
Preface

Between April and July of 2001, I gave the Nachdiplom lecture series at ETH
in Zurich. The lectures concerned the study of some non-linear partial differential
equations related to curvature invariants in conformal geometry. A classic example
of such a differential equation on a compact surface is the Gaussian curvature
equation under conformal change of metrics. On manifolds of dimension four, an
analogue of the Gaussian curvature is the Pfaffian integrand in the Gauss-Bonnet
formula: on a Riemannian manifold (M, g) of dimension four, denote the Weyl–
Schouten tensor A as

Aij = Rij −
R

6
gij

where Rij is the Ricci tensor and R is the scalar curvature of the Riemannian
metric g; denote the second elementary symmetric function of A as

σ2(A) =
∑
i<j

λiλj =
1
2
[(TrA)2 − |A|2],

where λi (1 ≤ i ≤ 4) are the eigenvalues of A; then one has the Gauss Bonnet
formula

8π2(χM) =
∫

(
1
4
|W |2 + σ2(A))dv,

where W denotes the Weyl tensor. Under conformal change of metrics, |W |2dv
is point-wisely conformally invariant, thus

∫
σ2(A)dv is conformally invariant. The

main focus of these lecture notes is the study of the partial differential equation
describing the curvature polynomial σ2(A) under conformal change of metrics.

The notes are organized as follows: In Chapters 1 and 2, I discuss the equa-
tion prescribing Gaussian curvature on compact surface, provide background, and
describe the main analytic tool, Moser–Trudinger inequalities, in the study. In
Chapter 3, I describe the connection between Moser–Trudinger inequality to the
Polyakov formula for the functional determinant of the Laplacian operator on
compact surfaces. In Chapters 4 to 6, I discuss general conformal invariants, the
connection of conformal invariants to conformal covariant operators on manifolds
of dimension three and higher, with emphasis on a special 4-th operator (called
the Paneitz operator) on manifolds of dimension 4. Finally in Chapters 7–10, I
study the connection of the Paneitz operator to the curvature polynomial σ2(A)
described above. I also report the work of Chang–Gursky–Yang [23] on the exis-
tence on manifolds (M4, g) of solutions with σ2(A) > 0 under the assumptions
that

∫
σ(A) > 0 and g be of positive Yamabe class.

The lectures were given at an early stage, when the study of the fully non-
linear PDEs like that of σ2(A) were first developed. Since then, there has been
much progress both in the form of existence and regularity results on such equa-
tions. Readers are referred to the article by Gursky–Viaclovsky [56], where a sim-
pler proof, from a somewhat different perspective, of the main result in [23] dis-
cussed in these notes is given. There have also been important results on the
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existence of general conformal invariants by Graham–Zworski [50] and Fefferman–
Graham [44]. There is also a more recent survey article [20] for recent developments
in this research field.
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