
1. Introduction

The goal of these lectures is to present a comprehensive exposition of mod-
ern partial hyperbolicity theory. They contain the core of the theory as well
as outline some recent new achievements in this rapidly developing area.
The material is accessible to students and non-experts who possess some
basic knowledge in dynamical systems and wish to learn some new phenom-
ena outside classical hyperbolicity. These lectures may also be of interest
to experts as they provide a unified and systematic treatment of partial
hyperbolicity and stable ergodicity and are unique in that.

Partial hyperbolicity is a relatively new field, just over 30 years old, but
has proven to be rich in interesting ideas, sophisticated techniques and ex-
citing applications. It appears naturally in some models in science. To
illustrate this consider the FitzHugh-Nagumo partial differential equation
which is used in neurobiology to model propagation of electrical impulse
through the nerve membrane:

ut(x, t) = ε∆xu(x, t) + h(u),

where u(x, t) = (u1(x, t), u2(x, t)) and

h(u1, u2) = (g(u1) − bu2, cu1 − du2)

is the local map. The function g introduces a cubic non-linearity

g(u1) = −au1(u1 − θ)(u1 − 1).

We shall discuss traveling wave solutions of the FitzHugh-Nagumo equation.
These are solutions of the form

ϕ(ξ) = ϕ(x− ct) = (ϕ1(x− ct), ϕ2(x− ct)),

where c > 0 is the velocity of the wave. The function ϕ(ξ) satisfies the
traveling wave equation

εϕ
′′
(ξ) + cϕ

′
(ξ) + h(ϕ(ξ)) = 0.

Setting ϕ
′
= v we obtain {

ϕ
′
= v

εv
′
= −cv − h(ϕ)

By changing the function h(ϕ) outside a ball B(0, R) of some large radius R,
one can obtain that (ϕ

′
, v

′
) ·(ϕ, v) < 0. This modification of the original sys-

tem guarantees that no solutions escape to infinity which is thus a repelling
fixed point. This allows us to consider the equation (and the corresponding
flow) on the two-dimensional sphere.



2 YA. PESIN

Following principles of singular perturbation theory let us change the time
to ”slow time” by substituting t = ε τ . Denote the slow time derivative by
ϕ̇. We have {

ϕ̇ = εv
v̇ = −cv − h(ϕ).

For ε = 0, the manifold C, defined by v = −1
ch(ϕ), is a manifold of equilib-

rium points. Consider the expanded system


ϕ̇ = εv
v̇ = −cv − h(ϕ)
ε̇ = 0

and linearize it at ε = 0, v = −1
ch(ϕ). The Jacobian matrix for the linearized

system has eigenvalues λ = −c,−c, 0, 0, 0. It follows that for ε = 0 there
exist a three-dimensional center manifold C0 = C and a two-dimensional
stable manifold to it, i.e., C is normally hyperbolic (see Section 5.1 below).
By the singular perturbation theory normal hyperbolicity survives: for any
sufficiently small ε there exist a three-dimensional center manifold Cε and a
two-dimensional stable manifold to it. One can show that the restriction of
the dynamics to Cε is of a Morse-Smale type (see [35]).

In a more general setting one can observe partial hyperbolicity in systems
described by partial differential equations possessing inertial manifolds. It
often happens that the system acts as a contraction or/and expansion in
directions transversal to the inertial manifold whose rates exceed the rates
of contraction and expansion along this manifold. In this case the inertial
manifold is normally hyperbolic.

Partial hyperbolicity can also occur when a periodic force acts on a dis-
sipative system f possessing a “strange” attractor. The resulting system
is the product f × Id. It acts on the phase space, that is the product of
the phase space for f and the circle, and possesses a partially hyperbolic
“strange” attractor. A small perturbation of this map often also possesses
a partially hyperbolic “strange” attractor.

The structure of these lectures is as follows. In Chapter 2 we introduce
the concept of partial hyperbolicity and also describe some basic examples of
partially hyperbolic diffeomorphisms. In Chapter 3 we present the Mather
spectrum theory for diffeomorphisms which allows one to characterize a
partially hyperbolic map in terms of the spectrum of the linear operator
generated by the map in the space of all continuous vector fields. Using this
characterization we establish stability of partially hyperbolic maps.

In Chapters 4, 5 and 6 we discuss various aspects of stability theory for
partially hyperbolic diffeomorphisms including: 1) constructions of invariant



LECTURES ON PARTIAL HYPERBOLICITY AND STABLE ERGODICITY 3

stable and unstable foliations (see Sections 4.2–4.7); 2) some criteria for
integrability of the central distribution (see Section 5.3; in general, this
distribution is not integrable, see Section 6.1 but it is often integrable in
a weak sense, see Section 5.6); 3) stability of the central foliation under
small perturbations (see Section 5.5), and 4) the branching phenomenon for
intermediate foliations (see Section 6.3). We also introduce the concept of
normal hyperbolicity which originated in works of Hirsch, Pugh and Shub
[25, 26] and is closely related to partial hyperbolicity.

Our approach is based on an extension and adaptation to our case of a
method which originated in the work of Perron [36] (see also [3], Chapter
4; the formal description of this method is given by Theorem 4.3). This
method is quite powerful and can be used in various situations. We apply
it to establish structural stability of Anosov maps (see Section 4.8) and to
describe some interesting phenomena associated with insufficient smoothness
of intermediate foliations (see Sections 6.2 and 6.3).

In Chapter 7 we discuss a crucial absolute continuity property of invariant
foliations which provides a main technical tool in studying ergodic properties
of partially hyperbolic systems with respect to smooth invariant probability
measures. Chapter 8 is devoted to another crucial property of invariant
foliations known as the accessibility property. It is necessary and in many
cases sufficient to establish topological transitivity and ergodicity of the
system.

In the last two chapters we outline basic elements and recent results in
Pugh-Shub stable ergodicity theory with applications to skew products over
Anosov maps, to Anosov flows (in particular, geodesic flows) and to frame
flows on manifolds of negative curvature. In particular, we describe the sur-
prising “Fubini’s nightmare” phenomenon associated with non-absolutely
continuous “pathological” foliations arising “typically” in partial hyperbol-
icity theory.

The majority of results presented in these lectures come with complete
proofs. However, for some results, which require sophisticated techniques,
we either just outline their proofs omitting technical details (but providing
necessary references) or consider the proofs of some particular cases where
the main idea can still be seen. For completeness of the exposition and to
broaden applications we also included some results without proofs.
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