
General introduction

General Relativity is a theory proposed by Einstein in 1915 as a unified theory of
space, time and gravitation. The theory’s roots extend over almost the entire previous
history of physics and mathematics.

Its immediate predecessor, Special Relativity, established in its final form by
Minkowski in 1908, accomplished the unification of space and time in the geometry
of a 4-dimensional affine manifold, a geometry of simplicity and perfection on par
with that of the Euclidean geometry of space. The root of Special Relativity is
Electromagnetic Theory, in particular Maxwell’s incorporation of Optics, the theory
of light, into Electrodynamics.

General Relativity is based on and extends Newton’s theory of Gravitation as
well as Newton’s equations of motion. It is thus fundamentally rooted in Classical
Mechanics.

Perhaps the most fundamental aspect of General Relativity however, is its geo-
metric nature. The theory can be seen as a development of Riemannian geometry,
itself an extension of Gauss’ intrinsic theory of curved surfaces in Euclidean space.

The connection between gravitation and Riemannian geometry arose in Einstein’s
mind in his effort to uncover the meaning of what in Newtonian theory is the fortuitous
equality of the inertial and the gravitational mass. Identification, via the equivalence
principle, of the gravitational tidal force with spacetime curvature at once gave a
physical interpretation of curvature of the spacetime manifold and also revealed the
geometrical meaning of gravitation.

One sees here that descent to a deeper level of understanding of physical reality is
connected with ascent to a higher level of mathematics. General Relativity constitutes
a triumph of the geometric approach to physical science.

But there is more to General Relativity than merely a physical interpretation of
a variant of Riemannian Geometry. For, the theory contains physical laws in the
form of equations – Einstein’s equations – imposed on the geometric structure. This
gives a tightness which makes the resulting mathematical structure one of surpassing
subtlety and beauty. An analogous situation is found by comparing the theory of
differentiable functions of two real variables with the theory of differentiable functions
of one complex variable. The latter gains, by the imposition of the Cauchy–Riemann
equations, a tighter structure which leads to a greater richness of results.

The domain of application of General Relativity, beyond that of Newtonian the-
ory, is astronomical systems, stellar or galactic, where the gravitational field is so
strong that it implies the potential presence of velocities which are not negligible in
comparison with the velocity of light. The ultimate domain of application is the study
of the structure and evolution of the universe as a whole.
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General Relativity has perhaps the most satisfying structure of all physical the-
ories from the mathematical point of view. It is a wonderful research field for a
mathematician. Here, results obtained by purely mathematical means have direct
physical consequences.

One example of this is the incompleteness theorem of R. Penrose and its extensions
due to Hawking and Penrose known as the “singularity theorems". This result is
relevant to the study of the phenomenon of gravitational collapse. It shall be covered
in the second volume of the present work. The methods used to establish the result
are purely geometrical – the theory of conjugate points. In fact, part of the main
argument is already present in the theory of focal points in the Euclidean framework,
a theory developed in antiquity.

Another example is the positive energy theorem, the first proof of which, due to
R. Schoen and S. T. Yau, is based on the theory of minimal surfaces and is covered
in the the present volume. In this example a combination of geometric and analytic
methods are employed.

A last example is the theory of gravitational radiation, a main theme for both
volumes of this work. Here also we have a combination of geometric and analytic
methods. A particular result in the theory of gravitational radiation is the so-called
memory effect [11], which is due to the non-linear character of the asymptotic laws at
future null infinity and has direct bearing on experiments planned for the near future.
This result will also be covered in our second volume.

The laws of General Relativity, Einstein’s equations, constitute, when written in
any system of local coordinates, a non-linear system of partial differential equations
for the metric components. Because of the compatibility conditions of the metric with
the underlying manifold, when piecing together local solutions to obtain the global
picture, it is the geometric manifold, namely the pair consisting of the manifold itself
together with its metric, which is the real unknown in General Relativity.

The Einstein equations are of hyperbolic character, as is explained in detail in this
first volume. As a consequence, the initial value problem is the natural mathematical
problem for these equations. This conclusion, reached mathematically, agrees with
what one expects physically. For, the initial value problem is the problem of deter-
mining the evolution of a system from given initial conditions, as in the prototype
example of Newton’s equations of motion. The initial conditions for Einstein’s equa-
tions, the analogues of initial position and velocity of Newtonian mechanics, are the
intrinsic geometry of the initial spacelike hypersurface and its rate of change under a
virtual normal displacement, the second fundamental form. In contrast to the case of
Newtonian mechanics however, these initial conditions are, by virtue of the Einstein
equations themselves, subject to constraints, and it is part of the initial value problem
in General Relativity – a preliminary part – to analyze these constraints. Important
results can be obtained on the basis of this analysis alone and the positive energy
theorem is an example of such a result.
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An important notion in physics is that of an isolated system. In the context of the
theory of gravitation, examples of such systems are a planet with its moons, a star
with its planetary system, a binary or multiple star, a cluster of stars, a galaxy, a pair or
multiplet of interacting galaxies, or, as an extreme example, a cluster of galaxies – but
not the universe as a whole. What is common in these examples is that each of these
systems can be thought of as having an asymptotic region in which conditions are
trivial. Within General Relativity the trivial case is the flat Minkowski spacetime of
Special Relativity. Thus the desire to describe isolated gravitating systems in General
Relativity leads us to consider spacetimes with asymptotically Minkowskian regions.
However it is important to remember at this point the point of view of the initial
value problem: a spacetime is determined as a solution of the Einstein equations
from its initial data. Consequently, we are not free to impose our own requirements
on a spacetime. We are only free to impose requirements on the initial data – to the
extent that the requirements are consistent with the constraint equations. Thus the
correct notion of an isolated system in the context of General Relativity is a spacetime
arising from asymptotically flat initial conditions, namely an intrinsic geometry which
is asymptotically Euclidean and is a second fundamental form which tends to zero at
infinity in an appropriate way. This is discussed in detail in this volume.

Trivial initial data for the Einstein equations consists of Euclidean intrinsic ge-
ometry and a vanishing second fundamental form. Trivial initial data gives rise to the
trivial solution, namely the Minkowski spacetime. A natural question in the context
of the initial value problem for the vacuum Einstein equations is whether or not every
asymptotically flat initial data which is globally close to the trivial data gives rise
to a solution which is a complete spacetime tending to the Minkowski spacetime at
infinity along any geodesic. This question was answered in the affirmative in the joint
work of the present author with Sergiu Klainerman, which appeared in the monograph
[14]. One of the aims of the present work is to present the methods which went into
that work in a more general context, so that the reader may more fully understand
their origin and development as well as be able to apply them to other problems. In
fact, problems coming from fields other than General Relativity are also treated in the
present work. These fields are Continuum Mechanics, Electrodynamics of Continu-
ous Media and Classical Gauge Theories (such as arise in the mesoscopic description
of superfluidity and superconductivity). What is common to all these problems from
our perspective is the mathematical methods involved.

One of the main mathematical methods analyzed and exploited in the present
work is the general method of constructing a set of quantities whose growth can be
controlled in terms of the quantities themselves. This method is an extension of the
celebrated theorem of Noether, a theorem in the framework of the action principle,
which associates a conserved quantity to each 1-parameter group of symmetries of
the action (see [12]). This extension is involved at a most elementary level in the
very definition of the notion of hyperbolicity for an Euler–Lagrange system of partial
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differential equations, as discussed in detail in this first volume. In fact we may
say that such a system is hyperbolic at a particular background solution if linear
perturbations about this solution possess positive energy in the high frequency limit.

The application of Noether’s Principle to General Relativity requires the intro-
duction of a background vacuum solution possessing a non-trivial isometry group,
as is explained in this first volume. Taking Minkowski spacetime as the background,
we have the symmetries of time translations, space translations, rotations and boosts,
which give rise to the conservation laws of energy, linear momentum, angular momen-
tum and center of mass integrals, respectively. However, as is explained in this first
volume, these quantities have geometric significance only for spacetimes which are
asymptotic at infinity to the background Minkowski spacetime, so that the symmetries
are in fact asymptotic symmetries of the actual spacetime.

The other main mathematical method analyzed and exploited in the present work
is the systematic use of characteristic (null) hypersurfaces. The geometry of null hy-
persurfaces has already been employed by R. Penrose in his incompleteness theorem
mentioned above. What is involved in that theorem is the study of a neighborhood
of a given null geodesic generator of such a hypersurface. On the other hand, in the
work on the stability of Minkowski spacetime, the global geometry of a characteristic
hypersurface comes into play. In addition, the properties of a foliation of spacetime
by such hypersurfaces, also come into play. This method is used in conjunction with
the first method, for, such characteristic foliations are used to define the actions of
groups in spacetime which may be called quasi-conformal isometries, as they are
globally as close as possible to conformal isometries and tend as rapidly as possible
to conformal isometries at infinity. The method is introduced in this first volume
and will be treated much more fully in the second volume. It has applications be-
yond General Relativity to problems in Fluid Mechanics and, more generally, to the
Mechanics and Electrodynamics of Continuous Media.

This book is based on Nachdiplom Lectures held at the Eidgenössische Tech-
nische Hochschule Zurich during the Winter Semester 2002/2003. The author wishes
to thank his former student Lydia Bieri for taking the notes of this lecture, from which
a first draft was written, and for making the illustrations.


