
Prologue and Summary

The equations describing the motion of a perfect fluid were first formulated by Euler
in 1752 (see [Eu1], [Eu2]), based, in part, on the earlier work of D. Bernoulli [Be].
These equations were among the first partial differential equations to be written down,
preceded, it seems, only by D’Alembert’s 1749 formulation [DA] of the one-dimensional
wave equation describing the motion of a vibrating string in the linear approximation. In
contrast to D’Alembert’s equation however, we are still, after the lapse of two and a half
centuries, far from having achieved an adequate understanding of the observed phenom-
ena which are supposed to lie within the domain of validity of the Euler equations.

The phenomena displayed in the interior of a fluid fall into two broad classes, the
phenomena of sound, the linear theory of which is acoustics, and the phenomena of vortex
motion. The sound phenomena depend on the compressibility of a fluid, while the vortex
phenomena occur even in a regime where fluid may be considered to be incompressible.
The formation of shocks, the subject of the present monograph, belongs to the class of
sound phenomena, but lies in the nonlinear regime, beyond the range covered by linear
acoustics. The phenomena of vortex motion include the chaotic form called turbulence,
the understanding of which is one of the great challenges of science.

Let us make a short review of the history of the study of the phenomena of sound in
fluids, in particular the phenomena of the formation and evolution of shocks in the non-
linear regime. At the time when the equations of fluid mechanics were first formulated,
thermodynamics was in its infancy, however it was already clear that the local state of a
fluid as seen by a comoving observer is determined by two thermodynamic variables, say
pressure and temperature. Of these, only pressure entered the equations of motion, while
the equations involve also the density of the fluid. Density was already known to be a
function of pressure and temperature for a given type of fluid. However in the absence of
an additional equation, the system of equations at the time of Euler, which consisted of
the momentum equations together with the equation of continuity, was underdetermined,
except in the incompressible limit. The additional equation was supplied by Laplace in
1816 [La] in the form of what was later to be called the adiabatic condition, and allowed
him to make the first correct calculation of the speed of sound.

The first work on the formation of shocks was done by Riemann in 1858 [Ri]. Rie-
mann considered the case of isentropic flow with plane symmetry, where the equations
of fluid mechanics reduce to a system of conservation laws for two unknowns and with
two independent variables, a single space coordinate and time. He introduced for such
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systems the so-called Riemann invariants, and with the help of these showed that solu-
tions which arise from smooth initial conditions develop infinite gradients in finite time.
Riemann also realized that the solutions can be continued further as discontinuous solu-
tions, but here there was a problem. Up to this time the energy equation was considered
to be simply a consequence of the laws of motion, not a fundamental law in its own right.
On the other hand, the adiabatic condition was considered by Riemann to be part of the
main framework. Now as long as the solutions remain smooth it does not matter which
of the two equations we take to be the fundamental law, for each is a consequence of the
other, modulo the remaining laws. However this is no longer the case once discontinu-
ities develop, so one must make a choice as to which of the two equations to regard as
fundamental and therefore remains valid thereafter.

Here Riemann made the wrong choice. For, only during the previous decade, in
1847, had the first law of thermodynamics been formulated by Helmholtz [He], based in
part on the experimental work of Joule on the mechanical equivalence of heat, and the
general validity of the energy principle had thereby been shown.

In 1865 the concept of entropy was introduced into theoretical physics by Clausius
[Cl2], and the adiabatic condition was understood to be the requirement that the entropy
of each fluid element remains constant during its evolution. The second law of thermody-
namics, involving the increase of entropy in irreversible processes, had first been formu-
lated in 1850 by Clausius [Cl1] without explicit reference to the entropy concept. After
these developments the right choice in Riemann’s dilemma became clear. The energy
equation must remain at all times a fundamental law, but the entropy of a fluid element
must jump upward when the element crosses a hypersurface of discontinuity. The formu-
lation of the correct jump conditions that must be satisfied by the thermodynamic vari-
ables and the fluid velocity across a hypersurface of discontinuity was begun by Rankine
in 1870 [Ra] and completed by Hugoniot in 1889 [Hu].

With Einstein’s discovery of the special theory of relativity in 1905 [Ei], and its
final formulation by Minkowski in 1908 [Mi] through the introduction of the concept of
spacetime with its geometry, the domain of geometry being thereby extended to include
time, a unity was revealed in physical concepts which had been hidden up to this point. In
particular, the concepts of energy density, momentum density or energy flux, and stress,
were unified into the concept of the energy-momentum-stress tensor and energy and mo-
mentum were likewise unified into a single concept, the energy-momentum vector. Thus,
when the Euler equations were extended to become compatible with special relativity, it
was obvious from the start that it made no sense to consider the momentum equations
without considering also the energy equation, for these two were parts of a single ten-
sorial law, the energy-momentum conservation law. This law together with the particle
conservation law (the equation of continuity of the non-relativistic theory), constitute the
laws of motion of a perfect fluid in the relativistic theory. The adiabatic condition is then
a consequence for smooth solutions.

A new basic physical insight on the shock development problem was reached first, it
seems, by Landau in 1944 [Ln]. This was the discovery that the condition that the entropy
jump be positive as a hypersurface of discontinuity is traversed from the past to the future,
should be equivalent to the condition that the flow is evolutionary, that is, that conditions
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in the past determine the fluid state in the future. More precisely, what was shown by
Landau was that the condition of determinism is equivalent, at the linearized level, to the
condition that the tangent hyperplane at a point on the hypersurface of discontinuity, is
on one hand contained in the exterior of the sound cone at this point corresponding to
the state before the discontinuity, while on the other hand intersects the sound cone at the
same point corresponding to the state after the discontinuity, and that this latter condition
is equivalent to the positivity of the entropy jump.

This is interesting from a general philosophical point of view, because it shows that
irreversibility can arise, even though the laws are all time-reversible, once the solution
ceases to be regular. To a given state at a given time there always corresponds a unique
state at any given later time. If the evolution is regular in the associated time interval, then
the reverse is also true: to a given state at a later time there corresponds a unique state at
any given earlier time, the laws being time-reversible. This reverse statement is however
false if there is a shock during the time interval in question. Thus determinism in the
presence of hypersurfaces of discontinuity selects a direction of time and the requirement
of determinism coincides, modulo the other laws, with what is dictated by the second
law of thermodynamics which is in its nature irreversible. This recalls the interpretation
of entropy, first discovered by Boltzmann in 1877 [Bo], as a measure of disorder at the
microscopic level. An increase of entropy was thus understood to be associated to an
increase in disorder or to loss of information, and determinism can only be expected in
the time direction in which information is lost, not gained.

An important mathematical development with direct application to the equations of
fluid mechanics in the physical case of three space dimensions, was the introduction by
Friedrichs of the concept of a symmetric hyperbolic system in 1954 [F] and his devel-
opment of the theory of such systems. It is through this theory that the local existence
and domain of dependence property of solutions of the initial value problem associated
to the equations of fluid mechanics are established. Another development in connection
to this was the general investigation by Friedrichs and Lax in 1971 [F-L] (see also [Lx1])
of nonlinear first order systems of conservation laws which for smooth solutions have
as a consequence an additional conservation law. This is the case for the system of con-
servation laws of fluid mechanics, which consists of the particle and energy-momentum
conservation laws, which for smooth solutions imply the conservation law associated to
the entropy current. It was then shown that if the additional conserved quantity is a convex
function of the original quantities, the original system can be put into symmetric hyper-
bolic form. Moreover, for discontinuous solutions satisfying the jump conditions implied
by the integral form of the original conservation laws, an inequality for the generalized
entropy was derived.

The problem of shock formation for the equations of fluid mechanics in one space
dimension, and more generally for systems of conservation laws in one space dimension,
was studied by Lax in 1964 [Lx2], and 1973 [Lx3], and John [J1] in 1974. The approach
of these works was analytic, the strategy being to deduce an ordinary differential inequal-
ity for a quantity constructed from the first derivatives of the solution, which showed that
this quantity must blow up in finite time, under a certain structural assumption on the
system called genuine nonlinearity and suitable conditions on the initial data. The gen-
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uine nonlinearity assumption is in particular satisfied by the non-relativistic compressible
Euler equations in one space dimension provided that the pressure is a strictly convex
function of the specific volume.

A more geometric approach in the case of systems with two unknowns was devel-
oped by Majda in 1984 [Ma1] based in part on ideas introduced by Keller and Ting in
1966 [K-T]. In this approach, which is closer in spirit to the present monograph, one
considers the evolution of the inverse density of the characteristic curves of each family
and shows that under appropriate conditions this inverse density must somewhere vanish
within finite time. In this way, not only were the earlier blow-up results reproduced, but,
more importantly, insight was gained into the nature of the breakdown. Moreover Majda’s
approach also covered the case where the genuine nonlinearity assumption does not hold,
but we have linear degeneracy instead. He showed that in this case, global-in-time smooth
solutions exist for any smooth initial data.

The problem of the global-in-time existence of solutions of the equations of fluid
mechanics in one space dimension was treated by Glimm in 1965 [Gl] through an approx-
imation scheme involving at each step the local solution of an initial value problem with
piecewise constant initial data. The convergence of the approximation scheme then pro-
duced a solution in the class of functions of bounded variation. Now, by the previously
established results on shock formation, a class of functions in which global existence
holds must necessarily include functions with discontinuities, and the class of functions
of bounded variation is the simplest class having this property. Thus, the treatment based
on the total variation, the norm in this function space, in itself an admirable investiga-
tion, would be insuperable if the development of the one-dimensional theory was the
goal of scientific effort in the field of fluid mechanics. However that goal can only be
the mathematical description of phenomena in real three-dimensional space and one must
ultimately face the fact that methods based on the total variation do not generalize to
more than one space dimension. In fact it is clear from the study of the linearized theory,
acoustics, which involves the wave equation, that in more than one space dimension only
methods based on the energy concept are appropriate.

The first and thus far the only general result on the formation of shocks in three-
dimensional fluids was obtained by Sideris in 1985 [S]. Sideris considered the compress-
ible Euler equations in the case of a classical ideal gas with adiabatic index γ > 1 and
with initial data which coincide with those of a constant state outside a ball. The assump-
tions of his theorem on the initial data were that there is an annular region bounded by the
sphere outside which the constant state holds, and a concentric sphere in its interior, such
that a certain integral in this annular region of ρ − ρ0, the departure of the density ρ from
its value ρ0 in the constant state, is positive, while another integral in the same region of
ρvr , the radial momentum density, is non-negative. These integrals involve kernels which
are functions of the distance from the center. It is also assumed that everywhere in the
annular region the specific entropy s is not less than its value s0 in the constant state.
The conclusion of the theorem is that the maximal time interval of existence of a smooth
solution is finite. The chief drawback of this theorem is that it tells us nothing about the
nature of the breakdown. Also the method relies on the strict convexity of the pressure as
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a function of the density displayed by the equation of state of an ideal gas, and does not
extend to more general equations of state.

The other important work on shocks in three space dimensions was the 1983 work
of Majda [Ma2], [Ma3], on what he calls the shock front problem. In this problem we are
given initial data in �3 which is smooth in the closure of each component of �3 \S, where
S is a smooth surface in �3. The data is to satisfy the condition that there exists a func-
tion σ on S such that the jumps of the data across S satisfy the Rankine–Hugoniot jump
conditions as well as the entropy condition with σ in the role of the shock speed. The
higher order compatibility conditions associated to an initial boundary value problem are
also required to be satisfied. We are then required to find a time interval [0, τ ], a smooth
hypersurface K in the spacetime slab [0, τ ]×�3 and a solution of the compressible Euler
equations which is smooth in the closure of each component of [0, τ ]×�3 \ K , and satis-
fies across K the Rankine–Hugoniot jump conditions as well as the entropy condition. We
may think of this problem as the local-in-time shock continuation problem. Majda solved
this problem under an additional condition on the initial data which seems to be necessary
for the stability of the linearized problem. The additional condition follows from the other
conditions in the case of a classical ideal gas, but it does not follow for a general equation
of state.

The present monograph considers the relativistic Euler equations in three space di-
mensions for a perfect fluid with an arbitrary equation of state. We consider regular initial
data on a space-like hyperplane �0 in Minkowski spacetime which outside a sphere co-
incide with the data corresponding to a constant state. We consider the restriction of the
initial data to the exterior of a concentric sphere in �0 and we consider the maximal
classical development of this data. Then, under a suitable restriction on the size of the
departure of the initial data from those of the constant state, we prove certain theorems
which give a complete description of the maximal classical development, which we call
maximal solution. In particular, the theorems give a detailed description of the geome-
try of the boundary of the domain of the maximal solution and a detailed analysis of the
behavior of the solution at this boundary. A complete picture of shock formation in three-
dimensional fluids is thereby obtained. Also, sharp sufficient conditions on the initial data
for the formation of a shock in the evolution are established and sharp lower and upper
bounds for the temporal extent of the domain of the maximal solution are derived.

The reason why we consider only the maximal development of the restriction of
the initial data to the exterior of a sphere is in order to avoid having to treat the long
time evolution of the portion of the fluid which is initially contained in the interior of
this sphere. For, we have no method at present to control the long time behavior of the
pointwise magnitude of the vorticity of a fluid portion, the vorticity satisfying a transport
equation along the fluid flow lines. Our approach to the general problem is the following.
We show that given arbitrary regular initial data which coincide with the data of a constant
state outside a sphere, if the size of the initial departure from the constant state is suitably
small, we can control the solution for a time interval of order 1/η0, where η0 is the sound
speed in the surrounding constant state. We then show that at the end of this interval
a thick annular region has formed, bounded by concentric spheres, where the flow is
irrotational and isentropic, the constant state holding outside the outer sphere. We then
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study the maximal classical development of the restriction of the data at this time to the
exterior of the inner sphere. In the irrotational isentropic case there is a function φ which
we call a wave function, the differential of which at a point determines the state of the
fluid at that point, and the fluid equations reduce to a nonlinear wave equation for φ, as is
shown in Chapter 1.

The order of presentation in this monograph is however the reverse of that just
outlined. After the first four chapters which set up the general framework, we confine
attention to the irrotational isentropic problem up to Chapter 13, where the main theorem,
Theorem 13.1, is proved. We return to the general problem in Chapter 14, after establish-
ing a theorem, Theorem 14.1, which, in the irrotational isentropic context, gives sharp
sufficient conditions on the initial data for the formation of a shock in the evolution. It
is at this point where our treatment of the general problem resumes, and we analyze the
solution of the general problem during the initial time interval. In fact, our analysis allows
us to find which conditions on the data at the beginning of the time interval result in data
at the end of the time interval verifying the assumptions of Theorem 14.1. In this way we
are able to establish a theorem, Theorem 14.2, which, in the general context of fluid me-
chanics, gives sharp sufficient conditions on the initial data for the formation of a shock in
the evolution. We should emphasize at this point that if we were to restrict ourselves from
the beginning to the irrotational isentropic case, we would have no problem extending the
treatment to the interior region, thereby treating the maximal solution corresponding to
the data on the complete initial hyperplane �0. In fact, it is well known that sound waves
decay in time faster in the interior region and our constructions can readily be extended
to cover this region. It is only our present inability to achieve long time control of the
magnitude of the vorticity along the flow lines of the fluid, that prevents us from treating
the interior region in the general case.

The geometry of the boundary of the domain of the maximal solution is studied in
Chapter 15, the main results being expressed by Theorem 15.1 and Propositions 15.1,
15.2, and 15.3. The boundary consists of a regular part and a singular part. Each com-
ponent of the regular part C is an incoming characteristic hypersurface with a singular
past boundary. The singular part of the boundary of the domain of the maximal solution
is the locus of points where the inverse density of the wave fronts vanishes. It is the union
∂−H

⋃
H , where each component of ∂−H is a smooth embedded surface in Minkowski

spacetime, the tangent plane to which at each point is contained in the exterior of the
sound cone at that point.

On the other hand each component of H is a smooth embedded hypersurface in
Minkowski spacetime, the tangent hyperplane to which at each point is contained in the
exterior of the sound cone at that point, with the exception of a single generator of the
sound cone, which lies on the hyperplane itself. The past boundary of a component of H
is the corresponding component of ∂− H . The latter is at the same time the past boundary
of a component of C . As is explained in the Epilogue, the maximal classical solution is
the physical solution of the problem up to C

⋃
∂−H , but not up to H . The problem of

the physical continuation of the solution is set up in the Epilogue as the shock devel-
opment problem. This problem is associated to each component of ∂− H and its solution
requires the construction of a hypersurface of discontinuity K , lying in the past of the cor-
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responding component of H , but having the same past boundary as the latter, namely the
given component of ∂−H . Thus, although the notion of maximal classical solution is not
physically appropriate up to H , it does provide the basis for constructing the physical con-
tinuation, the solution of the shock development problem, by providing not only the right
boundary conditions at C

⋃
∂−H , but also a barrier at H which is indispensable for con-

trolling the physical continuation. The actual treatment of the shock development problem
and the subsequent shock interactions shall be the subject of a subsequent monograph.

The present monograph concludes with a derivation of a formula for the jump in
vorticity across K , which shows that while the flow is irrotational ahead of the shock,
it acquires vorticity immediately behind, which is tangential to the shock front and is
associated to the gradient along the shock front of the entropy jump.

We have chosen to work in this monograph with the relativistic Euler equations
rather than confining ourselves to their non-relativistic limit, for three reasons. The first is
the obvious reason that there is a class of natural phenomena, those of relativistic astro-
physics, which lie beyond the domain of the non-relativistic equations. The second reason
is that there is a substantial gain in geometric insight in considering the relativistic equa-
tions. At a fundamental level, the picture looks simpler from the relativistic perspective,
because of the aforementioned unity of physical concepts brought about by the spacetime
geometry viewpoint of special relativity. As an example we give the equation (1.51) of
Chapter 1:

iuω = −θds. (1)

Here ω is the vorticity 2-form. According to the definitions of Chapter 1,

ω = dβ (2)

where β is the 1-form defined, relative to an arbitrary system of coordinates, by:

βµ = −√
σuµ, uµ = gµνuν, (3)

√
σ being the relativistic enthalpy per particle, uµ the fluid velocity and gµν the Minkow-

ski metric. In (1), θ is the temperature and s the entropy per particle, while iu denotes
contraction on the left by the vectorfield u. Equation (1) is arguably the simplest explicit
form of the energy-momentum equations. Our derivation in the Epilogue of the jump in
vorticity behind a shock relies on this equation. The 1-form β plays a fundamental role in
this monograph. In the irrotational isentropic case it is given by β = dφ, where φ is the
wave function.

The third reason why we have chosen to work with the relativistic equations is
that no special care is needed to extract information on the non-relativistic limit. This
is due to the fact that the non-relativistic limit is a regular limit, obtained by letting the
speed of light in conventional units tend to infinity, while keeping the sound speed fixed.
To allow the results in the non-relativistic limit to be extracted from our treatment in a
straightforward manner, we have chosen to avoid summing quantities having different
physical dimensions when such sums would make sense only when a unit of velocity has
been chosen, even though we follow the natural choice within the framework of special



8 Prologue and Summary

relativity of setting speed of light equal to unity in writing down the relativistic equations
of motion. We shall presently give an example to illustrate what we mean. Consider the
vectorfield K0 defined by equation (5.15) of Chapter 5:

K0 = (η−1
0 + α−1κ)L + L, L = α−1κL + 2T . (4)

The terms here have not yet been defined, but the reader may return to this example
after assimilating the appropriate definitions. In any case, η0 is, as mentioned above, the
sound speed in the surrounding constant state. The function α is the inverse density of
the hyperplanes �t corresponding to the constant values of the time coordinate t , with
respect to the acoustical metric hµν :

hµν = gµν + (1 − η2)uµuν, uµ = gµνuν, (5)

gµν being again the Minkowski metric, η the sound speed, and uµ the fluid velocity. This
is a Lorentzian metric on spacetime, the null cones of which are the sound cones. The
function α has the physical dimension of velocity. The function κ is the inverse spatial
density of the wave fronts with respect to the acoustical metric, a dimensionless quantity.
Thus in the sum η−1

0 +α−1κ , which is the coefficient of L in the first term of (4), each term
has the physical dimension of inverse velocity. The vectorfield L is the tangent vectorfield
of the bicharacteristic generators, parametrized by t , of a family of outgoing characteristic
hypersurfaces Cu , the level sets of an acoustical function u. The wave fronts St,u are the
surfaces of intersection Cu

⋂
�t . The physical dimension of L is inverse time. Thus the

first term in (4) has the physical dimension of inverse length. The vectorfield T defines
a flow on each of the �t , taking each wave front onto another wave front, the normal,
relative to the induced acoustical metric h, the flow of the foliation of �t by the surfaces
St,u . It has the physical dimension of an inverse length. The first term in the second part of
(4) also has the same physical dimension, hence the physical dimension of the vectorfield
L is inverse length as well. We conclude that each term in (4) has the physical dimension
of inverse length, thus the physical dimension of K0 is inverse length.

Denoting, as above, by σ the square of the relativistic enthalpy per particle, we have:
√
σ = e + pv (6)

where e is the relativistic energy per particle, p the pressure and v is the volume per
particle. Let H be the function defined by:

1 − η2 = σ H. (7)

The derivative of H with respect to σ at constant s plays a central role in shock theory .
This quantity is expressed by (see equation (E.47) in the Epilogue):

(
d H

dσ

)

s
= −a

{(
d2v

dp2

)

s

+ 3v√
σ

(
dv

dp

)

s

}

(8)

where a is the positive function:

a = η4

2σv3
.
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The sign of (d H/dσ)s in the state ahead of a shock determines, as is shown in the Epi-
logue, the sign of the jump in pressure in crossing the shock to the state behind. The
jump in pressure is positive if this quantity is negative, the reverse otherwise. The value
of (d H/dσ)s in the surrounding constant state is denoted by � in this monograph. This
constant determines the character of the shocks for small initial departures from the con-
stant state. In particular when � = 0, no shocks form and the domain of the maximal
classical solution is complete. Consider the function (d H/dσ)s as a function of the ther-
modynamic variables p and s. Suppose that we have an equation of state such that at some
value s0 of s we have (d H/dσ)s=s0 = 0, that is, the function (d H/dσ)s vanishes every-
where along the adiabat s = s0. We show in Chapter 1 that in this case the irrotational
isentropic fluid equations corresponding to the value s0 of the entropy are equivalent to
the minimal surface equation, the wave function φ defining a minimal graph in a Minkow-
ski spacetime of one more spatial dimension. Thus the minimal surface equation defines
a dividing line between two different types of shock behavior.

Now, the relativistic enthalpy is dominated by the term mc2, the contribution of the
particle rest mass m, to the energy per particle, c being the speed of light. We note here
that the particle rest mass may be taken to be unity, so that all quantities per particle are
quantities per unit rest mass. Thus in the non-relativistic limit the second term in paren-
thesis in (8) vanishes and the expression in parenthesis reduces simply to: (d2v/dp2)s .

Now, the case where (d2v/dp2)s > 0, the adiabats being convex curves in the
p, v plane, so that (d H/dσ)s < 0, is the more commonly found in nature, however the
reverse case does occur in the gaseous region near the critical point in the liquid-to-vapor
phase transition and in similar transitions at higher temperatures associated to molecular
dissociation and to ionization (see [Z-R]).

One of the basic concepts on which our approach relies is the general concept of
variation, or variation through solutions, on which our treatment not only of the irrota-
tional isentropic case but also of the general equations of motion is based. This concept
has been discussed in the general context of Euler–Lagrange equations, that is, systems
of partial differential equations arising from an action principle, in the monograph [Ch].
It was shown there that to a variation is associated a linearized Lagrangian, and it was
also shown how energy currents are in general constructed on the basis of this linearized
Lagrangian. It is through energy currents and their associated integral identities that the
estimates essential to our approach are derived. Here the first order variations correspond
to the one-parameter subgroups of the Poincaré group, the isometry group of Minkow-
ski spacetime, extended by the one-parameter scaling or dilation group, which leave the
surrounding constant state invariant. The higher order variations correspond to the one-
parameter groups of diffeomorphisms generated by a set of vectorfields, the commutation
fields, to be discussed below. The construction in [Ch] of an energy current requires a
multiplier vectorfield which at each point belongs to the closure of the positive compo-
nent of the inner characteristic core in the tangent space at that point. In the irrotational
isentropic case the characteristic in the tangent space at a point consists only of the sound
cone at that point and this requirement becomes the requirement that the multiplier vec-
torfield be non-space-like and future-directed with respect to the acoustical metric (5).
We use two multiplier vectorfields in our analysis of the isentropic irrotational problem.
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The first is the vectorfield K0 defined by (4) and the second is the vectorfield K1 defined
by equation (5.16) of Chapter 5:

K1 = (ω/ν)L . (9)

Here ν is the mean curvature of the wave fronts St,u , sections of the outgoing character-
istic hypersurfaces Cu , relative to their characteristic normal L, the tangent vectorfield to
the bi-characteristic generators of Cu , parametrized by t . However ν is defined not relative
to the acoustical metric hµν but rather relative to a conformally related metric h̃µν :

h̃µν = �hµν. (10)

It turns out that there is a choice of conformal factor � such that in the isentropic irro-
tational case a first order variation φ̇ of the wave function φ satisfies the wave equation
relative to the metric h̃µν . This is shown in Chapter 1 and this choice defines � in the
remainder of the monograph. The definition makes � the ratio of a function of σ to the
value of this function in the surrounding constant state, thus � is equal to unity in the
constant state. It turns out moreover that � is bounded above and below by positive con-
stants. The function ω appearing in (9) is required to satisfy certain conditions (conditions
D1–D5 of Chapter 5) and it is shown in Proposition 13.4 that the function ω = 2η0(1+ t)
does satisfy these requirements. A similar analysis to the one done above in the case of
the multiplier field K0 shows, taking into account the fact that the physical dimension of
ν is inverse time, that the multiplier field K1 has the physical dimension of length. The
vectorfield K1 corresponds to the generator of inverted time translations, which are proper
conformal transformations of the Minkowski spacetime with its Minkowskian metric gµν .
The latter was first used by Morawetz [Mo] to study the decay of solutions of the initial
boundary value problem for the classical wave equation outside an obstacle. The vector-
field K1 is an analogue of the multiplier field of Morawetz for the acoustical spacetime
which is the same underlying manifold but equipped with the acoustical metric hµν . The
energy currents associated to K0 and K1 are defined by equations (5.18) and (5.19) of
Chapter 5, respectively. The energy current associated to K1 contains certain additional
lower order terms, defined through the function ω. Analogous terms were present in the
work of Morawetz. The general structure of these terms has been investigated, in the
general context of Euler–Lagrange equations, in [Ch].

To each variation ψ , of any order, there are energy currents associated to ψ and
to K0 and K1 respectively. These currents define the energies Eu

0[ψ](t), E ′u
1 [ψ](t), and

fluxes F t
0[ψ](u), F ′t

1 [ψ](u). For given t and u the energies are integrals over the exterior
of the surface St,u in the hyperplane �t , while the fluxes are integrals over the part of the
outgoing characteristic hypersurface Cu between the hyperplanes �0 and �t . To obtain
the energy and flux associated to K1, certain integrations by parts are performed. This
construction is presented in Chapter 5. The precise choice of the factor ω/ν in (9) is dic-
tated by the need to eliminate certain error integrals which would otherwise be present. It
is these energy and flux integrals, together with a spacetime integral K [ψ](t, u) associ-
ated to K1, to be discussed below, which are used to control the solution.

It is evident from the above that the means by which the solution is controlled de-
pend on the choice of the acoustical function u, the level sets of which are the outgoing
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characteristic hypersurfaces Cu . The function u is determined by its restriction to the ini-
tial hyperplane �0. The divergence of the energy currents, which determines the growth
of the energies and fluxes, itself depends on (K0)π̃ , in the case of the energy current asso-
ciated to K0, and (K1)π̃ , in the case of the energy current associated to K1. Here for any
vectorfield X in spacetime, we denote by (X)π̃ the Lie derivative of the conformal acous-
tical metric h̃ with respect to X . We may call (X)π̃ the deformation tensor corresponding
to X . In the case of higher order variations, the divergences of the energy currents depend
also on the (Y )π̃ , for each of the commutation fields Y to be discussed below.

All these deformation tensors ultimately depend on the acoustical function u, or,
which is the same, on the geometry of the foliation of spacetime by the outgoing char-
acteristic hypersurfaces Cu , the level sets of u. The most important geometric property
of this foliation from the point of view of the study of shock formation is the density of
the packing of its leaves Cu . One measure of this density is the inverse spatial density of
the wave fronts, that is, the inverse density of the foliation of each spatial hyperplane �t

by the surfaces St,u . This is the function κ which appears in (4) and is given in arbitrary
coordinates on �t by:

κ−2 = (h
−1

)i j ∂i u∂ j u (11)

where hi j is the induced acoustical metric on �t . Another measure is the inverse temporal
density of the wave fronts, the function µ given in arbitrary coordinates in spacetime by:

1

µ
= −(h−1)µν∂µt∂νu. (12)

The two measures are related by:
µ = ακ (13)

where α is the inverse density, with respect to the acoustical metric, of the foliation of
spacetime by the hyperplanes �t . The function α also appears in (4) and is given in
arbitrary coordinates in spacetime by:

α−2 = −(h−1)µν∂µt∂ν t . (14)

It is expressed directly in terms of the 1-form β in the general case, or dφ in the irro-
tational isentropic case. It turns out moreover, that it is bounded above and below by
positive constants. Consequently µ and κ are equivalent measures of the density of the
packing of the leaves of the foliation of spacetime by the Cu . Shock formation is char-
acterized by the blowup of this density or equivalently by the vanishing of κ or µ. The
above and the basic geometric construction are discussed in Chapter 2.

The other entity, besides κ or µ which describes the geometry of the foliation by
the Cu , is the second fundamental form of the Cu . Since the Cu are null hypersurfaces
with respect to the acoustical metric h, their tangent hyperplane at a point is the set of all
vectors at that point which are h-orthogonal to the generator L, and L itself belongs to
the tangent hyperplane, being h-orthogonal to itself. Thus the second fundamental form
χ of Cu is intrinsic to Cu and in terms of the metric h/ induced by the acoustical metric on
the St,u sections of Cu , it is given by:

L/Lh/ = 2χ (15)
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where L/Xϑ for a covariant St,u tensorfield ϑ denotes the restriction of LXϑ to T St,u . The
acoustical structure equations such as the propagation equation for χ along the generators
of Cu , the Codazzi equation which expresses div/ χ , the divergence of χ intrinsic to St,u , in
terms of d/trχ , the differential on St,u of trχ , and a component of the acoustical curvature
and of k, the second fundamental form of the �t relative to h, are presented in Chapter 3.
Also included in the acoustical structure equations is the Gauss equation which expresses
the Gauss curvature of (St,u, h/) in terms of χ and a component of the acoustical curvature
and of k, and an equation which expresses L/T χ in terms of the Hessian of the restriction
of µ to St,u and another component of the acoustical curvature and of k. In the same
chapter the components of k are analyzed. These acoustical structure equations contain
terms which blow up as κ or µ tend to zero. The regular form of these equations is given in
the next chapter, Chapter 4, the subject of which is the analysis of the acoustical curvature.
It is there shown that the terms which blow up as κ or µ tend to zero cancel.

The most important acoustical structure equation from the point of view of the for-
mation of shocks is the propagation equation for µ along the generators of Cu , equation
(3.96):

Lµ = m + µe. (16)

An equivalent equation, (3.99), is satisfied by κ . This equation is derived in Chapter 3
only in the irrotational isentropic case, in contrast to the other structure equations which
hold in general. The function m is in this case given by:

m = 1

2
(Lφ)2 d H

dσ
(Tσ) (17)

while the function e, given by (3.98), depends only on the derivatives along L of the ψα ,
α = 0, 1, 2, 3, the first variations corresponding to the spacetime translations. A similar
propagation equation holds in the general case with the function m given by:

m = 1

2
(βL)

2
(

d H

dσ

)

s
(Tσ) (18)

and the function e depending only on the derivatives of the βα , the rectangular compo-
nents of β, tangential to the Cu . We shall presently indicate why this has to be the case
without performing the calculations, which in any case parallel those of Chapter 3, with
the general formulas (3.4) and (3.10) for the vectorfield V i and the metric hi j induced on
the �t , in place of the corresponding formulas (3.6) and (3.11) in the irrotational isen-
tropic case. The fluid velocity being transversal to Cu , by virtue of the adiabatic condition
u · ds = 0, any derivative of s can be expressed as a derivative tangential to Cu . On the
other hand, according to (1) for any vector X we have:

ω(u, X) = −θ X · ds.

It follows that the differential of the entropy and the vorticity do not contribute to the func-
tion m, hence an equation of the form (16) results with m given by (18). It is the function
m which determines shock formation, when being negative, causing µ to decrease to zero.
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The path we have followed in attacking the problem of shock formation in 3-dimen-
sional fluids illustrates the following approach in regard to quasilinear hyperbolic systems
of partial differential equations. That is, the quantities which are used to control the solu-
tion must be defined using the causal, or characteristic, structure of spacetime determined
by the solution itself, not an artificial background structure. The original system of equa-
tions must then be considered in conjunction with the system of equations which this
structure obeys, and it is only through the study of the interaction of the two systems
that results are obtained. The work [C-K] on the stability of the Minkowski space in the
framework of general relativity was the first illustration of this approach. In the present
case however, the structure, which is here the acoustical structure, degenerates as shocks
begin to form, and the precise way in which this degeneracy occurs must be guessed be-
forehand and established in the course of the argument of the mathematical proof. The
fact that the underlying structure degenerates implies that our estimates are no longer
even locally equivalent to standard energy estimates, which would of necessity have to
fail when shocks appear.

Chapter 5 establishes the fundamental energy estimate, Theorem 5.1. This applies
to a solution of the homogeneous wave equation in the acoustical spacetime, in particular
to any first order variation. Now the higher order variations satisfy inhomogeneous wave
equations in the acoustical spacetime, the source functions depending on the deformation
tensors of the commutation fields. These source terms give rise to error integrals, that is
to spacetime integrals of contributions to the divergence of the energy currents, which are
written down but not estimated in Chapter 5. The remaining error integrals however, are
all estimated in the proof of Theorem 5.1, and since these estimates apply to any variation
of any order, Chapter 5 contributes in an essential way to the main theorem of Chapter
13. The proof of Theorem 5.1 relies on certain bootstrap assumptions on the acoustical
entities. The most crucial of these assumptions concern the behavior of the function µ.
These are the assumptions C1, C2, and C3, which are established in the first part of
Chapter 13, by Propositions 13.1, 13.2, and 13.3, respectively, on the basis of the final set
of bootstrap assumptions, which consists only of pointwise estimates for the variations
up to certain order. To give an idea at this point of the nature of these assumptions, the
assumption C2 required in Chapter 5 to obtain the fundamental energy estimate up to
time s is (modulo assumption C1):

µ−1(Tµ)+ ≤ Bs(t) : for all t ∈ [0, s] (19)

where Bs(t) is a function such that:
∫ s

0
(1 + t)−2[1 + log(1 + t)]4 Bs(t)dt ≤ C (20)

with C a constant independent of s. Here T is the vectorfield defined above and we denote
by f+ and f−, respectively the positive and negative parts of an arbitrary function f . This
assumption is then established by Proposition 13.2 with Bs(t) the following function:

Bs(t) = C
√
δ0

(1 + τ )√
σ − τ

+ Cδ0(1 + τ ) (21)
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where τ = log(1 + t), σ = log(1 + s), and δ0 is a small positive constant appearing in
the final set of bootstrap assumptions. Now, the spacetime integral K [ψ](t, u) mentioned
above, is defined by (5.169). It is essentially the integral of

−1

2
(ω/ν)(Lµ)−|d/ψ|2

in the spacetime exterior to Cu and bounded by �0 and �t . Assumption C3 on the other
hand states that there is a positive constant C independent of s such that in the region
below �s where µ < η0/4 we have:

Lµ ≤ −C−1(1 + t)−1[1 + log(1 + t)]−1 (22)

In view of this assumption, the integral K [ψ](t, u) gives effective control of the deriva-
tives of the variations tangential to the wave fronts in the region where shocks are to form.
The same assumption, which is established by Proposition 13.3, also plays an essential
role in the study of the singular boundary in Chapter 15. The final stage of the proof of
Theorem 5.1 is the analysis of a system of integral inequalities in two variables t and u
satisfied by the five quantities Eu

0 [ψ](t), E ′u
1 [ψ](t), F t

0[ψ](u), F ′t
1 [ψ](u), and K [ψ](t, u).

This analysis is reflected at analogous stages in the course of the proof of Theorem 13.1.
The commutation fields Y are defined in Chapter 6. They are five: the vectorfield

T which is transversal to the Cu , the field Q = (1 + t)L along the generators of the Cu

and the three rotation fields Ri : i = 1, 2, 3 which are tangential to the St,u sections.

The latter are defined to be �
◦
Ri : i = 1, 2, 3, where the

◦
Ri i = 1, 2, 3 are the gen-

erators of spatial rotations associated to the background Minkowskian structure, while
� is the h-orthogonal projection to the St,u . Note that the commutation field T has the
physical dimension of inverse length while the other commutation fields are dimension-
less. Expressions for the deformation tensors (T )π̃ , (Q)π̃ , and (Ri )π̃ : i = 1, 2, 3 are
then derived, which show that these depend on the acoustical entities µ and χ . The last
however depend in addition on the derivatives of the restrictions to the surfaces St,u of the
spatial rectangular coordinates xi : i = 1, 2, 3, as well as on the derivatives of the xi with
respect to T and L, that is, on the rectangular components T i and Li of the vectorfields
T and L (note that L0 = 1, T 0 = 0). The estimates of these and their derivatives with
respect to the commutation fields in terms of the acoustical entities occupies a major part
of Chapters 10 and 11 as shall be discussed below.

In Chapter 7 a recursion formula is obtained for the source functions associated
to the higher order variations, on the basis of which an explicit formula for these source
functions is obtained in Chapter 13. Then the error integrals arising from the contributions
to the source functions containing the top and next to the top order derivatives of the
variations are estimated.

Chapters 8 and 9 are crucial for the entire work because it is here that the estimates
for the top order derivatives of the acoustical entities are derived. The expressions for
the source functions and the associated error integrals from Chapter 7 show that the error
integrals corresponding to the energies of the n+1st order variations contain the nth order
derivatives of the deformation tensors, which in turn contain the nth order derivatives of
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χ and n + 1st order derivatives of µ. Thus to achieve closure, we must obtain estimates
for the latter in terms of the energies of up to the n + 1st order variations. Now, the
propagation equations of Chapter 3 for χ and µ, appearing in regular form in Chapter 4,
give appropriate expressions for L/Lχ and Lµ. However, if these propagation equations,
which may be thought of as ordinary differential equations along the generators of the
Cu , are integrated with respect to t to obtain the acoustical entities χ and µ themselves,
and their spatial derivatives are then taken, a loss of one degree of differentiability would
result and closure would fail.

We overcome this difficulty in the case of χ in Chapter 8 by considering the propa-
gation equation for µtrχ . We show that, by virtue of a wave equation for σ , which follows
from the wave equations satisfied by the first variations corresponding to the spacetime
translations, the principal part on the right-hand side of this propagation equation can be
put into the form −L f̌ of a derivative of a function − f̌ with respect to L. This function is
then brought to the left-hand side and we obtain a propagation equation for µtrχ + f̌ . In
this equation χ̂ , the trace-free part of χ enters, but the propagation equation in question is
considered in conjunction with the Codazzi equation, which constitutes an elliptic system
on each St,u for χ̂ , given trχ . We thus have an ordinary differential equation along the
generators of Cu coupled to an elliptic system on the St,u sections. More precisely, the
propagation equation which is considered at the same level as the Codazzi equation is
a propagation equation for the St,u 1-form µd/trχ + d/ f̌ , which is a consequence of the
equation just discussed. To obtain estimates for the angular derivatives of χ of order l we
similarly consider a propagation equation for the St,u 1-form:

(i1...il )xl = µd/(Ril . . . Ri1 trχ) + d/(Ril . . . Ri1 f̌ )

In the case of µ the aforementioned difficulty is overcome in Chapter 9 by considering
the propagation equation for µ�/µ, where �/ µ is the Laplacian of the restriction of µ

to the St,u . We show that by virtue of a wave equation for Tσ , which is a differential
consequence of the wave equation for σ , the principal part on the right-hand side of this
propagation equation can again be put into the form L f̌ ′ of a derivative of a function
f̌ ′ with respect to L. This function is then likewise brought to the left-hand side and we

obtain a propagation equation for µ�/µ − f̌ ′. In this equation D̂/2µ, the trace-free part of
the Hessian of the restriction of µ to the St,u enters, but the propagation equation in ques-
tion is considered in conjunction with the elliptic equation on each St,u for µ, which the
specification of �/ µ constitutes. Again we have an ordinary differential equation along the
generators of Cu coupled to an elliptic equation on the St,u sections. To obtain estimates
of the spatial derivatives of µ of order m + l + 2 of which m are derivatives with respect
to T , we similarly consider a propagation equation for the function:

(i1...il )x ′
m,l = µRil . . . Ri1 (T )m�/µ − Ril . . . Ri1(T )m f̌ ′.

This allows us to obtain estimates for the top order spatial derivatives of µ of which at
least two are angular derivatives. A remarkable fact, which is shown in Chapter 13, is
that the missing top order spatial derivatives do not enter the source functions, hence do
not contribute to the error integrals. In fact it is shown that the only top order spatial
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derivatives of the acoustical entities entering the source functions are those in the 1-forms
(i1...il )xl and the functions (i1...il )x ′

m,l .

The paradigm of an ordinary differential equation along the generators of a char-
acteristic hypersurface coupled to an elliptic system on the sections of the hypersurface
as the means to control the regularity of the entities describing the geometry of the char-
acteristic hypersurface and the stacking of such hypersurfaces in a foliation, was first
encountered in [C-K]. It is interesting to note that this paradigm does not appear in space
dimension less than three. In the case of the work on the stability of the Minkowski space
however, in contrast to the present case, the gain of regularity achieved in this treatment
is not essential for obtaining closure, because there is room for one degree of differen-
tiability. This is because of the fact that the Einstein equations arise from a Lagrangian
which is quadratic in the canonical velocities, that is, in the derivatives of the unknown
functions, in contrast to the equations of fluid mechanics, or more generally of continuum
mechanics, which in the Lagrangian picture are equations for a mapping of spacetime into
the material manifold, the Lagrangian not depending quadratically on the differential of
this mapping (see [Ch]). As a consequence, the metric determining the causal structure
depends in continuum mechanics on the derivatives of the unknowns, rather than only on
the unknowns themselves.

In the present work, the appearance of the factor of µ, which vanishes where shocks
originate, in front of d/Ril . . . Ri1 trχ and Ril . . . Ri1(T )m�/ µ in the definitions of (i1...il )xl

and (i1...il )x ′
m,l above, makes the analysis far more delicate. This is compounded with the

difficulty of the slower decay in time which the addition of the terms −d/Ril . . . Ri1 f̌ and
Ril . . . Ri1 (T )m f̌ ′ forces. The analysis requires a precise description of the behavior of
µ itself, given by Proposition 8.6, and a separate treatment of the condensation regions,
where shocks are to form, from the rarefaction regions, the terms referring not to the
fluid density but rather to the density of the stacking of the wave fronts. To overcome the
difficulties the following weight function is introduced:

µm,u(t) = min

{
µm,u(t)

η0
, 1

}

, µm,u(t) = min
�u

t

µ (23)

where �u
t is the exterior of St,u in �t , and, in Chapter 13, the quantities Eu

0 [ψ](t),
E ′u

1 [ψ](t), F t
0[ψ](u), F ′t

1 [ψ](u), and K [ψ](t, u) corresponding to the highest order vari-
ations are weighted with a power, 2a, of this weight function. Lemma 8.11, then plays a
crucial role in Chapters 8 and 9 as well as in Chapter 13 where everything comes together.
We present this lemma here in an imprecise manner to indicate what is involved. Let:

Mu(t) = max
�u

t

{
−µ−1(Lµ)−

}
, Ia,u =

∫ t

0
µ−a

m,u(t
′)Mu(t

′)dt ′. (24)

Then under certain bootstrap assumptions in the past of �s , for any constant a ≥ 2, there
is a positive constant C independent of s, u and a such that for all t ∈ [0, s] we have:

Ia,u(t) ≤ Ca−1µ−a
m,u(t). (25)
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As mentioned in the discussion of Chapter 6 above, estimates for the derivatives of
the spatial rectangular coordinates xi with respect to the commutation fields must also
be obtained, the derivative of the xi with respect to the vectorfields T̂ and L being the
spatial rectangular components T̂ i and Li of these vectorfields. Here T̂ = κ−1T is the
vectorfield of unit magnitude with respect to h corresponding to T . Thus, although the
argument depends mainly on the causal structure of the acoustical spacetime, the under-
lying Minkowskian structure, to which the rectangular coordinates belong, has a role to
play as well, and it is the estimates in question which analyze the mutual relationship of
the two structures. The major part of Chapters 10 and 11 is the derivation of estimates for
the spatial derivatives of the first derivatives of the xi , in terms of the acoustical entities.
In particular, Propositions 10.1 and 10.2 give estimates for the angular derivatives of the
xi and of the T̂ i = T̂ x i , that is, their derivatives with respect to the rotation fields R j ,
while Propositions 11.1 and 11.2 give estimates for the spatial derivatives of the T̂ i , that
is the derivatives with respect to T and the R j , of which at least one is a T -derivative.
The corollaries of these propositions provide the remaining estimates, including the re-
quired estimates for the deformation tensors of the commutation fields in terms of the
acoustical entities. In particular, Corollaries 10.1.e and 10.2.e give, through Lemma 10.6,
estimates for the iterated commutators of the set of rotation fields, Corollaries 10.1.i and
10.2.i give estimates for the angular derivatives of the commutators [L, Ri ] = (Ri )Z
(see Lemma 8.2), while Lemma 10.24 gives estimates for the angular derivatives of the
commutators [T, Ri ] = (Ri )� (see Lemma 10.22). On the other hand, Corollaries 11.1.c
and 11.2.c give estimates for the spatial derivatives of the commutators [L, T ] = �. The
remainder of Chapters 10 and 11 deduce the required estimates for the quantities appear-
ing in the final estimates of Chapters 8 and 9 for the 1-forms (i1...il )xl and the functions
(i1...il−m )x ′

m,l−m , respectively.

Chapter 12 contains the recovery of the acoustical bootstrap assumptions used in
the previous chapters, in particular in Chapters 10 and 11. That is, these acoustical as-
sumptions are established, using the method of continuity, on the basis of the final set
of bootstrap assumptions, which consists only of pointwise estimates for the variations
up to certain order. In the same chapter the estimates for up to the next to the top order
angular derivatives of χ and spatial derivatives of µ are derived. These, when substituted
in the estimates of Chapters 10 and 11, give control of all quantities involved in terms
of estimates for the variations. A fundamental role in Chapter 12 is played by Proposi-
tions 12.2, 12.4, 12.5, and 12.7 which establish the coercivity hypotheses H0, H1, H2 and
H2′ on which the previous chapters depend. These propositions roughly speaking show
that for any covariant St,u tensorfield ϑ , the sum

∑
i |L/Ri ϑ|2 bounds pointwise |D/ϑ|2.

Proposition 12.8, which shows that if X is any St,u-tangential vectorfield and ϑ any co-
variant St,u tensorfield then we can bound pointwise L/Xϑ in terms of the L/Ri ϑ and the
L/Ri X = [Ri , X], also plays an important role.

Chapter 13 begins by establishing the basic assumptions C1, C2, and C3, on the
behavior of the function µ on which the energy estimates rely. We then formulate the
final bootstrap assumption, to which all other assumptions have been reduced, and which
consists only of pointwise estimates for the variations up to certain order. After that we
deduce an explicit formula for the source functions, using the recursion formula derived
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in Chapter 7, and analyze the structure of the terms containing the top order spatial deriva-
tives of the acoustical entities, showing that these can be expressed in terms of the 1-forms
(i1...il )xl and the functions (i1...il−m )x ′

m,l−m . These terms are shown to contribute border-
line error integrals, the treatment of which is the main source of difficulties in the prob-
lem. These borderline integrals are all proportional to the constant � mentioned above, the
value of (8) in the surrounding constant state, hence are absent in the case � = 0.

We should make clear here that the only variations which are considered up to this
point are the variations arising from the first order variations corresponding to the group
of spacetime translations. In particular the final bootstrap assumption involves only vari-
ations of this type, and each of the five quantities Eu

0,[n](t), F t
0,[n](u), E ′u

1,[n](t), F ′t
1,[n](u),

and K[n](t, u), which together control the solution, is defined to be the sum of the cor-
responding quantity Eu

0 [ψ](t), F t
0[ψ](u), E ′u

1 [ψ](t), F ′t
1 [ψ](u), and K [ψ](t, u), over all

variations ψ of this type, up to order n. To estimate the borderline integrals however, we
introduce an additional assumption, assumption J, which concerns the first order varia-
tions corresponding to the scaling or dilation group and to the rotation group, and the
second order variations arising from these by applying the commutation field T . This
assumption is later established through energy estimates of order 4 arising from these
first order variations and derived on the basis of the final bootstrap assumption, just be-
fore the recovery of the final bootstrap assumption itself. It turns out that the borderline
integrals all contain the factor Tψα , where ψα : α = 0, 1, 2, 3 are the first variations
corresponding to spacetime translations and assumption J is used to obtain an estimate
for sup�u

t

(
µ−1|Tψα|) in terms of sup�u

t

(
µ−1|Lµ|), which involves on the right the fac-

tor |�|−1 (see (13.198)). Upon substituting this estimate in the borderline integrals, the
factors involving � cancel, and the integrals are estimated using (25).

The above is an outline of the main steps in the estimation of the borderline integrals
associated to the vectorfield K0. The estimation of the borderline integrals associated to
the vectorfield K1, is however still more delicate. In this case we first perform an inte-
gration by parts on the outgoing characteristic hypersurfaces Cu , obtaining hypersurface
integrals over �u

t and �u
0 and another spacetime volume integral. In this integration by

parts the terms, including those of lower order, must be carefully chosen to obtain appro-
priate estimates, because here the long time behavior, as well as the behavior as µ tends
to zero, is critical. Another integration by parts, this time on the surfaces St,u , is then per-
formed to reduce these integrals to a form which can be estimated. The estimates of the
hypersurface integrals over �u

t are the most delicate (the hypersurface integrals over �u
0

only involve the initial data) and require separate treatment of the condensation and rar-
efaction regions, in which the properties of the function µ, in particular those established
by Proposition 8.6, come into play.

In proceeding to derive the energy estimates of top order, n = l +2, the power 2a of
the weight µm,u(t) is chosen suitably large to allow us to transfer the terms contributed by
the borderline integrals to the left-hand side of the inequalities resulting from the integral
identities associated to the multiplier fields K0 and K1. The argument then proceeds along
the lines of that of Chapter 5, but is more complex because account must be taken of the
terms corresponding to the estimates of Chapter 7 and of all the other terms contributed by
the source functions, and also because of the fact that here we are dealing with weighted
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quantities. Once the top order energy estimates are established, we revisit the lower order
energy estimates, using at each order the energy estimates of the next order in estimating
the error integrals contributed by the highest spatial derivatives of the acoustical entities
at that order. We then establish a descent scheme, which yields, after finitely many steps,
estimates for the five quantities Eu

0,[n](t), F t
0,[n](u), E ′u

1,[n](t), F ′t
1,[n](u), and K[n](t, u),

for n = l + 1 − [a], where [a] is the integral part of a, in which weights no longer
appear.

It is these unweighted estimates which are used to close the bootstrap argument by
recovering the final bootstrap assumption. This is accomplished by the method of continu-
ity through the use of the isoperimetric inequality on the wave fronts St,u , and leads to the
main theorem, Theorem 13.1. This theorem shows that there is another differential struc-
ture, that defined by the acoustical coordinates t, u, ϑ introduced in Chapter 2, such that
relative to this structure the maximal classical solution extends smoothly to the boundary
of its domain. This boundary contains however a singular part where the function µ van-
ishes, hence, in these coordinates, the acoustical metric h degenerates. With respect to the
standard differential structure induced by the rectangular coordinates xα : α = 0, 1, 2, 3
in Minkowski spacetime, the solution is continuous but not differentiable on the singular
part of the boundary, the derivative T̂ µT̂ ν∂µβν blowing up as we approach the singular
boundary. Thus, with respect to the standard differential structure, the acoustical metric h
is everywhere in the closure of the domain of the maximal solution non-degenerate and
continuous, but not differentiable on the singular part of the boundary of this domain,
while with respect to the differential structure induced by the acoustical coordinates h
is everywhere smooth, but degenerate on the singular part of the boundary. We have not
sought to obtain an optimal lower bound for exponent a. This lower bound is significantly
reduced by observing that only one among the first order variations actually contributes
borderline integrals, namely the variation corresponding to time translations.

As has already been mentioned, the first part of Chapter 14 establishes a theorem,
Theorem 14.1, which gives sharp sufficient conditions on the initial data for the formation
of a shock in the evolution, in the case of irrotational isentropic initial data. The proof is
through Proposition 8.6 and is based on the study of the evolution with respect to t of the
mean value on the sections St,u of each outgoing characteristic hypersurface Cu of the
quantity:

τ = (1 − u + η0t)Lψ0 − (ψ0 − k). (26)

Here ψ0 is the first variation corresponding to time translations and k is its value in the
surrounding constant state. The proof of Theorem 14.1 uses the estimate provided by the
spacetime integral K [ψ0](t, u) associated to ψ0. Theorem 14.1 is followed by the analysis
of the solution of the problem with general initial data during the initial time interval of
order 1/η0, as has already been discussed above. The last part of Chapter 14 establishes
a theorem, Theorem 14.2, which extends Theorem 14.1 to the general case, removing the
irrotational and isentropic restrictions on the initial data. The proof of Theorem 14.2 is
based on the 1-form:

ξµ = β̇µ + θ ṡuµ (27)
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corresponding to any first order variation ( ṗ, ṡ, u̇) of a general solution (p, s, u), through
solutions of the general equations of motion, and the associated functions:

i = Lµξµ, i = Lµξµ. (28)

We then study the evolution of the mean value on the St,u sections of each Cu of the
quantity:

τ ′ = (1 − u + η0t)i − v0(p − p0) (29)

where v0 and p0 are respectively the volume per particle and pressure in the surrounding
constant state. Here certain crucial integrations by parts on the St,u sections as well as
on Cu itself are performed, in which the structure of Cu as a characteristic hypersurface
comes into play. We remark that Theorems 14.1 and 14.2 also give a sharp upper bound
on the time interval required for the onset of shock formation.

The contents of Chapter 15 have already been briefly described above. Proposition
15.1 describes the singular part of the boundary of the domain of the maximal classical
solution from the point of view of the acoustical spacetime. It shows that this singular
part has the intrinsic geometry of a regular null hypersurface in a regular spacetime and,
like the latter, is ruled by invariant curves of vanishing arc length. On the other hand, the
extrinsic geometry of the singular boundary is that of a space-like hypersurface which
becomes null at its past boundary. The invariant curves are then used to define canonical
acoustical coordinates.

Theorem 15.1 is the main result of the chapter. This theorem shows that at each point
q of the singular boundary, the past sound cone in the cotangent space at q degenerates
into two hyperplanes intersecting in a 2-dimensional plane. We thus have a trichotomy of
the bi-characteristics, or null geodesics of the acoustical metric, ending at q , into the set
of outgoing null geodesics ending at q , which corresponds to one of the hyperplanes, the
set of incoming null geodesics ending at q , which corresponds to the other hyperplane,
and the set of the remaining null geodesics ending at q , which corresponds to the 2-
dimensional plane. The intersection of the past characteristic cone of q with any �t in
the past of q similarly splits into three parts, the parts corresponding to the outgoing
and to the incomings sets of null geodesics ending at q being embedded discs with a
common boundary, an embedded circle, which corresponds to the set of the remaining
null geodesics ending at q . All outgoing null geodesics ending at q have the same tangent
vector at q. This vector is then an invariant characteristic vector associated to the singular
point q .

This striking result is in fact the reason why the considerable freedom in the choice
of the acoustical function does not matter in the end. For as is shown in Proposition 15.2,
which considers the transformation from one acoustical function to another, the foliations
corresponding to different families of outgoing characteristic hypersurfaces have equiva-
lent geometric properties and degenerate in precisely the same way on the same singular
boundary. Finally, Proposition 15.3 gives a detailed description of the boundary of the do-
main of the maximal classical solution from the point of view of Minkowski spacetime.
The contents of the Epilogue have already been adequately described above.
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In concluding this introduction we remark that shocks develop not only in the con-
text of fluid mechanics but also in magnetohydrodynamics, that is, the mechanics of a
perfectly electrically conducting fluid in the presence of a magnetic field, in the nonlinear
regime of the theory of elasticity, that is, the mechanics of deformable solids, isotropic or
crystalline, as well as in the electrodynamics of continuous nonlinear media, in particu-
lar in the propagation of electromagnetic waves in electrically insulating fluids or solids
with a nonlinear relationship between the electromagnetic field and the electromagnetic
displacement. The pioneering work on shock formation in the theory of elasticity, in the
spherically symmetric case, has been done by John [J2]. It is hoped that the present mono-
graph will provide a springboard for those wishing to attack the general problem of shock
formation in any of these fields.

The present work relies more heavily on differential geometric concepts and meth-
ods than previous works on the same subject. For those prospective readers whose back-
ground is mainly in the fields of fluid mechanics or partial differential equations, but who
may not have acquired an equally strong background in differential geometry, we recom-
mend as a reference the book by Bishop and Crittenden [B-C] for the basic differential
geometric concepts, and the book by Schoen and Yau [S-Y] as an excellent introduction
to geometric analysis.

In regard to notational conventions, Latin indices take the values 1,2,3, while Greek
indices take the values 0,1,2,3. Repeated indices are meant to be summed, unless other-
wise specified.


