
0 Preface

This book comes in two parts. The first is an introduction to the asymptotic
theory of combinatorial structures that can be decomposed into component
elements. The second is a detailed study of such structures, in the style of
a research monograph. The reason for this split is that the main ideas are
rather straightforward, and can be relatively simply explained. However,
using these ideas and a fair amount of technical application, there are many
sharp results that can be derived as consequences. We present some of these,
to illustrate that the method is not only simple but also powerful.

We are specifically concerned with the component frequency spectrum –
that is, with the numbers and sizes of the component elements – of a ‘typ-
ical’ structure of given (large) size n. A classic example of a decomposable
combinatorial structure is that of permutations of n elements, with cycles
as the component elements; here, the component spectrum is just the cycle
type. Our approach is to take ‘typical’ to mean ‘with high probability’,
when a structure is chosen at random according to some given probability
distribution from the set of all structures of size n; most commonly, but not
necessarily, according to the uniform distribution. This enables us to intro-
duce ideas from probability theory, such as conditioning, Stein’s method
and distributional approximation, as tools in our investigation.

We gain our understanding of the component spectrum by comparison
with simpler random objects. Sometimes these objects are discrete; indeed,
our fundamental comparisons are with sequences of independent random
variables and with the Ewens Sampling Formula. However, we also use
continuous approximations, such as Brownian motion, the scale invariant
Poisson process and the Poisson–Dirichlet process. Our comparisons are
formulated not only as limit theorems as n → ∞, but also as approxima-
tions with concrete error bounds, valid for any fixed n. In the first eight
chapters, we introduce our approach, prove some of the basic approxima-
tions, and outline the more detailed results and their consequences. From
Chapter 9 onwards, the treatise becomes (unashamedly) technical.

In a decomposable structure of size n, the component spectrum consists
of the numbers C (n)

1 counting components of size 1, C (n)

2 counting compo-
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nents of size 2, . . . , C (n)

n counting components of size n, where the C (n)

i have
to satisfy the equation

C
(n)
1 + 2C(n)

2 + · · · + nC(n)
n = n, (0.1)

because the structure has total size n. A quantity of traditional interest
and frequent study is then

K0n = C
(n)
1 + C

(n)
2 + · · · + C(n)

n ,

the number of components in the structure. The vector of component counts
(C (n)

1 , C (n)

2 , . . . , C (n)

n ) can be viewed as a stochastic process, if the structure
is chosen at random from among the p(n) structures of size n. A ‘typical’
property then corresponds to an event, defined in terms of the stochastic
process, which has ‘high’ probability; for the uniform distribution over all
possible structures of size n, this is equivalent to a property of the structure
which is true of a ‘high’ proportion of all such structures.

We are thus concerned with the behavior of the discrete dependent
nonnegative integer-valued random processes

C(n) = (C(n)
1 , C

(n)
2 , . . . , C(n)

n ), n = 1, 2, . . .

arising from randomly chosen combinatorial structures. These processes
have to satisfy (0.1), of course, but all the classical examples have much
more in common. A key common feature is that, for each n ≥ 1, the joint
distribution L(C (n)

1 , . . . , C (n)

n ) satisfies the Conditioning Relation

L(C(n)
1 , . . . , C(n)

n ) = L(Z1, Z2, . . . , Zn|T0n = n), (0.2)

for a fixed sequence of independent random variables Z1, Z2, . . . taking
values in Z+, where

T0n = T0n(Z) = Z1 + 2Z2 + · · · + nZn.

For the classical combinatorial structures, the random variables Zi have
either Poisson, negative binomial or binomial distributions. For example,
random permutations, discussed in detail in Chapter 1.1, satisfy the Con-
ditioning Relation for random variables Zi that have Poisson distributions
with means EZi = 1/i.

Our unifying approach is developed in a context motivated by a large
sub-class of classical combinatorial structures that share, in addition to
the Conditioning Relation, the following common feature. We assume that
the random variables (Zi, i ≥ 1) are such as to satisfy the Logarithmic
Condition

iP[Zi = 1] → θ, iEZi → θ as i→ ∞ (0.3)
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for some θ > 0. In our probabilistic setting, there is no need to be more spe-
cific about the distributions of the Zi, so that we are free to move away from
the classical Poisson, binomial and negative binomial families; this added
flexibility has its uses, for example when investigating random characteris-
tic polynomials over a finite field. And even within the classical families, we
can choose θ to take a value different from that normally associated with
the uniform distribution over a well-known set of combinatorial objects.
The simplest example of this arises when the Zj have Poisson distributions
with mean EZj = θ/j, for any θ > 0; the special case θ = 1 corresponds
to the uniform distribution. In the general case, the distribution of C (n) is
called the Ewens Sampling Formula. This distribution, discussed in detail
in Chapter 5, plays a central rôle in our work.

Our main theme is that the Conditioning Relation and the Logarithmic
Condition are together enough to ensure that the component spectrum of
a large decomposable combinatorial structure has a prescribed, universal
form; the numbers of small components of different sizes are almost in-
dependent, with distributions approximated by those of the Zi, and the
sizes of the large components are jointly distributed almost as those of the
Ewens Sampling Formula. We complement this broad picture with many
detailed refinements.

We note that the Conditioning Relation by itself, even without the Log-
arithmic Condition, is a powerful tool, though not the subject of this book;
a general treatment is given in Arratia and Tavaré (1994). Perhaps the
simplest example is that of set partitions, in which (0.2) is satisfied for
Poisson distributed random variables Zi with means EZi = 1/i!. These Zi
do not satisfy (0.3), and the distribution of the number C (n)

i of compo-
nents (in this case blocks) of size i is not well approximated by that of Zi.
However, as noted in (2.7), the Poisson random variables Zi in the Condi-
tioning Relation (0.2) may also be taken with EZi = xi/i!, for any choice
of x ∈ (0,∞). No fixed choice of x works any better than x = 1, but by
choosing x to vary with n, in particular taking x = x(n) to be the solu-
tion of xex = n, a very good approximation for the joint distribution of
the component spectrum of a random set partition may be achieved: see
Pittel (1997b). In this book, we only need to use (0.2) with a fixed choice
of the random variables Zi, although there are some questions, even for
logarithmic combinatorial structures satisfying (0.3), for which it may be
useful to allow the Zi to vary with n; see Section 5.2 of Arratia and Tavaré
(1994), and also Stark (1997a).

History

The comparison of the component spectrum of a combinatorial structure
to an independent process, with or without further conditioning, has a
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long history. Perhaps the best-known example is the representation of the
multinomial distribution with parameters n and p1, . . . , pk as the joint
law of independent Poisson random variables with means λp1, . . . , λpk,
conditional on their sum being equal to n.

Holst (1979a) provides an approach to urn models that unifies multino-
mial, hypergeometric and Pólya sampling. The joint laws of the dependent
counts of the different types sampled are represented, respectively, as the
joint distribution of independent Poisson, negative binomial, and binomial
random variables, conditioned on their sum. See also Holst (1979b, 1981).
The quality of such approximations is assessed using metrics, including
the total variation distance, by Stam (1978) and Diaconis and Freedman
(1980).

The Conditioning Relation also appears in the context of certain re-
versible Markovian models of migration and clustering. In that setting, n
individuals are classified as belonging to different groups, with the number
of groups of size j being denoted by C (n)

j . At stationarity, the distribu-
tion of C (n) satisfies the Conditioning Relation for independent random
variables Z1, Z2, . . ., whose distributions under the natural ‘mass action’
mixing hypothesis are Poisson. The models can also be used as descrip-
tions of coagulation, fragmentation, aggregation and polymerization. See
Whittle (1965, 1967, 1986) and Kelly (1979) for further details.

The books by Kolchin, Sevast’yanov and Chistyakov (1978) and Kolchin
(1986, 1999) use the representation of the component spectrum of combi-
natorial structures, including random permutations and random mappings,
in terms of independently distributed random variables, conditioned on the
value of their sum. However, Kolchin’s technique uses independent random
variables that are identically distributed, and the number of components
C (n)

i of size i is the number of random variables which take on the value i.
Conditioning was exploited by Shepp and Lloyd (1966) in their semi-

nal paper on the asymptotics of random permutations, and also used by
Watterson (1974) in a study of the Ewens Sampling Formula. The unpub-
lished lecture notes of Diaconis and Pitman (1986) also emphasize the rôle
of conditioning and probabilistic methods. Hansen (1989, 1990) uses con-
ditioning to study the Ewens Sampling Formula and random mappings.
Fristedt (1992, 1993) exploits conditioning to study random partitions of
a set and random partitions of an integer; the sharpest results for ran-
dom partitions of sets and integers are given in Pittel (1997a,b). Hansen
(1994) has a systematic treatment of the behavior of the large components
of logarithmic combinatorial structures.

Logarithmic combinatorial structures are usually studied without appeal
to the conditioning relation, but using generating function methods instead.
General discussions focussing on probabilistic properties include Knopf-
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macher (1979), Flajolet and Soria (1990), Flajolet and Odlyzko (1990a),
Odlyzko (1995), Hwang (1994, 1998a,b), Zhang (1996a,b, 1998), Gourdon
(1998), Panario and Richmond (2001) and Flajolet and Sedgewick (1999).
For further treatment of the algebraic aspects of decomposable structures,
the reader is referred to Foata (1974) and Joyal (1981) and to the books
by Goulden and Jackson (1983), Stanley (1986) and Bergeron, Labelle and
Leroux (1998).

Organization of the book

We begin in Chapter 1 with a survey of the main features of the joint
behavior of the numbers of cycles of different sizes in a random permutation
of n elements, to give a concrete and simple illustration of phenomena
which occur throughout the class of logarithmic combinatorial structures.
Even though the joint distribution of the cycle counts is specified precisely
by Cauchy’s formula, it is surprisingly difficult to derive useful information
from it by a direct approach, when n is large; hence, even in this simple case,
our methods have much to offer. Then, for the sake of historical perspective,
we outline the analogous results for the prime factorization of a random
integer, even though this is not an example of the class of combinatorial
structures studied in our book.

Chapter 2 gives the combinatorial description of decomposable combi-
natorial structures, both logarithmic and non-logarithmic, first by way of
specific examples such as mappings, partitions, and trees, and then in terms
of general classes: assemblies, multisets, and selections. Next we give the
probabilistic description of these classic combinatorial objects, focusing first
on the Conditioning Relation (0.2), which is an algebraic condition; and
then on the Logarithmic Condition (0.3), an analytic condition which char-
acterizes the Logarithmic Class. We provide a combinatorial perspective
on refining and coloring, including for example wreath products, and we
discuss tilting, which may be considered as a probabilistic extension of
coloring.

Chapter 3 begins the discussion of Logarithmic Combinatorial structures
in the full generality of an arbitrary sequence of independent nonnegative
integer-valued random variables Zi satisfying the Logarithmic Condition
(0.3), and made into a dependent process by the Conditioning Relation
(0.2), so that the classical combinatorial examples are included as special
cases. We discuss the probability metrics – total variation distance and
various Wasserstein distances – used to assess the accuracy of our proba-
bilistic approximations. We then give a brief survey of the results that we
are able to derive, and conclude with an introduction to Stein’s method, a
technique that is essential for many of our proofs.
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A central family of discrete distributions, the Ewens Sampling Formula,
is the subject of Chapters 4 and 5. We investigate the family itself, as well as
certain infinitely divisible random variables which are closely related to it.
We also discuss the tools and limiting processes that are used in describing
its properties: size biasing, the scale invariant Poisson process, the GEM
distribution, and the Poisson–Dirichlet distribution. The result is a rather
extensive asymptotic description of the distribution of the main features
of the component spectrum, when the full distribution is specified by the
Ewens Sampling Formula.

The same tools are used in Chapter 6 to extend the asymptotic de-
scription to more general logarithmic combinatorial structures. A single,
relatively simple technical condition, the local limit theorem (LLT) of (6.6),
is shown to imply the naive limit laws (3.4) for small components and (3.5)
for large components. We then show that, for combinatorial structures such
as assemblies, multisets and selections, the mild Logarithmic Condition
(0.3) is already enough to imply (LLT).

For logarithmic combinatorial structures more general than assemblies,
multisets and selections, this simple approach fails, and more sophisticated
tools are needed. Chapter 7 sets the scene. We use the Conditioning Re-
lation to show that the joint distribution of the large components of a
logarithmic combinatorial structure is close to that of the large components
of the Ewens Sampling Formula, provided that, for large i, the distribution
of Zi is close to that of Z∗

i , which has the Poisson distribution with mean
θ/i, and that the distribution of T0n(Z) is close to that of T0n(Z∗). We
then discuss how to measure the difference between L(Zi) and Po(θ/i),
and establish working conditions under which the influence of these dif-
ferences can be controlled. Under these conditions, Stein’s method can be
used to show the closeness of L(T0n(Z)) to L(T0n(Z∗)), and it turns out
that this also enables one to show the closeness of the joint distributions
L(C (n)

1 , . . . , C (n)

b ) and L(Z1, . . . , Zb) for b = o(n), thus treating the small
components as well. We illustrate the conditions as applied to some of the
basic examples, such as random mappings and random polynomials. Then
we present the statements of our main approximation theorems – refining
the naive limit theorems such as (3.4) for small components and (3.5) for
large components by giving error bounds. We state both local and global
approximations. The proofs themselves are presented in Chapters 9 through
13, which constitute the technical core of this monograph.

Chapter 8 gives a number of consequences of the approximation theorems
of the preceding chapter, illustrating the power inherent in discrete func-
tional limit theorems and approximations. Each is based on earlier limiting
results, improving upon them in two ways. First, the context is broadened
from an often quite restrictive setting to that of a very general logarithmic
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combinatorial structure. Secondly, the limit theorems are supplied with er-
ror bounds. The first setting is that of the usual “functional (Brownian
motion) central limit theorem” for the number of components in various
size ranges. Then we give several metrized comparison results relating to
the Poisson–Dirichlet limit for the sizes of large components. For the very
simplest functional of the component counting process, the total number
of components, we investigate the accuracy of Poisson and related approx-
imations to its distribution. Another famous theorem that we consider is
the Erdős–Turán law for the order of a random permutation. Finally, we
extend the theory of additive functions on additive arithmetic semigroups
to general logarithmic structures.

The number theory connection

Our fascination with the component spectrum of logarithmic combinato-
rial structures is based partly on similarities to the prime factorization
of a random integer selected uniformly from {1, 2, . . . , n}, as observed
in Knuth and Trabb Pardo (1976). The similarities include: having an
independent process limit for small component counts; having Poisson–
Dirichlet and GEM process limits for large components, as in Billingsley
(1972, 1974, 1999), Bach (1985), Vershik (1987) and Donnelly and Grim-
mett (1993); and having a conditioning relation, here a related bias relation,
to construct the dependent system from the independent system. The
celebrated Dickman and Buchstab functions familiar to number theorists
(cf. Tenenbaum (1995)) also arise in the combinatorial setting, described in
Chapter 2. A further similarity involves the “Fundamental Lemma of Ku-
bilius” in number theory; see Kubilius (1964), and Elliott (1979, 1980).
This lemma corresponds to Theorem 7.7 for logarithmic combinatorial
structures, stating that the total variation distance between the law of
(C (n)

1 , . . . , C (n)

b ) and the law of the approximating process (Z1, . . . , Zb) tends
to zero when b/n→ 0, and giving an explicit upper bound for the error.

To see these similarities, one must view an integer as a multiset of primes.
The most basic difference then lies in the sizes allowed for components:
for the combinatorial structures considered in this monograph, the sizes
allowed are 1, 2, 3, . . ., while, for prime factorizations, the sizes allowed are
log p for primes p. For example, the integer 1848 = 23 · 3 · 7 · 11 is the
instance having three components of size log 2, one component each of
sizes log 3, log 7, and log 11, and no other components. This brief description
suffices for a preface; for a somewhat longer discussion of the connections,
see Chapter 1, or Arratia, Barbour and Tavaré (1997a) and Arratia (2002).
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Notation

We end the preface with a brief description of our notation. A more ex-
tensive list may be found in the corresponding index. We write N for the
natural numbers {1, 2, 3, . . .}, Z+ for the nonnegative integers {0, 1, 2, . . .},
and for the set of the first n natural numbers we write either [n] or
{1, 2, . . . , n}. We write A ⊂ B for the relation that A is a subset of B, allow-
ing A = B. We denote the falling factorial by x[r] = x(x− 1) · · · (x− r+ 1)
and rising factorial with x(r) = x(x+1) · · · (x+r−1); in both cases, the value
is 1 if r = 0. For the harmonic numbers we use h(n+1) = 1+ 1

2 +· · ·+ 1
n . The

first order asymptotic relation is written an ∼ bn, meaning lim an/bn = 1.
We write a .= b to denote a deliberately vague approximation, for heuristics
or crude numerical values. We use the standard big-oh and little-oh nota-
tion: an = O(bn) means that lim supn |an/bn| <∞, and an = o(bn) means
that limn an/bn = 0.We write an � bn for the symmetric relation that both
an = O(bn) and bn = O(an). We use = to show that alternative notation
may be used for a single object, for example C (n) = (C (n)

1 , . . . , C (n)

n ).
We write L(X) to denote the law (probability distribution) of a random

object X , so that L(X) = L(Y ) means that X and Y have the same
distribution; here, we also write X =d Y . We use the notation Xn →d X to
indicate that Xn converges in distribution to X . We use ∼ when specifying
the distribution of a random element; for example, Zi ∼ Po(1/i) states that
Zi has the Poisson distribution with mean 1/i.


