Introduction

First impressions. A Fukaya category is an algebraic structure associated to a sym-
plectic manifold. It encodes information about Lagrangian submanifolds, the way
in which any two of them intersect, and also about pseudo-holomorphic discs (or
polygons). The amount of data packed into a single object makes Fukaya categories
fascinating, but also somewhat intimidating, especially from a symplectic topology
viewpoint. Before going on, we would like to elaborate a little further on this ob-
servation. This will be an informal discussion, addressed to non-specialist readers,
and intended to convey just a general idea of what the situation looks like; it contains
many statements that are not rigorous, and it is also somewhat more wide-ranging
than the rest of book.

Fix a symplectic manifold M2". Roughly speaking, objects of the Fukaya cat-
egory are Lagrangian submanifolds L” C M. The space of such submanifolds
is infinite-dimensional (locally modelled on the space of closed one-forms on L).
However, Lagrangian submanifolds which are Hamiltonian isotopic give rise to iso-
morphic objects in the Fukaya category, which cuts down the local degrees of freedom
to the first Betti number by (L). Indeed, the classification up to Hamiltonian isotopy
is completely understood in some simple cases: curves on surfaces, where the issue
is essentially one of topology; less obviously, Lagrangian spheres in S2 x $2 [75],
and a few related examples. There are other (general) effects which work in one’s
favour: not all Lagrangian submanifolds actually appear in the Fukaya category, due
to obstructions in the sense of [60]; others may occur but be trivial (the zero object);
and isomorphism in the Fukaya category may be weaker than Lagrangian isotopy.
For an example of the first point, one can simply look at circles in S, where the
necessary cancellation of obstructions only happens when the two hemispheres in the
complement have equal areas; for more interesting cases see [31], [32]. The second
phenomenon occurs for the real locus RP* C CP” for n > 1, assuming that that is
Spin (n = 4k — 1), and that the Fukaya category is taken with Q-coefficients. For the
third point, there are some candidate examples in the form of Lagrangian tori in CP2,
but as far as this author knows, none of them have been rigorously verified. With all
this at hand, it becomes feasible in principle to compute the entire Fukaya category
for manifolds whose symplectic topology is comparatively simple; the papers quoted
above (and others, for instance [132], [102], [101], [59]) can be viewed as part of a
wider ongoing effort in that direction. Still, for any reasonably complicated symplec-
tic manifold (for instance, a complex hypersurface in CP? of degree > 4), a direct
classification of the objects in the Fukaya category appears to be out of reach.

Maybe we have just been setting the goalposts too high. After all, even if one
considers a purely algebraic context, such as modules over a finite-dimensional alge-
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bra, the cases where a complete classification can be achieved form a tiny minority
[41]. There is, however, one significant difference: for two explicitly given modules,
there is an obvious algorithm which decides whether they are isomorphic. More
generally, given a finite collection of modules, it is straightforward to determine the
morphisms between them, and the composition maps of morphisms. In contrast, in
a Fukaya category, the morphisms are Floer cochain groups, and the composition
maps operations on such groups, both defined in terms of suitable moduli spaces of
pseudo-holomorphic maps. There are some situations where these spaces can be dealt
with geometrically: when M is a cotangent bundle and the Lagrangian submanifolds
L = graph(df’) are sections, an “adiabatic limit” method reduces the question to one
in finite-dimensional Morse theory [58] (variations of this method have been suc-
cessful in several related cases); when M is an algebraic variety defined over the real
numbers, and one considers only the real locus L = MR, algebro-geometric tools can
be applied; finally, in the case where M is a surface, the study of pseudo-holomorphic
curves becomes combinatorial to a large extent. However, beyond these situations,
Floer theory computations traditionally rely on case-by-case methods, which offer
no a priori guarantee of success. This book is an attempt to address that problem.
Together with other developments, it will hopefully help to make Fukaya categories
into a more manageable tool.

The strategy. In view of the difficulties described above, it is clear that if one wants
to make any headway, some drastic simplifications are needed. To begin with, we
consider only exact symplectic manifolds M, namely those where the symplectic
form ¢ is the exterior derivative of some one-form 6. This of course implies that
M cannot be closed, but we impose standard convexity conditions, which make this
deficiency invisible to finite area pseudo-holomorphic curves. Affine algebraic vari-
eties are a good source of examples. The simplest class of Lagrangian submanifolds
L C M are the exact ones, which means that 8| L is the derivative of some function;
we will only deal with these, and exclude all others a priori. This restriction has many
useful technical consequences: for instance, exact Lagrangian submanifolds cannot
be obstructed, and each of them is a nonzero object of the Fukaya category, whose en-
domorphism ring is the classical cohomology ring (no quantum corrections). Beyond
that, the more fundamental advantage of exactness is that it eliminates the dependence
of the Fukaya category on the symplectic area (or Novikov ring) parameter. Mirror
symmetry suggests that this dependence is often given by nontrivial transcendental
functions, and this is confirmed by sample computations, such as [108], [57]. In our
case, the parameter is set equal to zero (or infinity, depending on one’s interpreta-
tion), which makes the situation less interesting from an enumerative point of view,
but more amenable to computation. We should mention that ultimately, one can try
using the Fukaya categories of affine varieties as a stepping-stone towards those of
their projective completions [129].
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To bring things closer to classical homological algebra, we will also impose a
Calabi—Yau type condition (2c¢; (M) = 0, to be precise), together with a correspond-
ing assumption on the Lagrangian submanifolds, which allows us to equip all Floer
groups with Z-gradings. The resulting setup can be summarized as follows. Objects
of the Fukaya category ¥ (M), which we call exact Lagrangian branes, are triples
L* = (L,a*, P*), where L is a closed exact Lagrangian submanifold of M, o* is a
real-valued function on L called the grading, and P* is a Pin structure on L. The mor-
phisms spaces are Floer cochain groups CF* (L, L), which are finite-dimensional
graded vector spaces (over some fixed, but arbitrary, coefficient field K; the Pin struc-
tures are really only necessary if char(K) # 2). These carry multilinear composition
maps Md, d > 1, which form an A-structure. The definition requires auxiliary
choices, but the outcome is independent of those choices up to quasi-isomorphism.

Our second main idea, which comes from Kontsevich’s work, is to take formal
enlargements of the Fukaya category. These are purely algebraic constructions, which
can be applied to any Ao-category . The first step is to introduce analogues of chain
complexes, so-called twisted complexes, which form another Ay-category Tw A
containing +. This contains mapping cones of morphisms, hence is what we call
a triangulated A.-category; the resulting cohomology level category H(Tw ),
also called the derived category D(#), is a triangulated category in the classical
sense. As a second useful step, one can take the split-closure (or Karoubi completion)
D7 (A) of the derived category, which introduces formal direct summands of all
idempotent endomorphisms; there is also a corresponding construction on the A
level, denoted by IT1(7w +4). An apparently paradoxical statement, but one whose
truth will be evident to many readers, is that each enlargement makes the category
easier to describe. As an illustration, consider the notion of split-generators: we say
that a subset of objects split-generates I1(7w #4) if one can construct all objects out
of them by repeatedly applying mapping cones and splitting off direct summands.
Whenever B C TI(Tiw ) is the full Ax-subcategory formed by such a set of split-
generators, [1(7Tw B) is quasi-equivalent to IT1(7w ). Hence, if one is only interested
in T1(Tw #4), it is actually sufficient to determine one such B. Let us keep in mind
that split-generation is a very weak property; it does not, for instance, imply that
the Grothendieck group Ko(D” (+#4)) is spanned by the classes of split-generators.
Hence, it is not unreasonable to hope that a finite set of Lagrangian submanifolds can
be found which split-generate I[1(7Tw ¥ (M)), and we will see that this is indeed the
case in favourable circumstances.

The use of the word “computation” in connection with Fukaya categories means
that the underlying geometric structures (symplectic manifolds, Lagrangian subman-
ifolds) have to be somehow encoded in a combinatorial way. For that, we will make
systematic use of Picard—Lefschetz theory. In general, the importance of this ap-
proach in symplectic geometry largely comes from Donaldson’s work [38]; here, we
only use the most elementary aspects of the theory, namely the symplectic nature of
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monodromy maps, as well as the Lagrangian nature of Lefschetz thimbles and van-
ishing cycles. To take advantage of these properties, we will introduce (following an
idea of Kontsevich) Fukaya categories of Lefschetz fibrations, which in a sense stand
between the ordinary Fukaya category of the total space and that of a smooth fibre.
These will then be used to build a machine, first proposed conjecturally in [126], for
doing computations by dimensional induction.

Computing Fukaya categories. To simplify formulations, we will limit ourselves to
the case of algebraic varieties. Namely, let X C C be an (n 4 1)-dimensional affine
algebraic variety which is smooth, as well as smooth at infinity. The latter condition
means that its closure X C CP is again smooth, and intersects the hyperplane
at infinity CPVY~! = CPV \ C¥ transversally. We equip X with the restriction
of the Fubini—Study Kihler form, which turns it into an exact symplectic manifold.
Additionally, we will assume that the canonical bundle X 5 is isomorphic to @ g (—d)
for some d € Z, which makes X Calabi—Yau. All these properties are also inherited
by a generic affine hyperplane section X' = X N C¥~!. Take the Fukaya categories
F(X) and F (X'), with coefficients in some field K. We begin by discussing X!,
since our results there are somewhat better:

Theorem A. Suppose that d # 2, n > 1, and char(K) # 2. Then II(Tw F (X))
is computable from the combinational data obtained by applying Picard—Lefschetz
theory to X.

The statement requires some explanation. First of all, by saying that T1(Tw #4) is
computable for some Aso-category +A, we mean the following. One can explicitly
write down another Ao.-category B, which is finite in a strong sense (finitely many
objects, the morphisms form finite-dimensional vector spaces, and composition maps
M% of sufficiently high order d >> 0 all vanish), such that I1(7w 8) and I1(Tw +4) are
quasi-equivalent A,-categories. In particular, this means that D7 (8) = D7 (A) as
(classical) triangulated categories. Note that for a reasonable choice of coefficient
field K (a finite field, or Q, for instance), 8B really contains a finite amount of infor-
mation. One can take that information and enter it into a computer program which, by
explicitly constructing twisted complexes and their idempotent endomorphisms, will
generate the full (infinite) list of isomorphism classes of objects in D7 (8B), together
with morphisms, composition maps, and exact triangles. This, of course, does not
by itself solve any of the big structural questions about D7 (8). As for the meaning
of “combinational data produced by Picard-Lefschetz theory”, we leave the precise
explanation to Section 19, but the rough idea is to look at linear maps from X to C
and C2, and encode the branch data of those maps in terms of braid monodromy.
The same process can be applied to X!, and repeated until the dimension is reduced
to zero. Given explicit equations defining X, these data can be extracted algorith-
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mically using elimination theory (even though in all but the simplest examples, the
complexity tends to be prohibitive).

We also need to look briefly at the limitations of the theorem. n > 1 excludes
the lowest nontrivial dimension, where X! is a Riemann surface. This is really for
convenience only: the Riemann surface case can be treated with similar (in fact,
somewhat simpler) methods, but requires some particular adjustments, which would
complicate the discussion. The char(K) # 2 condition is a technical artifact of our
proof, which uses double branched covers and Z /2-actions; quite probably, other
methods exist which would allow one to lift this restriction. The other requirement
d # 2 is somewhat more essential, and we postpone its discussion to a later point
(see Remark 19.8).

As mentioned before, the results for (X)) itself are somewhat weaker. This
is not unexpected: for instance, there is no known method for deciding whether X
contains any closed exact Lagrangian submanifold, hence whether ¥ (X) (and its
derived categories) are nontrivial. This is in contrast to the case of X!, where we
could use vanishing cycles as a natural source of objects. The best we can do is this:

Theorem B. Assume that char(K) # 2. Then, from the combinatorial data obtained
by applying Picard—Lefschetz theory to X, one can construct an Ao-category which
contains a full subcategory quasi-equivalent to ¥ (X).

The Aso-category in question is of the form Tw B, where B is finite in the same
sense as before. In fact, by construction B will be directed, and this has some
noteworthy consequences. First of all, 7w B is already split-closed, so it will contain
notonly ¥ (X), but the whole of IT(Tw ¥ (X)). Secondly, directed Ao-categories are
quasi-isomorphic to dg categories with finite-dimensional morphism spaces. Since
that property is inherited by the category of twisted complexes, we have:

Corollary C. In the situation of Theorem B, ¥ (X) is quasi-isomorphic to a dg
category with finite-dimensional hom spaces.

The practical usefulness of Theorem B depends on how well one understands the
geometric meaning of the map ¥ (X) — T B. For the simplest class of Lagrangian
submanifolds in X, namely Lagrangian spheres which can be represented as matching
cycles for a Lefschetz pencil of hyperplane sections, these issues can be addressed
easily, so that one indeed gets an algorithm for computing Floer cohomology groups
(strictly speaking, the case n = 1 ought to be excluded here, for the same reason as
in Theorem A). For more general Lagrangian submanifolds, the statement remains
more of a theoretical nature, at least for now.

The proofs of the results stated above will be given in Section 19; they involve
most of the material introduced throughout the book. As a natural by-product, we es-
tablish a general relation between Hurwitz moves of vanishing cycles, and mutations
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of directed Fukaya categories. In fact, we will give two proofs of this (Theorem 17.20
and Theorem 18.24; the proof originally envisaged in [127] is different from either
one, and remains unpublished at present). Another interesting consequence is the ex-
istence of a spectral sequence for the Floer cohomology of Lagrangian submanifolds
lying in the total space of a Lefschetz fibration (Corollary 18.27). Of course, like
any spectral sequence, this merely decomposes the problem into a visible part (the
starting term) and hidden higher order information (the differentials). In this particu-
lar case, the differentials express the way in which the Lagrangian submanifolds are
built up from Lefschetz thimbles, where the word “built” is interpreted algebraically,
as a Postnikov decomposition in the Fukaya category.

With one exception at the end, this book does not deal with examples or appli-
cations. Luckily, the existing literature makes up for that shortcoming (for some
pointers, see the beginning of Chapter III). Beyond that, any reader seriously inter-
ested in Fukaya categories will eventually have to tackle the groundbreaking [60],
which discusses many geometric and algebraic issues far outstripping the framework
set up here.



