli spaces are the central ingredients in the construction of the Donaldson in-
variants of smooth four-manifolds [D2] and of the instanton Floer homology groups
of three-manifolds [F]. Anti-self-dual instantons are special first order solutions of
the Yang-Mills equation. Uhlenbeck’s theorem asserts that noncompactness can
only occur in sequences with unbounded curvature. In this case a conformal rescal-
ing argument shows that instantons on the four-sphere bubble off. For a suitably
chosen subsequence bubbling only occurs at finitely many points, and on the com-
plement one has C∞-convergence. Now Uhlenbeck’s removable singularity theorem
[U1] guarantees that the limit connection extends over the four-manifold. In the
case of simply connected four-manifolds with negative definite intersection forms
Donaldson used these compactified moduli spaces to prove his famous theorem
about the diagonizability of intersection forms [D1].

Next we shall discuss the results proved in this book in more detail. A gauge
invariant measure for the curvature is the Lp-energy of a connection,

E(A) =

∫
|FA|p.

This energy is conformally invariant for p = n
2 on an n-manifold. As a conse-

quence, for p ≤ n
2 the moduli spaces of connections with bounded energy are

not even compact in the L1-topology.1 For p > n
2 , however, the weak Uhlen-

beck compactness theorem asserts the compactness of these moduli spaces in the
weak W 1,p-topology. The strong Uhlenbeck compactness theorem asserts the C∞-
compactness of the moduli spaces of Yang-Mills connections with bounded Lp-
energy for p > n

2 . Again this fails for p = n
2 . Explicit examples in the case n = 4

follow from the ADHM construction [ADHM] of anti-self-dual instantons on the
four-sphere with fixed L2-energy. For example, the gauge equivalence classes of
anti-self-dual SU(2)-connections over S4 with L2-energy 8π2 are parametrized by
R4 × R+ [DK, 3.4.1].

The weak and strong Uhlenbeck compactness theorems were originally stated
for closed base manifolds with a fixed metric, but they generalize to several other
situations. In this book we directly prove the Uhlenbeck compactness theorems for
compact manifolds with boundary, as stated in theorems A and E. For the strong
Uhlenbeck compactness this means that we consider the Yang-Mills equation with
boundary condition ∗FA|∂M = 0. Furthermore, there are generalizations to vary-
ing metrics and to manifolds that are exhausted by compact deformation retracts,
as stated precisely in theorems A′ and E′.

These generalizations are needed in the following applications: The proof of
the metric independence of the Donaldson invariants requires the compactification
of parametrized moduli spaces. These contain pairs consisting of a metric (in a

1Let A be a connection of finite energy on the trivial bundle over S4 ∼= R
4∪{∞} and consider

the rescaled connections Aσ(x) = σA(σx), then E(Aσ) = σ2p−nE(A) is bounded as σ → ∞ but
the pointwise norm of Aσ converges to a multiple of the Dirac distribution (by theorem C.5).
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fixed path between two metrics) and a Yang-Mills connection with respect to that
metric. So one has to allow for the metric to vary along with the sequence of
connections in the strong Uhlenbeck compactness theorem. One can, however, a
priori choose the sequence such that the metrics converge. The strong Uhlenbeck
compactness also is frequently used for two types of noncompact base manifolds.
Firstly, manifolds with finitely many punctures arise from the bubbling off analysis
in two ways: One has convergence on a compact base manifold with finitely many
punctures, and the bubbling off analysis near every puncture yields a sequence
of connections on larger and larger balls exhausting R4. Secondly, one considers
manifolds with cylindrical ends, for example, in order to define Donaldson invari-
ants for manifolds with boundary. In that case one glues a cylindrical end to
each boundary component. In Floer theory the product of the real line with a
three-manifold occurs naturally as the domain of the gradient flow lines of the
Chern–Simons functional.

Both generalizations, theorems A′ and E′, are proven by an extension argument
of Donaldson and Kronheimer. This requires the restriction to manifolds that are
exhausted by compact deformation retracts to ensure that gauge transformations
on the compact sets can be extended to the whole manifold. Note that this covers
both the case of manifolds with punctures and of manifolds with cylindrical ends.
Hence these generalizations suffice for all the applications mentioned above.

For the weak compactness theorem A we will essentially follow Uhlenbeck’s
original proof. For the strong compactness theorem E, however, we use an alter-
native approach by Salamon. This reduces the strong compactness to the weak
compactness with the help of a subtle local slice theorem F. It can be used to put
the connections into relative Coulomb gauge with respect to the limit connection
that is provided by the weak Uhlenbeck compactness theorem A. Then the strong
Uhlenbeck compactness theorem E is a consequence of elliptic estimates for the
connections. This approach circumvents a further patching argument. It is also
useful for the generalization to manifolds with boundary: In the local slice theo-
rem F we establish the relative Coulomb gauge with a suitable boundary condition.
This complements the Yang-Mills equation with boundary condition ∗FA|∂M = 0
to an elliptic boundary value problem. Furthermore, this line of argument is also
suitable for the study of boundary value problems with nonlocal boundary condi-
tions such as described in [Sa, W].

The ’standard’ proof of the strong Uhlenbeck compactness theorem E essen-
tially follows the same line of argument as the proof of the weak Uhlenbeck com-
pactness theorem A: One first finds local Coulomb gauges in which one has conver-
gent subsequences and then obtains global gauges from a patching construction.
We slightly simplified the patching construction in the proof of theorem A, and
also provide the generalization that allows to use this construction for a proof of
theorem E.

The local Uhlenbeck gauges are provided by Uhlenbeck’s local gauge theorem B
for connections with sufficiently small Lq-energy. Here one can use the conformally
invariant energy, that is q = n

2 (if we assume n > 2). That this energy is locally
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small is ensured by a global bound on the Lp-energy for p > n
2 . For the proof of the

weak compactness theorem A, it would actually suffice to construct these gauges
on Euclidean balls. However, if one wants to obtain the stronger convergence
in theorem E, then the local gauges have to augment the Yang-Mills equation
to an elliptic boundary value problem. This requires the more general form of
theorem B, that constructs the Coulomb gauges with respect to a fixed metric on
the manifold.

One of the main motivations for this book was to clarify the proof of this local
gauge theorem B. It boils down to solving the boundary value problem posed by the
Coulomb gauge for the gauge transformation. Then an a priori estimate provides
the further estimates involved in the Uhlenbeck gauge. This a priori estimate is
based on the Lp-estimate for the operator d ⊕ d∗ on the space of 1-forms that
satisfy the boundary condition from the Coulomb gauge (see theorem D).

Uhlenbeck’s approach to solving the boundary value problem for the gauge
transformation is to first construct a gauge transformation that solves the bound-
ary condition and then use the implicit function theorem to solve the differential
equation with homogenous boundary condition. The solution of the boundary
condition requires the seemingly obvious theorem C. It asserts that the space of
W 1,p-functions restricted to the boundary of a compact manifold is identical to
the space of normal derivatives of W 2,p-functions. This was proven in higher gen-
erality by Agmon, Douglis, Nirenberg, [ADN], but even in this most basic case the
proof requires the explicit solution of the Neumann boundary value problem on
the half space with inhomogenous boundary conditions.

In this book we pursue the alternative approach suggested by Uhlenbeck: The
boundary value problem for the gauge transformation can be directly solved with
the implicit function theorem. This involves inhomogenous boundary conditions,
so one has to work with boundary value spaces. Moreover, the surjectivity of
the linearized operator requires the existence theorem for the Neumann boundary
value problem with inhomogenous boundary conditions on Lp-spaces, which brings
us back to the work of Agmon, Douglis, Nirenberg.

The Lp-theory for the Neumann boundary value problem with inhomogenous
boundary conditions also enters in the elliptic estimates for the strong Uhlenbeck
compactness theorem on manifolds with boundary and on manifolds exhausted
by compact sets (which necessarily have nonempty boundaries). Thus it seemed
appropriate to include an exposition of the Neumann problem in part I. This
covers all the results that are required in this book.

Another result that fits well into this book but has no application within it is
the local slice theorem F′ that provides a weak relative Coulomb gauge for Lp-
connections. This gauge is used in [W] to generalize the compacntess of the moduli
space of flat connections to (weakly) flat Lp-connections. This in turn is needed
to deal with Lagrangian boundary conditions for anti-self-dual instantons.
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The main results

The weak and strong Uhlenbeck compactness theorems deal with sequences of G-
connections for compact Lie groups G. More precisely, let P → M be a principal
G-bundle. Throughout this book the base manifold M is a smooth n-manifold
with (possibly empty) boundary. If M is compact we will consider sequences in
the Sobolev space A1,p(P ) of W 1,p-connections on P . The group G2,p(P ) of W 2,p-
gauge transformations acts continuously on A1,p(P ). In the case of a noncompact
base manifold M we consider the space A1,p

loc(P ) with the action of the gauge group

G2,p
loc (P ).

These Sobolev spaces and actions are carefully defined in the appendices A and
B; they are well defined for p > n

2 . The action of the gauge group is in fact smooth,
which leads to a Banach manifold structure of the moduli space W 1,p(P )/G2,p(P )
(away from the singularities which actually turn this into an orbifold). This be-
comes important in the study of moduli spaces of Yang-Mills connections, e.g.
in Donaldson theory and Floer homology. However, for the compactness results
which we fokus on here, it is enough to know that the gauge action is continuous.

The weak Uhlenbeck compactness theorem (for compact base manifolds) as-
serts that every subset of the quotient A1,p(P )/G2,p(P ) that satisfies an Lp-bound
on the curvature is weakly compact. This theorem holds for compact manifolds
with boundary as well as for closed manifolds.

Theorem A (Weak Uhlenbeck Compactness)
Assume M is a compact Riemannian n-manifold and let 1 < p < ∞ be such
that p > n

2 . Let (Aν)ν∈N ⊂ A1,p(P ) be a sequence of connections and suppose
that ‖FAν‖p is uniformly bounded. Then there exists a subsequence (again denoted
(Aν)ν∈N) and a sequence of gauge transformations uν ∈ G2,p(P ) such that uν ∗Aν

converges weakly in A1,p(P ).

Here the compactness ofM is crucial. There also is a version of weak Uhlenbeck
compactness for manifolds M =

⋃
k∈N

Mk that are exhausted by an increasing se-
quence of compact submanifolds, i.e. each compact submanifold Mk is contained
in the interior of the next, Mk+1. In order to extend the weak Uhlenbeck com-
pactness theorem to this situation we shall also assume that each submanifold Mk

is a deformation retract of M .2 This includes for example manifolds with finitely
many punctures and cylindrical ends. The following theorem gives the precise
formulation of weak Uhlenbeck compactness in this situation. It is a slight gen-
eralization of theorem A. Its proof uses an extension argument of Donaldson and
Kronheimer [DK].

2This condition ensures that every gauge transformation on Mk extends to M . It is an open
question whether theorem A′ holds for more general manifolds.
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Theorem A′

Assume that M =
⋃
k∈N

Mk is a Riemannian n-manifold exhausted by an increas-
ing sequence of compact submanifolds Mk that are deformation retracts of M .
Let 1 < p < ∞ be such that p > n

2 . Let (Aν)ν∈N ⊂ A1,p
loc(P ) be a sequence of

connections and for all k ∈ N suppose that ‖FAν‖Lp(Mk) is uniformly bounded.
Then there exists a subsequence (again denoted (Aν)ν∈N) and a sequence of

gauge transformations uν ∈ G2,p
loc (P ) such that uν ∗Aν |Mk

converges weakly in
A1,p(P |Mk

) for all k ∈ N.

The first step towards the proof of these weak compactness results is to establish
the existence of a Coulomb type gauge over small trivializing neighbourhoods
U ⊂ M . In a fixed trivialization of P |U connections are represented by elements
of A1,p(U), the W 1,p-space of 1-forms with values in g (the Lie algebra of G).
Gauge transformations are represented by elements of G2,p(U), the W 2,p-space of
G-valued functions. Now for A ∈ A1,q(U) the Lq-energy is defined by

E(A) :=

∫

U

|FA|q .

Theorem B (Uhlenbeck Gauge)
Fix a Riemannian n-manifold M , a compact Lie group G, and let 1 < q ≤ p <∞
such that q ≥ n

2 and p > n
2 . In case q < n assume in addition p ≤ nq

n−q . Then
there exist constants CUh and εUh > 0 such that the following holds:

Every point in M has a neighbourhood U ⊂ M with smooth boundary such
that for every connection A ∈ A1,p(U) with E(A) ≤ εUh, there exists a gauge
transformation u ∈ G2,p(U) such that

(i) d∗(u∗A) = 0, (iii) ‖u∗A‖W 1,q ≤ CUh‖FA‖q ,
(ii) ∗ (u∗A)|∂U = 0, (iv) ‖u∗A‖W 1,p ≤ CUh‖FA‖p.

The domains U ⊂ M here will be diffeomorphic to the n-ball. For the proof
of theorem A it would suffice to establish (i) and (ii) with respect to a metric
that is pulled back from the Euclidean metric (on a ball in Rn whose diameter is
comparable to the diameter of U in the given metric on M). However, if one wants
to use theorem B for the ’standard’ proof of the strong Uhlenbeck compactness
theorem E below, then it is important to establish the gauge conditions (i) and
(ii) with respect to the fixed metric on the manifold.

The proof of theorem B boils down to solving the boundary value problem
posed by (i) and (ii) for the gauge transformation. In Uhlenbeck’s original proof
she first finds a gauge transformation that meets the boundary condition (ii) and
then solves the homogeneous boundary value problem for (i). In this book we
will solve the inhomogeneous boundary value problem right away using boundary
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value spaces (as was suggested by Uhlenbeck in [U2]). That way one needs an
existence theorem for the Neumann problem with inhomogeneous boundary con-
ditions. This will be provided in the preliminary part I. The relevant estimate was
proven in [ADN] in high generality. In our case it suffices to establish the following
fact that also implies the existence of a gauge transformation that satisfies (ii). So
this is an alternative proof of [U2, Lemma 2.6].

Theorem C (Agmon, Douglis, Nirenberg)
Let M be a compact Riemannian manifold, let k ∈ N0, and let 1 < p <∞. Then
there is a constant C such that for every f ∈ W 1,p(M) there exists a u ∈W 2,p(M)
that satisfies

∂u
∂ν

= f
∣∣
∂M

, ‖u‖W 2,p ≤ C‖f‖W 1,p .

This will be proven along the lines of [ADN] using the Calderon-Zygmund in-
equality for the Poisson kernel. The Calderon-Zygmund inequality also lies at the
heart of theorem D below. Assertion b) was stated by Uhlenbeck [U2] for the unit
ball and was proven there in the case p = 2.

Theorem D
Let M be a compact Riemannian manifold and let 1 < p <∞. Then the following
holds.

a) There is a constant C such that for all A ∈W 1,p(M,T∗M) with ∗A|∂M = 0

‖A‖W 1,p ≤ C
(
‖dA‖p + ‖d∗A‖p + ‖A‖p

)
.

b) Suppose in addition H1(M ; R) = 0. Then there exists a constant C such
that for all A ∈ W 1,p(M,T∗M) with ∗A|∂M = 0

‖A‖W 1,p ≤ C
(
‖dA‖p + ‖d∗A‖p

)
.

Note that assertion b) provides an a priori estimate for connections that satisfy
the Uhlenbeck gauge conditions (i) and (ii). This estimate will be used to establish
(iii) and (iv) and thus to prove theorem B.

The second step in the proof of the weak Uhlenbeck compactness is a patching
argument. One has to patch together the local gauge transformations obtained
from theorem B to construct a sequence of global gauge transformations. In the
case of a compact base manifold one can use the exponential map and cutoff func-
tions in the Lie algebra. Topological obstructions only arise in the continuation
of gauge transformations from a compact subset to the whole exhausted manifold.
An argument of Donaldson and Kronheimer [DK, Lemma 4.4.5] proves theorem
A′, but this requires the restriction to manifolds exhausted by deformation retracts.
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The strong Uhlenbeck compactness theorem concerns sequences of connections
that satisfy the Yang-Mills equation

{
d∗AFA = 0,

∗FA|∂M = 0.
(YM)

Note that our Yang-Mills equation incorporates a boundary condition. This is the
natural boundary condition arising from the variational principle for the Yang-
Mills functional on manifolds with boundary. Extrema of the Yang-Mills functional

YM(A) =

∫

M

|FA|2

solve the Yang-Mills equation in its weak form: For every β ∈ Ω1(P ; g) with
compact support (but not necessarily β = 0 on ∂M)

∫

M

〈FA , dAβ 〉 = 0. (wYM)

The solutions A ∈ A1,p
loc(P ) of this weak equation will be called weak Yang-Mills

connections. In order for this equation to make sense the Sobolev exponent p
has to be sufficiently large depending on the dimension dimM = n of the base
manifold. 3 In the case of smooth connections this weak Yang-Mills equation
(wYM) is equivalent to the boundary value problem (YM), i.e. the strong Yang-
Mills equation. If moreover the base manifold M has no boundary then the weak
Yang-Mills equation for smooth connections is equivalent to the usual Yang-Mills
equation d∗AFA = 0 without boundary condition.

The strong Uhlenbeck compactness theorem for G-bundles over manifolds with
(possibly empty) boundary uses above definition of weak Yang-Mills connections
(including the boundary condition).

Theorem E (Strong Uhlenbeck Compactness)
Assume M is a compact Riemannian n-manifold. Let 1 < p < ∞ be such that
p > n

2 and in case n = 2 assume p > 4
3 . Let (Aν)ν∈N ⊂ A1,p(P ) be a sequence of

weak Yang-Mills connections and suppose that ‖FAν‖p is uniformly bounded.
Then there exists a subsequence (again denoted (Aν)ν∈N) and a sequence of

gauge transformations uν ∈ G2,p(P ) such that uν ∗Aν converges uniformly with all
derivatives to a smooth connection A ∈ A(P ).

Again, this theorem generalizes to manifolds which can be exhausted by com-
pact deformation retracts. Moreover, one can perturb the Yang-Mills equation by
considering a C∞-convergent sequence of metrics gν and weak Yang-Mills connec-
tions Aν with respect to the metrics gν .

3If we assume 1 < p < ∞ and p > n
2
, then this is enough for n = 1 and n ≥ 3. Only for n = 2

we need the additional condition p ≥ 4

3
, see chapter 9.
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Theorem E′

Assume M =
⋃
k∈N

Mk is a Riemannian n-manifold exhausted by an increasing
sequence of compact submanifolds Mk that are deformation retracts of M . Let
1 < p <∞ be such that p > n

2 and in case n = 2 assume p > 4
3 . Let (gν)ν∈N be a

sequence of metrics on M that converges uniformly with all derivatives on every
compact set. For all ν ∈ N let Aν ∈ A1,p

loc(P ) be a weak Yang-Mills connection with
respect to gν and suppose that for all k ∈ N

sup
ν∈N

‖FAν‖Lp(Mk) <∞.

Then there exists a subsequence (again denoted (Aν)ν∈N) and a sequence of gauge
transformations uν ∈ G2,p

loc (P ) such that uν ∗Aν converges uniformly with all deriva-
tives on every compact set to a smooth connection A ∈ A(P ).

The key to the proofs of these two theorems is the existence of a global relative
Coulomb gauge ensured by the local slice theorem F below. The weak Uhlenbeck
compactness theorem provides a W 1,p-weakly convergent subsequence and a limit
connection. After a common gauge transformation the limit connection is smooth.
Now a further subsequence can be put into relative Coulomb gauge with respect
to that limit connection. The strong Uhlenbeck compactness then follows from
elliptic estimates for the operator

α 7→
(
d∗
Ã+α

FÃ+α , ∗FÃ+α

∣∣
∂M

, d∗
Ã
α , ∗α|∂M

)
,

where Ã ∈ A(P ) is a smooth connection. This approach by Salamon is different
from the proofs of Uhlenbeck [U2] and Donaldson-Kronheimer [DK] (whose ’stan-
dard’ proof will also be explained in chapter 10). It reduces the strong Uhlenbeck
compactness theorem E to the weak compactness theorem A without using a fur-
ther patching argument (in the case of a compact base manifold). The proof of
theorem E′ moreover uses the same extension argument as the proof of theorem A′.

Theorem F (Local Slice Theorem)
Let M be a compact Riemannian n-manifold with smooth boundary (that might be
empty). Let 1 < p ≤ q <∞ such that

p > n
2 and 1

n
> 1

q
> 1

p
− 1

n
.

Fix a reference connection Â ∈ A1,p(P ) and a constant c0 > 0. Then there exist
constants δ > 0 and C such that the following holds: For every A ∈ A1,p(P ) with

‖A− Â‖q ≤ δ and ‖A− Â‖W 1,p ≤ c0
there exists a gauge transformation u ∈ G2,p(P ) such that

(i) d∗
Â
(u∗A− Â) = 0, (iii) ‖u∗A− Â‖q ≤ C‖A− Â‖q,

(ii) ∗ (u∗A− Â)|∂M = 0, (iv) ‖u∗A− Â‖W 1,p ≤ C‖A− Â‖W 1,p .
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This theorem asserts the existence of a local slice through Â that is transversal
to the orbits of the gauge action. (This is because the infinitesimal action of the
gauge group at Â is given by d

Â
.) For every Lq-close connection A one then finds

a gauge equivalent connection in the local slice, but can keep control of the W 1,p-
norm. This goes beyond a simple application of the implicit function theorem
since it only requires a W 1,p-bound on A, not W 1,p-closeness to Â.

There also is an Lp-version of the local slice theorem that will be proven in this
book. In order to state the weak Coulomb equation involved we use the notation
gP = P ×Ad g for the associated bundle arising from the adjoint representation of
G on its Lie algebra g. Then the difference of any two smooth connections is an
element of Γ(T∗M ⊗ gP ).

Theorem F′ (Lp-Local Slice Theorem)
Let M be a compact Riemannian n-manifold with smooth, possibly empty boundary.
Let 2 ≤ p < ∞ be such that p > n and fix a reference connection Â ∈ A0,p(P ).
Then there exist constants δ > 0 and C such that the following holds.

For every A ∈ A0,p(P ) with ‖A− Â‖p ≤ δ there exists a gauge transformation
u ∈ G1,p(P ) such that

∫

M

〈
u∗A− Â , d

Â
η
〉

= 0 ∀η ∈ Γ(gP )

and ‖u∗A− Â‖p ≤ C‖A− Â‖p.

Following [CGMS] both local slice theorems F and F′ will be proven by New-
ton’s iteration method. In fact, theorem F′ could also be proven by the implicit
function theorem and one extra estimate. However, we use this easier case to
illustrate the iteration method. For theorem F this iteration is considerably more
complicated due to the boundary terms and the fact that the W 1,p-norm of the
connection is only assumed to be bounded, not small. This, however, is just the
setting that is obtained from the weak Uhlenbeck compactness theorem A: The
connections converge in the weak W 1,p-topology, so they are W 1,p-bounded and
they converge strongly only with respect to an Lq-norm.

Theorem F′ is used in [W] to generalize the regularity of flat connections to
Lp-connections: A connection of class W 1,p is called flat if its curvature vanishes,
which is a partial differential equation of first order. One can use theorem F
to prove that every flat connection is gauge equivalent to a smooth connection.
For connections of class Lp one can introduce the notion of ’weak flatness’ by
a weak equation. The combination of the weak flatness and the weak relative
Coulomb gauge provided by theorem F′ then constitutes an elliptic system whose
Lp-solutions are in fact smooth. This proves that every weakly flat connection is
gauge equivalent to a smooth connection.
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Outline

This book is organized in four parts. Part I is of preliminary nature. It gives
an exposition of the Neumann problem in chapters 1 to 3. We give proofs of a
number of results that are wellknown but for which there seem to be no explicit
proofs in the standard textbooks. For example, the L2-regularity theorem 1.3 for
weak solutions of the Neumann problem requires no minimum regularity of the
solution. We also prove the regularity and existence results for Lp-spaces with
general p > 1. Moreover, theorem C is of central importance for the Neumann
problem with inhomogeneous boundary conditions, but some textbooks simply
omit it. Here we give a proof that uses the methods of [ADN] but is considerably
easier than their treatment of general boundary value problems, see theorem 3.4.

In chapter 4 some results on the Neumann problem are generalized to sections
of vector bundles with nonsmooth connections. These are used in the Newton
iteration for the local slice theorems F and F′.

In part II we prove the weak Uhlenbeck compactness theorems A and A′,
see theorems 7.1 and 7.5. Firstly, chapter 5 provides regularity results for 1-
forms which correspond to Hodge theory on manifolds with boundary. These are
used to prove the Lp-estimates of theorem D for the operator d ⊕ d∗, restated in
theorem 5.1. Moreover, the regularity theory for Yang-Mills connections will again
make use of these results.

In chapter 6 we then prove the Uhlenbeck local gauge theorem B, restated
as theorem 6.1. We use boundary value spaces instead of Uhlenbeck’s explicit
construction of a gauge transformation that meets the boundary condition. We
also filled in a lot of technicalities: Uhlenbeck proves the theorem for one model
domain, that is the Euclidean unit ball [U2, Thm.2.1]. We show in theorem 6.3
that the theorem on the unit ball in fact holds for all metrics that are sufficiently
C2-close to the Euclidean metric. Moreover, in order to generalize the theorem to
manifolds with boundary and a fixed metric, we prove the same result for a second
model domain, the ”egg squeezed to the boundary”. We furthermore explain the
rescaling trick that proves the existence of the Uhlenbeck gauge in sufficiently
small neighbourhoods on general manifolds.

Chapter 7 provides the patching constructions that complete the proof of the
weak Uhlenbeck compactness theorems. In the case of a compact base manifold
we have slightly modified Uhlenbeck’s patching argument. The basic result is that
every set of transition functions posesses a C0-neighbourhood of sets of transition
functions that all define the same bundle. In [U2, Prop.3.2] the underlying cover
has to be finite and the radius of the C0-neighbourhood depends on the number of
covering patches and the set of transition functions. Our patching lemma 7.2 works
for all countable covers of manifolds and the radius of the C0-neighbourhood simply
is the radius of a convex geodesic ball in the Lie group. The proof of theorem A
(restated as theorem 7.1) is based on this patching lemma.

The generalization of weak Uhlenbeck compactness to noncompact manifolds
uses the extension argument of Donaldson and Kronheimer [DK, Lemma 4.4.5].
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We explain that argument in lemma 7.8 and use it to prove proposition 7.6, which
is a general tool for extending compactness results for moduli spaces over compact
manifolds to base manifolds that are exhausted by compact deformation retracts.
This result is then used to prove theorem A′, restated as theorem 7.5. It can again
be used for the proof of theorem E′. It should be stressed that the extension argu-
ment requires that every gauge transformation on one of the exhausting compact
submanifolds extends to the whole manifold. This is ensured by our assumption
that the exhausting submanifolds are deformation retracts of the manifold.

Part III concerns the strong Uhlenbeck compactness theorems E and E′ (theo-
rems 10.1 and 10.3). Here the generalization to manifolds with boundary requires
to supplement the Yang-Mills equation with a boundary condition. This boundary
value problem also occurs in the generalization to manifolds that are exhausted
by compact sets, since these compact submanifolds necessarily have boundaries.

In chapter 8 we give proofs of the local slice theorem F and its Lp-version,
theorem F′ (see theorem 8.1 and 8.3). These are adaptations of the Newton
iteration method used for [CGMS, Thm.A.1] to manifolds with boundary and to
Lp-connections. Moreover, we construct the relative Coulomb gauge with respect
to different metrics under the same assumptions on the connection. This is needed
for the case of varying metrics in theorem E′.

Chapter 9 introduces the Yang-Mills equation with boundary condition. We
prove the smoothness of Yang-Mills connections up to a gauge transformation both
on compact manifolds and on manifolds that are exhausted by compact deforma-
tion retracts, see theorem 9.4. This is done by the iteration of two regularity
results. These already include estimates for the proof of the strong Uhlenbeck
compactness.

Chapter 10 is devoted to the proofs of theorem E (theorem 10.1) and theorem
E′ (theorem 10.3). Unlike to the ’standard’ proof (which we also explain) this
approach by Salamon requires no further patching construction for the proof of
theorem E due to the use of the global relative Coulomb gauge provided by the
local slice theorem F. For theorem E′ one again uses proposition 7.6, which relies
on the extension argument of Donaldson and Kronheimer.

These last two chapters and chapter 5 contain careful details of the boot-
strapping analysis. These are standard procedures but they did not seem entirely
obvious, especially not for manifolds with boundary, and they have to be adapted
separately to the case of noncompact manifolds exhausted by compact sets. More-
over, in order to obtain the compactness results for varying metrics, one has to
obtain uniform constants for a small neighbourhood of metrics in all these esti-
mates. This does not require a lot of extra work, but one always has to take care
of what the constants depend on.

Part IV consists of a number of appendices that are designed to make this
book as selfcontained as possible. Appendix A gives a brief introduction to gauge
theory. This is not meant as an exposition but rather sets up the notation that
is used throughout the book. Moreover, we prove some fundamental estimates on
the energy and gauge transformations which will be needed frequently.
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In appendix B one can find the definition of Sobolev spaces of sections of vector
bundles and – more generally – fibre bundles. This leads to the definition of the
Sobolev spaces of connections and gauge transformations. We also state all Sobolev
embedding results that will be needed in the book and we give a coordinate free
proof of a trace theorem (concerning the restriction of Sobolev functions to the
boundary of a compact manifold).

Theorem C.2 in appendix C states a criterion for Lp-multipliers due to Mihlin
[M]. It is much easier to check than the usual criteria e.g. in [St1]. We show how
the criterion of Mihlin implies the standard criterion. Then we use this criterion
to prove the Calderon-Zygmund inequality (theorem C.3). Furthermore, we use
techniques of [ADN] to give a proof of the estimates on the Poisson kernel (theorem
C.4) that are needed for theorem C. Similar techniques are used to prove a version
of the mollifier theorem C.5 that again is more general than the one in most
standard textbooks: We do not require compact support of the functions that are
proven to converge to the Dirac distribution.

Appendix D states (without proofs) the main results on the Dirichlet problem.
Appendix E states some results from Functional Analysis that are used at crucial
places in this book.


