
Panoramic Overview

Compactness is a core concept in general topology, because it introduces finiteness
in otherwise infinite geometric objects. When we combine compactness with group
theory and its enormous background we can expect a theory rich in results, varied in
direction, and fertile in applications. And we get it as is evidenced through a sizeable
body of monographs and texts having come about in the second half of last century.
Naturally, we like to cite our book on compact groups [102] that appeared in 1998
and that experienced a second revised and augmented edition in 2006. The standard
examples are linear groups such as the orthogonal and unitary groups, or the additive
groups of p-adic integers, and this confirms that the concept of a compact group is
natural. The class of compact groups is closed in the class of all topological groups
under the formation of arbitrary products and the passage to closed subgroups. This
makes it a closed category in its own right, and that in itself is a fact from which many
desirable properties of this category follow.

But there are before our eyes just as natural examples of groups that illustrate that
there are many topological groups basic to analysis, geometry and algebra which are not
compact; easily perceived examples are the additive groups of Rn or, more generally,
finite-dimensional vector spaces over locally compact fields, and linear groups like the
full linear groups Gl(n,R) and their closed subgroups. All of these groups, however,
are locally compact. The most important locally compact groups are real Lie groups
which are connected or have, at most, finitely many connected components. One
definition of a Lie group is that it is a real analytic manifold with a group structure such
that multiplication and inversion are analytic functions. A topological group which
is isomorphic to a closed subgroup of the topological group Gl(n,R) is a Lie group,
and we shall call such a Lie group a linear Lie group. Let us emphasize at this point
that here, and in the following, when we speak about two topological groups as being
isomorphic, we mean them to be isomorphic as topological groups; some writers like
to stress this by saying that they are “isomorphic algebraically and topologically”. We
give a definition of a general Lie group in Appendix 1 to this book which allows a
quicker access to the group theoretical aspects of Lie group theory than one involving
analytical manifolds. In our book [102] on compact groups we devote a whole chapter
to an introduction to linear Lie groups. It is shown in that book that all compact Lie
groups are matrix groups, that is, linear Lie groups. All these groups possess identity
neighborhoods which are homeomorphic to Rn for a suitable dimension n: they are
locally euclidean.

In 1900 David Hilbert raised the question whether every locally euclidean group is
a Lie group. It took half a century until this question was answered in the affirmative by
the concerted joint efforts of Gleason [63], Montgomery and Zippin [144] published
back to back in the Annals of Mathematics. The monograph [145] by Montgomery
and Zippin appeared three years later and summarized the entire development including
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the important complements by Yamabe [206], [207] which followed one year later and
to which we shall return presently. Montgomery and Zippin’s book became a classic
which has not been replaced to this day, in spite of an excellent secondary source
authored by Kaplansky [129] sixteen years later.

Hilbert’s Problems numbered 23 in all; they were formulated in order to indicate
the directions which research in mathematics was to take in the 20th century. The
problem concerning Lie groups is number 5, and its difficulty as well as the sheer
quantity of research that it fertilized was very indicative of Hilbert’s vision. So it
is only natural that something even more influential came along with the affirmative
solution of Hilbert’s Fifth Problem, namely, Yamabe’s Theorem. Yamabe’s Theorem
tells us that every connected locally compact groupG is approximated by a connected
Lie group in the sense that G contains arbitrarily small normal subgroups N such that
G/N is a Lie group ([206], [207]). In fact Yamabe’s Theorem applies to more than
connected groups: it says that every locally compact group for which the group of
connected components G/G0 is compact is approximated by Lie groups in the sense
just explained. The concept of being approximated by Lie groups is so important that
it certainly deserves a definition of its own. For this purpose let us first recall that a
topological group is complete if every Cauchy filter (or every Cauchy net) converges;
this aptly generalizes the concept of completeness of a metric space which is complete
if every Cauchy sequence converges. Every locally compact group is complete and
so no mention of completeness need be made when one deals with locally compact
groups.

Definition 1. (i) A topological group G is called a pro-Lie group if it is complete and
if every identity neighborhood of G contains a normal subgroup N such that G/N is
a Lie group. The category of all pro-Lie groups with continuous group morphisms
between them is written proLieGr. (3.39)

(ii) A topological group G is called almost connected if the factor group G/G0 of
G modulo the connected component G0 of the identity is compact.

Let us then reformulate Yamabe’s Theorem in this terminology:

Every almost connected locally compact group is a pro-Lie group.

It is a generally adopted notation that for a category A and objects A and B in A,
the set of all morphismsA→ B is denoted by A(A,B). For instance, if TopGr denotes
the category of all topological groups and continuous group homomorphisms between
them, then TopGr(G,H) denotes the set of all continuous homomorphisms from the
topological group G to the topological group H ; if G and H are pro-Lie groups, then
we have proLieGr(G,H) = TopGr(G,H) by definition. This means that the category
proLieGr is a full subcategory of the category TopGr of all topological groups.

Algebraists, in particular ring theorists, are rather familiar with a concept similar
to that of pro-Lie groups, namely, profinite groups. A group G is profinite if it is
a complete topological group such that every identity neighborhood of G contains a
normal open subgroup N such that G/N is finite. Profinite groups are compact, and
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they are pro-Lie groups. Profinite groups generalize finite groups in the exact same
way as pro-Lie groups generalize Lie groups.

Only three years before the solution of Hilbert’s Fifth Problem was found by Glea-
son, Montgomery and Zippin, a seminal paper by Iwasawa had appeared in the An-
nals of Mathematics [120]. In that paper he exposed fundamental properties of locally
compact pro-Lie groups. So Yamabe’s result made all of this available for the study of
the structure and the representation theory of almost connected locally compact groups.
This was the culmination of half a century of research on topological groups following
Hilbert’s vision in 1900. But at the same time, and certainly not less significant from
the present vantage point, the work by Iwasawa, Gleason, Montgomery, Zippin
and Yamabe provided motivation and incentive for another half a century’s worth of
research on locally compact groups during the second half of the twentieth century.
What went into this entire century of research naturally was the full body of highly
developed structure and representation theory of finite-dimensional Lie groups and
finite-dimensional Lie algebras.

Let us briefly say what we mean by the Lie theory of a topological group on a
very general level; after all, the words Lie theory appear in the title of this book.
To each topological group G one can easily associate a topological space L(G),
namely, the space Hom(R,G) of all continuous group homomorphisms from the ad-
ditive topological group R of real numbers to the topological group G, endowed with
the topology of uniform convergence on compact sets. We also have a continuous
function exp : L(G) → G given by expX = X(1) and a “scalar multiplication”
(r,X) �→ r ·X : R×L(G)→ L(G) given by (r ·X)(s) = X(sr). Whether these con-
cepts are useful depends in large measure on the degree to which additional properties
are satisfied. In Chapter 2 we shall elaborate on the following definition.

Definition 2 (2.6ff.). A topological group G is said to have a Lie algebra, if L(G)
has a continuous addition and bracket multiplication making it into a topological Lie
algebra in such a fashion that
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If G has a Lie algebra, then L(G) is called the Lie algebra of G and exp : L(G)→ G

is called its exponential function.

Clearly a topological group G has a Lie algebra if and only if the connected com-
ponent G0 of the identity has a Lie algebra G0 and

L(G) = Hom(R,G) = Hom(R,G0) = L(G0).

The image of the exponential function is contained inG0. If we believe that L(G) and
the exponential function encapsulate the Lie theory ofG, then it is true that the identity
component G0 already captures the Lie theory of G.
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We show in this book that

every pro-Lie group G has a Lie algebra L(G) and the image exp L(G) of the
exponential function algebraically generates a subgroup which is dense in the
connected component G0 of the identity.

We shall have much more to say about the topological Lie algebra L(G) that can
arise in this fashion. But for the moment we observe this: In every totally disconnected
locally compact group, the open (hence closed) subgroups form a basis of the neigh-
borhood filter of the identity element. IfG is a locally compact group, thenG/G0 is a
locally compact totally disconnected group, and so there is an open subgroup U of G
containing G0 such that U/G0 is compact. Then U is almost connected and thus, by
Yamabe’s Theorem, is a pro-Lie group. Therefore every locally compact group has an
open subgroup which is a pro-Lie group and which captures the Lie theory ofG. Apart
from individual studies such as [134], [64], [103], [104], [106], the Lie theory of locally
compact groups has never been systematically considered or exploited, although a start
was made in [102] for the purpose of a structure theory of compact groups. One of the
thrusts of this book is to change this situation with determination.

In addition to the successful resolution of Hilbert’s Fifth Problem there is yet a
second prime reason for the success of the structure and representation theory of locally
compact groups: The 1932 proof by A. Haar of the existence and uniqueness of left
invariant integration on a locally compact groupG. Its full power for abstract harmonic
analysis was recognized by A. Weil in his influential monograph [198] of 1941.

Haar measure is the key to the representation theory of compact and locally com-
pact groups on Hilbert space, and the wide field of abstract harmonic analysis with ever
so many ramifications (including e.g. abstract probability theory on locally compact
groups). A theorem due to A. Weil shows that, conversely, a complete topologi-
cal group with a left- (or right-) invariant σ -finite measure is locally compact (see
e.g. [76], [198]). Thus the category of locally compact groups is that which is ex-
actly suited for real analysis resting on the existence of an invariant integral based on
σ -additive measures. One cannot expect to extend this aspect of locally compact groups
to larger classes without abandoning σ -additivity. (Bourbaki indicates in Chapter 9
of his “Intégration” [23], pp. 50–55, 70ff., how such an extension may be handled;
however we shall not consider this aspect in this book.)

In quiet moments of introspection one might even admire the small miracle inherent
in the fact that measure theory carries as far as locally compact groups go. The proper
domain for an invariant measure theory again appears to be the category of compact
groups, where one has a unique invariant two sided invariant measure P with respect
to whichG is measurable with measure P(G) = 1. That is, P is a veritable probability
measure that allows averaging over G as a remarkably simple but effective device
([102]). Yet there it is, Haar measure of locally compact groups, infinite but eminently
useful making locally compact groups the analysts’ delight.

However, from each of a group theoretical, of a Lie theoretical, and of a category
theoretical point of view, the class of a locally compact groups has serious defects
which go rather deep.
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Indeed, if we consider a family of Lie groups Gj , j ∈ J for an index set J , then
its product

∏
j∈J Gj is a perfectly good Hausdorff topological group with a lucid

structure, but it fails to be locally compact whenever infinitely many of the Gj fail to
be compact.

Furthermore, while every locally compact group G does have a Lie algebra L(G),
the additive group of the Lie algebra is never locally compact unless it is finite-
dimensional. Indeed even the additive topological group of the Lie algebra of a compact

abelian group need not be locally compact; for example the productG
def= TJ of circle

groups T = R/Z has a Lie algebra L(G) isomorphic to RJ and thus fails to be locally
compact as soon as J is infinite, while the group TJ is comfortably within the realm
of compact groups.

Each Lie group G has a tangent bundle which is again a Lie group, namely, the
semidirect product L(G) �Ad G with G acting on its Lie algebra by adjoint action
induced by inner automorphisms. Does a locally compact group have a tangent bundle?
The answer is yes, it does, in fact every pro-Lie group has one (as we shall show in
this book), but it is almost never a locally compact group except when the group itself
is finite-dimensional.

Thus the category of locally compact groups appears to have two major drawbacks:

– The topological abelian group underlying the Lie algebra L(G) and the tangent
bundle of a locally compact group fail to be locally compact unless L(G) is finite-
dimensional. In other words, the very Lie theory that makes the structure theory of
locally compact groups interesting leads us outside the class.

– The category of locally compact groups is not closed under the forming of prod-
ucts, even of copies of R; it is not closed under projective limits of projective systems
of finite-dimensional Lie groups, let alone under arbitrary limits. In other words, the
category of locally compact groups is badly incomplete.

This book presents an argument for a shift in the vantage point of looking at locally
compact groups. We plead for a structure theory of topological groups that places the
focus squarely and systematically on pro-Lie groups.

Recall that we denote the category of all (Hausdorff) topological groups and contin-
uous group homomorphisms by TopGr. It turns out that the full subcategory proLieGr
of TopGr consisting of all projective limits of finite-dimensional Lie groups avoids both
of these difficulties. This would perhaps not yet be a sufficient reason for advocating
this category if it were not for two facts:

– Firstly, while not every locally compact group is a projective limit of Lie groups,
every locally compact group has an open subgroup which is a projective limit of Lie
groups, so that, in particular, every connected locally compact group is a pro-Lie group;
also all compact groups and all locally compact abelian groups are pro-Lie groups.

– Secondly, the category proLieGr is astonishingly well-behaved. Not only is it a
complete category, it is closed under passing to closed subgroups and to those quotients
which are complete, and it has a demonstrably good Lie theory.
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It is therefore indeed surprising that this class of groups has been little investigated
in a systematic fashion.

A serious attempt at such an investigation is made in this book where it is submitted
that not only a general structure theory of locally compact groups can be based on a
good understanding of the category proLieGr of pro-Lie groups, but that the category
of pro-Lie groups is well worth a thorough study on its own account. In this book we
will prove general structure theorems on pro-Lie groups which will include the best
known general structure theorems on locally compact groups. Since the main strategy
of the book is to provide a structure theory via Lie theory, en route we shall have to
develop a full grown structure theory of those topological Lie algebras which occur as
Lie algebras of pro-Lie groups. We shall call these pro-Lie algebras, because each of
them is a complete topological Lie algebra such that every 0-neighborhood contains a
closed ideal modulo which it is finite-dimensional (3.6).

Part 1. The Base Theory of Pro-Lie Groups

For a description of some basic results on the theory of projective limits of Lie groups
some technical background information appears inevitable even for an overview, long
before we delve into the actual study of our topic.

Core Definitions and Facts on Pro-Lie Groups

Definition 3. A projective system D of topological groups is a family of topological
groups (Cj )j∈J indexed by a directed set J and a family of morphisms {fjk : Ck →
Cj | (j, k) ∈ J × J, j ≤ k}, such that fjj is always the identity morphism and
i ≤ j ≤ k in J implies fik = fij � fjk . Then the projective limit of the system
limj∈J Cj is the subgroup of

∏
j∈J Cj consisting of all J -tuples (xj )j∈J for which the

equation xj = fjk(xk) holds for all j, k ∈ J such that j ≤ k.
Every cartesian product of topological groups may be considered as a projective

limit. Indeed, if (Gα)α∈A is an arbitrary family of topological groups indexed by an
infinite set A, one obtains a projective system by considering J to be the set of finite
subsets of A directed by inclusion, by setting Cj =∏a∈j Ga for j ∈ J , and by letting
fjk : Ck → Cj for j ≤ k in J be the projection onto the partial product. The projective
limit of this system is isomorphic to

∏
a∈A Ga .

There are a few sample facts one should recall about the basic properties of projective
limits (see e.g. [25], [64], [107], or this book 1.27 and 1.33):

Let G = limj∈J Gj be a projective limit of a projective system

P = {fjk : Gk → Gj | (j, k) ∈ J × J, j ≤ k}
of topological groups with limit morphisms fj : G → Gj , and let Uj denote the
filter of identity neighborhoods of Gj , U the filter of identity neighborhoods of G,
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and N the set {ker fj | j ∈ J }. Then U has a basis of identity neighborhoods
{f−1
k (U) | k ∈ J, U ∈ Uk} and N is a filter basis of closed normal subgroups

converging to 1. If all bonding maps fjk : Gk → Gj are quotient morphisms and all
limit maps fj are surjective, then the limit maps fj : G→ Gj are quotient morphisms.
The limit G is complete if all Gj are complete.

Definition 4 (3.25). For a topological group G let N (G) denote the set of closed
normal subgroups N such that all quotient groups G/N are finite-dimensional real
Lie groups. Then G ∈ N (G) and G is said to be a proto-Lie group if every identity
neighborhood contains a member of N (G).

By our earlier Definition 1, if in addition, G is a complete topological group, then
G is a pro-Lie group.

While not every topological group can be embedded as a subgroup into a complete
topological group, this is the case for proto-Lie groups, indeed

every proto-Lie group has a completion which is a pro-Lie group. (See 4.1.)

Every product of a family of finite-dimensional Lie groups
∏
j∈J Gj is a pro-Lie

group. In particular, RJ is a pro-Lie group for any set J which is locally compact if
and only if the set J is finite. The product ZN, accordingly, is a pro-Lie group. It is
well known that the space ZN is homeomorphic to the space of irrational real numbers
in the natural topology. We may formulate this by saying that

the space of irrational numbers supports the structure of a pro-Lie group.

It is a remarkable fact (which we discuss in Chapter 4) that the free abelian group
Z(N) in countably many generators carries the structure of a nondiscrete pro-Lie group.
The underlying topological space cannot be a Baire space and so certainly cannot
be Polish (second countable completely metrizable), nor locally compact; indeed a
countable homogeneous Baire space is necessarily discrete.

These examples help us to realize from the beginning, that our general intuition of
the topology of pro-Lie groups cannot be based on experience gathered from locally
compact groups.

If {Gj : j ∈ J } is a family of finite-dimensional real Lie groups then the subgroup{
(gj )j∈J ∈

∏
j∈J
Gj : {j ∈ J : gj 	= 1} is finite

}
of the direct product

∏
j∈J Gj is a proto-Lie group which is not a pro-Lie group if J

is infinite and the Gj are nonsingleton.
We reiterate that a topological groupG is called almost connected if the factor group

G/G0 modulo the connected componentG0 of the identity is compact. Everything that
is proved for almost connected topological groups therefore is true for all connected
groups and for all compact groups. One of the very weighty reasons why this concept
is relevant for the theory of topological groups is the existence of Yamabe’s crucial
result:
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Every almost connected locally compact group is a pro-Lie group.

The group PSl(2,Qp) of projective transformations of the p-adic projective line
is locally compact, but has no nontrivial normal subgroups and is therefore a locally
compact group which is not a pro-Lie group in our sense, while it is, of course, a p-adic
Lie group.

Every pro-Lie group G gives rise to a projective system

{pNM : G/M → G/N : M ⊇ N in N (G)}
whose projective limit it is (up to isomorphism). The converse is a difficult issue, but
it is true.

Theorem 5 (3.34, 3.35 (The Closed Subgroup Theorem)). Every projective limit of
pro-Lie groups is a pro-Lie group. Every closed subgroup of a pro-Lie group is a
pro-Lie group. A topological group is a pro-Lie group if and only if it is isomorphic to
a closed subgroup of a product of Lie groups.

In fact in simple category theoretical parlance the following theorem holds.

Theorem 6 (3.3, 3.36). The category proLieGr of pro-Lie groups is closed in TopGr
under the formation of all limits and is therefore complete. It is the smallest full
subcategory of TopGr that contains all finite-dimensional Lie groups and is closed
under the formation of all limits.

This shows that the category proLieGr does not have some of the shortcomings of
the category of locally compact groups which is obviously incomplete. It remains yet
to be seen how good the Lie theory of the category proLieGr is and we shall say good
things about it shortly.

However, one must, at an early stage, admit that the category of pro-Lie groups
has certain problems which are invisible as long as one stays inside the subcategory
of locally compact pro-Lie groups. Indeed, every quotient group of a locally compact
group is locally compact (which is a consequence of the fairly elementary observation
that in any topological group, the product HK of a closed subset H and a compact
subset K is closed, and the application of this fact to the case that H is a closed
(normal) subgroup and K a compact identity neighborhood of G). It is one of the
less elementary facts of Lie group theory that a quotient of a Lie group is a Lie group.
Indeed the quotient of a linear Lie group need not be a linear Lie group, but is a Lie
group nevertheless. The simplest example is the group of upper triangular matrices

G
def=
⎧⎨⎩
⎛⎝1 x z

0 1 y

0 0 1

⎞⎠ : x, y, z ∈ R

⎫⎬⎭
and the discrete central subgroup

Z
def=
⎧⎨⎩
⎛⎝1 0 n

0 1 0
0 0 1

⎞⎠ : n ∈ Z

⎫⎬⎭ ;
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here G is clearly a linear Lie group but the factor group G/Z, which is even locally
isomorphic to G is not a linear Lie group. This was proved by Garret Birkhoff in
1936 [9] by astute but elementary linear algebra. (See also [102], p. 169ff.) It is a
much more debilitating fact for the study of pro-Lie groups that

quotient groups of pro-Lie groups need not be pro-Lie groups. (Corollary 4.11)

Still,

every quotient group of a pro-Lie group is a proto-Lie group and has a completion
which is a pro-Lie group. (4.1)

So the defect here arises from a phenomenon that is well observed and studied, that
quotients of complete topological groups may fail to be complete. (See [176].) We
shall explain in Chapter 4 that the additive group of the topological vector space R[0,1]
has a nondiscrete closed subgroupK algebraically isomorphic to the free abelian group
Z(N) in countably many generators such that R[0,1]/K is an abelian proto-Lie group
which is dense in a compact connected and locally connected group (Corollary 4.11).
We use this example in various places in the book to construct counterexamples. In
this sense, this example is very helpful to build up our intuition on certain aspects of
pro-Lie group theory that are invisible as long as we stay in the locally compact domain.
Curiously, the counterexample itself arises from the theory of compact abelian groups,
and it was discovered not so long ago ([106]).

The defect of proLieGr of not being closed under the passing to quotients is, as
we have said, debilitating, because passing to quotient groups is an extremely helpful
device of reduction to simple situations in many proofs; therefore it is a handicap not
having this tool available at all times inside proLieGr.

Fortunately, we shall see that, even regarding quotients, the category proLieGr has
its redeeming features.

Theorem 7 (The Quotient Theorem; 4.28). Let G be an almost connected pro-Lie
group and N a closed normal subgroup. Then G/N is a pro-Lie group provided at
least one of the following conditions are satisfied by N :

(i) N is almost connected.
(ii) N is the kernel of a morphism from G onto some pro-Lie group.

(iii) N is locally compact or Polish.

Part (iii) of this theorem arises from general topological group theory, and we refer
to sources like the book [176] of Dierolf and Roelke for such pieces of information.
Parts (i) and (ii) belong to the proper substance of this book, and neither of the two is a
trivial matter (See Theorem 4.28 and Corollary 9.58.) In fact, Part (ii) is a consequence
of another core result concerning pro-Lie groups, namely, the Open Mapping Theorem
that is well known to functional analysts as applying to a variety of operators between
suitable topological vector spaces, and that is equally well known to people working
with locally compact or Polish topological groups. If conditions are right, then the
surjectivity of a continuous group homomorphism f : G → H from a topological
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group onto another implies already that f is an open function, or, in equivalent terms
that the canonical decomposition

G
f−−−−−→ H

quot
⏐⏐� �⏐⏐idH

G/ ker f −−−−−→
F

H

produces an isomorphism of topological groups F : G/ ker f → H . If we let G be
the additive group of real numbers Rd with the discrete topology, H the same group
R but considered with its natural topology, then the identity function f : G → H is
a bijective morphism between locally compact metric groups that is not open. We
mentioned earlier that we shall expose a nondiscrete pro-Lie structure on the countable
free abelian group H with infinitely many generators. So the identity morphism f

from the discrete countable (hence locally compact Polish) group G = Z(N) to H is
a continuous morphism between pro-Lie groups which is not open. These examples
show that the following theorem is not likely to be either obvious or trivial:

Theorem 8 (Open Mapping Theorem for Pro-Lie Groups; 9.60). Let G be an almost
connected pro-Lie group and f : G→ H a continuous group homomorphism onto a
pro-Lie group. Then f is an open mapping.

That is, under these circumstances, f is equivalent to a quotient homomorphism.
One of the major impediments in the group theory of topological groups is the

unavailability of the Second Isomorphism Theorem. The so called First Isomorphism
Theorem says that ifG is a topological group andM ⊆ N are normal subgroups ofG
then the morphism gM �→ gN : G/M → G/N factors through an isomorphism of
topological groups (G/M)/(N/M)→ G/N . This is a very robust theorem belonging
to universal algebra. The environment of the so-called Second Isomorphism Theorem
is as follows: Assume that G is a topological group with a closed normal subgroup N
and a closed subgroup H such that G = HN = NH . Then the surjective morphism
h �→ hN : H → G/N factors through a bijective continuous group homomorphism
H/(H ∩N)→ HN/N . This may fail to be open even ifH ∩N = {1}. In [108] there
is an example of a topological abelian groupG and two (isomorphic) closed subgroups
H andN such thatG is algebraically the direct sum ofH andN andG/H andG/N are
(isomorphic) compact groups, whileG blatantly fails to be compact. However, ifG is
a pro-Lie group, then a closed subgroupH is a pro-Lie group by the Closed Subgroup
Theorem. If N is an almost connected closed normal subgroup of G and G is almost
connected, then G/N is a pro-Lie group by the Quotient Theorem. Therefore, from
the Open Mapping Theorem we get the next theorem.

Theorem 9 (The Second Isomorphism Theorem for Pro-Lie Groups; 9.62). Let N
be an almost connected normal subgroup and H an almost connected subgroup of
a topological group G and assume that H , N , and HN are pro-Lie groups. Then
N/(H ∩N) and HN/N are naturally isomorphic.
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The Coarse Lie Theory of Pro-Lie Groups

Let us consider a topological Lie algebra g and on it the filter basis of closed ideals j
such that dim g/j <∞; we shall denote it by � (g).

Definition 10 (3.6). A topological Lie algebra g is called a pro-Lie algebra (short
for profinite-dimensional Lie algebra) if � (g) converges to 0 and if g is a complete
topological vector space.

Under these circumstances, g ∼= limj∈� (g) g/j, and the underlying vector space is
a weakly complete topological vector space, that is, it is the algebraic dual of a real
vector space with the weak ∗-topology. We give a systematic treatment of the duality
of vector spaces and weakly complete topological vector spaces in Appendix 2 of this
book. The category of pro-Lie algebras and continuous Lie algebra morphisms is
denoted proLieAlg.

Proposition 11 (3.3, 3.36). The category proLieAlg of pro-Lie algebras is closed in
the category of topological Lie algebras and continuous Lie algebra morphisms under
the formation of all limits and is therefore complete. It is the smallest category that
contains all finite-dimensional Lie algebras and is closed under the formation of all
limits.

See also [104].
Our demonstration that Lie theory is applicable to pro-Lie groups begins with our

showing results like the following:

Theorem 12 (3.12, 2.25). Every pro-Lie group G has a pro-Lie algebra g as Lie-
algebra, and the assignment L which associates with a pro-Lie group G its pro-Lie
algebra is a limit preserving functor.

These matters will be shown in Chapters 2 and 3. In fact, a portion of this set-up
allows a considerable improvement which we summarize in the next section.

The Category Theoretical Version of Lie’s Third Theorem

Theorem 13 (Lie’s Third Theorem for Pro-Lie groups; 6.5, 6.6, 8.15). The Lie algebra
functor L : proLieGr → proLieAlg has a left adjoint �. It associates with every pro-Lie
algebra g a unique simply connected pro-Lie group �(g) and a natural isomorphism
ηg : g → L(�(g)) such that for every morphism ϕ : g → L(G) there is a unique
morphism ϕ′ : �(g)→ G such that ϕ = L(ϕ′) � ηg.

A good portion of this theorem we shall prove in Chapter 6, but we find it necessary
to introduce a preliminary concept of simple connectivity. Indeed we shall call a pro-
Lie group prosimply connected if every member of N (G) contains a member N of
N (G) such thatG/N is a simply connected Lie group. This turns out to be, for a while,
a very useful concept of simple connectivity for pro-Lie groups in all respects, and it
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reduces correctly to simple connectivity in the case of finite-dimensional Lie groups.
Once we have developed enough structure theory we will be able in Chapter 8 to show
that a pro-Lie group is prosimply connected if and only if it is simply connected. (See
Theorem 8.15.)

Indeed, for each pro-Lie algebra g, the group�(g) is a projective limit of a projective
system of simply connected Lie groups. The fact that L is a right adjoint confirms its
property of preserving all limits.

There is more to Theorem 13 than meets the eye, and we should alert the reader to
these circumstances because they shed new light on the situation even when everything
is restricted to the classical situation of finite-dimensional Lie groups. The adjointness
of the two functors L and � may be expressed in terms of universal properties as
follows.

There is a natural isomorphism ηg : g → L(�(g)) such that for any morphism
f : g→ L(H) of topological Lie algebras there is a unique morphism f ′ : �(g)→ H

such that f = L(f ′) � ηg. In diagrams:

proLieAlg proLieGr

g
ηg−−−−−→ L(�(g)) �(g)

∀f
⏐⏐� ⏐⏐�L(f ′) ⏐⏐�∃!f ′

L(H) −−−−−→
idL(H)

L(H) H.

In fact, the natural isomorphism really allows us to identify g with the Lie algebra of
�(g). Sophus Lie’s Third Fundamental Theorem (in his own terminology) says that
for every finite-dimensional Lie algebra there is a Lie group having as Lie algebra the
given one. So this theorem persists for pro-Lie groups.

The natural morphism η is what category theoreticians call the front adjunction or
the unit of the adjunction. But any adjoint situation between two functors also has a
back adjunction or counit with an appropriate version of the universal property. In the
case of the present adjoint situation between L and �, the back adjunction set-up is as
follows.

There is a natural morphism πG : �(L(G)) → G of pro-Lie groups with the fol-
lowing universal property: Given a pro-Lie groupG and any morphism f : �(h)→ G

for some pro-Lie algebra h, there is a unique morphism f ′ : h → L(G) of pro-Lie
algebras such that f = πG � �(f ′).

proLieAlg proLieGr

L(G) �(L(G))
πG−−−−−→ G

∃!f ′
�⏐⏐ �⏐⏐�(f ′) �⏐⏐∀f
h �(h) −−−−−→

id�(h)
�(h)
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We shall abbreviate �(L(G)) by G̃, and call the morphism πG : G̃ → G the
universal morphism of G. If G happens to be a pro-Lie group which has a universal
covering group in the topological sense (in particular, if G is a finite dimensional Lie
group), then πG : G̃ → G is the universal covering morphism (8.21). In general the
universal morphism is neither surjective nor a local isomorphism. This is best realized
at an early stage by considering any connected compact abelian groupG together with
its exponential function expG : L(G) → G, L(G) = Hom(R,G) ∼= Hom(Ĝ, R),
where Ĝ = Hom(G,T), T = R/Z is the discrete character group of G. These things
are explained in great detail in [102], Chapters 7 and 8. In this case G̃may be equated
with the additive group of L(G) andπGwith expG : L(G)→ G. The world of compact
abelian groups of course is full of examples for which the exponential function fails
to be surjective, beginning with the one-dimensional examples that are different from
the circle group, that is, the solenoids, the character groups of which are the noncyclic
infinite subgroups of Q.

Let us consider within the complete category proLieGr the full subcategory
proSimpConLieGr of all simply connected pro-Lie groups. Then we have the following
corollary.

Corollary 14 (6.6(vi)). The restrictions and corestrictions of the functors L and �
implement an equivalence of categories

proLieAlg
L−−−−−→←−−−−−
�

proSimpConLieGr.

Therefore, the category of pro-Lie algebras has a faithful copy inside the category of
all pro-Lie groups, namely, the full subcategory of all simply connected pro-Lie groups.
In this light, the universal morphism πG : G̃→ G is a group theoretical substitute for
the exponential function expG : g → G; indeed for abelian pro-Lie groups the two
functions agree for all practical intents and purposes.

These matters are discussed in Chapter 6 but thereafter will pervade the whole book.
Considering the problems we have encountered with quotients in the category of

pro-Lie groups, it is remarkable that the functor L behaves well with regard to quotient
morphisms. Indeed we see next that L not only preserves all limits, but some colimits
as well.

Conservation Laws for L and �

Theorem 15 (4.20). The functor L preserves quotients. Specifically, assume that G
is a pro-Lie group and N a closed normal subgroup and denote by q : G → G/N

the quotient morphism. Then G/N is a proto-Lie group whose Lie algebra L(G/N)
is a pro-Lie algebra and the induced morphism of pro-Lie algebras L(q) : L(G) →
L(G/N) is a quotient morphism. The exact sequence

0 → L(N)→ L(G)→ L(G/N)→ 0
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induces an isomorphism X + L(N) �→ L(f )(X) : L(G)/L(N)→ L(G/N).

The core of Theorem 15 is proved by showing that for every quotient morphism
f : G → H of topological groups, where G is a pro-Lie group, every one parameter
subgroup Y : R → H lifts to one of G, that is, there is a one parameter subgroup σ
of G such that Y = f � σ . (See 4.19, 4.20.) This requires the Axiom of Choice. It
should be emphasized that, according to Theorem 15, a quotient group of a pro-Lie
group always has a complete Lie algebra even if it is itself incomplete. Therefore, a
proto-Lie group with an incomplete Lie algebra such as R(N) cannot be a quotient of a
pro-Lie group.

Corollary 16 (4.21). LetG be a pro-Lie group. Then {L(N) | N ∈ N (G)} converges
to zero and every closed ideal i of L(G) such that L(G)/i is finite-dimensional contains
an L(N) for some N ∈ N (G).

Furthermore, L(G) is the projective limit limN∈N (G) L(G)/L(N) of a projective
system of bonding morphisms and limit maps all of which are quotient morphisms, and
there is a commutative diagram

L(G)
L(γG)−−−−−→ L(limN∈N (G)

G
N
) ∼= limn∈N (G)

L(G)
L(N)

expG

⏐⏐� ⏐⏐�L(limN∈N (G) expG/N )

G −−−−−→
γG

limN∈N (G) G/N.

Theorem 15 expresses a version of exactness of L. But there is also an exactness
theorem for �, the left adjoint of L.

Theorem 17 (6.7, 6.8, 6.9). If h is a closed ideal of a pro-Lie algebra g, then the exact
sequence

0 → h
i−−−→ g

q−−−→ g/h→ 0

induces an exact sequence

1 → �(h)
�(j)−−−→ �(g)

�(q)−−−→ �(g/h)→ 1,

in which �(j) is an algebraic and topological embedding and �(q) is a quotient
morphism.

There are some other noteworthy consequences of Theorem 15.

Proposition 18 (4.22 (iv)). Any quotient morphism f : G→ H of pro-Lie groups onto
a finite-dimensional Lie group is a locally trivial fibration.

Proposition 19 (4.22 (i)). For a pro-Lie groupG, the subgroup 〈exp g〉 generated by the
image of the exponential function, is dense inG0, that is, 〈exp g〉 = G0. In particular,
a connected nonsingleton pro-Lie group has nontrivial one parameter subgroups.

This may be viewed as an Existence Theorem for one parameter subgroups in pro-
Lie groups, indeed of an abundance of them – unless of course, the group in question
is totally disconnected. So, as an illuminating consequence we get the following
characterisation of a pro-Lie group to be totally disconnected.
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Corollary 20 (4.23). For a pro-Lie group G the following statements are equivalent:

(a) G is totally disconnected.
(b) L(G) = {0}.
(c) The filter basis of open normal subgroups of G converges to 1.

In this book we shall call topological groups satisfying these equivalent conditions
prodiscrete groups. So every prodiscrete group is, in particular, a pro-Lie group. As
we already mentioned and will observe again later, there are locally compact totally
disconnected groups which are not prodiscrete. The group ZN in the product topology
is prodiscrete but not locally compact. It is, as we remarked earlier, homeomorphic to
the space of irrational numbers.

Semidirect products of two topological groups (and semidirect sums of topological
Lie algebras) permeate the whole book, beginning from Chapter 1 where we remind
the reader of its definition in Exercise E1.5 through Chapter 11, that is specifically
devoted to the splitting of pro-Lie groups, that is to results that assert that, under
suitable circumstances, a given pro-Lie group may be represented as a semidirect
product. If π : H → Aut(N) is a representation of a topological group in the group

of automorphisms of a topological group N such that the function (h, n) �→ h · n def=
π(n)(h) : H × N → N is continuous, then the semidirect product N �π H of N by
H is the topological product N × H endowed with the multiplication (m, h)(n, k) =
(m(h · n), hk). That N �π H is a topological group is straightforwardly verified.
Very simple examples show that semidirect products of pro-Lie groups need not be
pro-Lie groups (see Examples 4.29). We shall demonstrate in this book that every pro-
Lie group acts under what will be called the adjoint action or adjoint representation
Ad : G→ Gl(L(G)) on L(G) (see 2.27ff.). So we can form the semidirect product

L(G)�Ad G, (X, g)(Y, h) = (X + Ad(g)Y, gh),

and obtain this result.

Proposition 21 (4.29 (iii)). For each pro-Lie groupG, the semidirect product T (G)
def=

L(G)�Ad G is a well-defined pro-Lie group.

We call T (G) the tangent bundle of G.
Thus pro-Lie groups have tangent bundles that are pro-Lie groups. In particular, all

(almost) connected locally compact groups have tangent bundles within the category
of pro-Lie groups. However, for a locally compact group G its tangent bundle T (G)
is locally compact only if G is finite-dimensional.

We have seen that the category of pro-Lie groups

– contains all finite-dimensional real Lie groups,

– is closed in the category of topological groups under the formation of all limits
and the passing to closed subgroups,

– has a substantial Lie algebra functor that possesses a very reasonable left adjoint,
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– is closed under the passing from a group to the additive group of its Lie algebra
and under the passing from a group to its tangent bundle.

In other words, we have seen that the category of pro-Lie groups has none of the defects
which plague the category of locally compact groups while it still contains all almost
connected locally compact groups. That is, it still houses comfortably all those locally
compact groups that support all the Lie theory there is for locally compact groups. But
can we exhibit, one might ask, enough fine structure theory of pro-Lie algebras and
pro-Lie groups so that at least the known structure theory of locally compact groups is
recovered?

Like with all categories of groups, the first test that a group theory has to face is
how well it elucidates the structure of its abelian representatives.

Abelian Pro-Lie groups

Apart from a territory far removed from the domain of connected or even almost
connected commutative pro-Lie groups, the situation is very satisfactory and is, as
a first coarse approximation to the general structure theory of almost connected pro-
Lie groups, rather representative and a good guide for one’s intuition.

A weakly complete vector space is a real topological vector space V for which
there is a real vector space E such that V ∼= E∗, where E∗ is the algebraic dual
HomR(E,R) ⊆ RE endowed with the weak ∗-topology, that is, the topology of point-
wise convergence induced from RE given the product topology. (See Appendix 2,
notably Theorem A2.8.) If the cardinal dimE is the linear dimension of E, that is, the
cardinality of one, hence every basis of E, then E ∼= R(dimE) and thus V ∼= RdimE .
Therefore, an equivalent definition of a weakly complete topological vector space is
the postulate that there be a set J such that V ∼= RJ (see Corollary A2.9). If NS(V )
denotes the filter basis of all closed vector subspaces F of a locally convex Hausdorff
topological vector space V such that dim V/F <∞, then

V is a weakly complete vector space if and only if the natural morphism
λV : V → limF∈NS(V ) V/F , λV (v) = (v + F)F∈NS(V ) is an isomorphism of
topological vector spaces.

If an abelian topological group is isomorphic to the additive group of a weakly
complete topological vector space, that is, to RJ for some set J , then we shall call it a
weakly complete vector group.

The abelian pro-Lie groups we know best are the compact abelian groups and the
weakly complete vector groups. So it is very pleasing that we can state the following
result.

Lemma 22 (Vector Group Splitting Lemma for Connected Abelian Pro-Lie Groups;
5.12). Any abelian almost connected pro-Lie group is isomorphic to the direct product
of a weakly complete vector group and a compact abelian group.
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This result is succinct and very lucid. It illustrates that abelian pro-Lie groups, at
least if they are almost connected are built up from weakly complete vector groups and
compact abelian groups in a certainly simple fashion.

In reality, we have better and more accurate information. For the more accurate
information we have to pay a price: the formulations get more complicated. First we
have a clean cut intermediate result showing that weakly complete topological vector
spaces and tori are injectives in the category of abelian pro-Lie groups.

Theorem 23 (5.19). Assume thatG is an abelian pro-Lie group with a closed subgroup
G1 and assume that there are sets I and J such that G1 ∼= RI × TJ . Then G1
is a homomorphic retract of G, that is, G1 is a direct summand algebraically and
topologically. So G ∼= G1 ×G/G1.

This allows us to argue that every abelian pro-Lie G group has a weakly complete
vector subgroup V such that G is isomorphic to the direct product V × (G/V ) where
the factor G/V has no nontrivial vector subgroup. We call any such subgroup V a
vector group complement. For a topological group G we let comp(G) denote the set
of all elements which are contained in a compact subgroup.

Theorem 24 (Vector Group Splitting Theorem for Abelian Pro-Lie Groups; 5.20).
Let G be an abelian pro-Lie group and V a vector group complement. Then there is a
closed subgroup H such that

(i) (v, h) �→ v + h : V ×H → G is an isomorphism of topological groups.
(ii) H0 is compact and equals compG0 and comp(H) = comp(G); in particular,

comp(G) ⊆ H .
(iii) H/H0 ∼= G/G0, and this group is prodiscrete.
(iv) G/ comp(G) ∼= V × S for some prodiscrete abelian group S without nontrivial

compact subgroups.
(v) G has a characteristic closed subgroup G1 = G0 + comp(G) which is isomor-

phic to V × comp(H) such thatG/G1 is prodiscrete without nontrivial compact
subgroups.

(vi) The exponential function expG of G = V ⊕H decomposes as

expG = expV ⊕ expH

where expV : L(V ) → V is an isomorphism of weakly complete vector groups
and expH = expcomp(G0)

: L((comp(G0))→ comp(G0) is the exponential func-
tion of the unique largest compact connected subgroup; here L(comp(G0)) =
comp(L)(G) is the set of relatively compact one parameter subgroups of G.

(vii) The arc componentGa ofG isV⊕Ha = V⊕comp(G0)a = im L(G). Moreover,
if h is a closed vector subspace of L(G) such that exp h = Ga , then h = L(G).

This theorem actually is the basis of a rather explicit structure theory of abelian
pro-Lie groups. We recall that all locally compact abelian groups belong to this class.
There are still some portions of an abelian pro-Lie group G which we do not fully
control:
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– The factor group G/G1 ∼= H/ compG is prodiscrete and has no compact sub-
groups but is otherwise uncharted.

– comp(G) = comp(H) is a pro-Lie group that is a directed union of compact
subgroups. We do not know much more in the absence of local compactness.

If we impose certain natural additional hypothesis that are traditionally invoked in
topological group theory, the situation is at once much better. A topological group is
called compactly generated if it is algebraically generated by a compact subset.

Theorem 25 (The Compact Generation Theorem for Abelian Pro-Lie Groups; 5.32).
(i) For a compactly generated abelian pro-Lie group G the characteristic closed

subgroup comp(G) is compact and the characteristic closed subgroup G1 is locally
compact.

(ii) In particular, every vector group complement V is isomorphic to a euclidean
group Rm for some m ∈ N0 = {0, 1, 2, . . . }.

(iii) The factor group G/G1 is a compactly generated prodiscrete group without
compact subgroups. If G/G1 is Polish, then G is locally compact and

G ∼= Rm × comp(G)× Zn.

(iv) IfG is a pro-Lie group containing a finitely generated abelian dense subgroup,
then comp(G) is compact andG ∼= comp(G)×Zm. In particular,G is locally compact.

(v) A finitely generated abelian pro-Lie group is discrete.

The full subcategory of locally compact abelian groups in the category of abelian
pro-Lie groups has a celebrated structure theory that is primarily due to the highly
effective and elegant duality theory going back to L. S. Pontryagin [169] and E. R. van
Kampen [125] in the early thirties of the 20th century. For any topological abelian group
G we let Ĝ = Hom(G,T) denote its dual with the compact open topology. (See e.g.

[102, Chapter 7].) There is a natural morphism of abelian groups ηG : G→ ̂̂G given
by ηG(g)(χ) = χ(g)which may or may not be continuous; information regarding this
issue is to be found for instance in [102, pp. 298ff], notably in Theorem 7.7 on p. 300.

We shall call a topological abelian group semireflexive if ηG : G→ ̂̂G is bijective and
reflexive if ηG is an isomorphism of topological groups; in the latter case G is also
said to have duality (see [102, p. 305]). In the direction of a duality theory of abelian
pro-Lie groups we offer the following results.

Proposition 26 (5.35). Let G be an abelian pro-Lie group and let V be a vector
group complement. ThenG is reflexive, respectively, semireflexive iffG/V is reflexive,
respectively, semireflexive. The character group Ĝ is isomorphic to a product E × A
where E is the additive group of a real vector space with its finest locally convex
topology and A is the character group of an abelian pro-Lie group whose identity
component is compact.

Theorem 27 (5.36). Every almost connected abelian pro-Lie group is reflexive, and its
character group is a direct sum of the additive topological group of a real vector space
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endowed with the finest locally convex topology and a discrete abelian group. Pon-
tryagin duality establishes a contravariant functorial bijection between the categories
of almost connected abelian pro-Lie groups and the full subcategory of the category of
topological abelian groups containing all direct sums of vector groups with the finest
locally convex topology and discrete abelian groups.

Part 2. The Algebra of Pro-Lie Algebras

The success of the Lie theory of classical Lie groups as well as in our case the Lie
theory of pro-Lie groups depends on the effectiveness of the mechanism that allows us
to translate problems of the topological group structure on the group level to algebraic
problems on the Lie algebra level and back. Experience demonstrates that problems are
more easily attacked in a purely algebraic environment. In the present case we know,
however, that the Lie algebra of a pro-Lie group is a topological algebra itself. So we
hope to repeat the classical success story only to the extent to which the topological
algebra and the representation theory of pro-Lie groups themselves reduce to pure
algebra – more or less. We shall see that this is largely the case for pro-Lie algebras
due to the fact that the underlying topological vector spaces are weakly complete
vector spaces and that these have a perfect duality theory that allows us to translate
their topological linear algebra to pure linear algebra upon passing to the vector space
duals. (See Appendix 2.)

The Module Theory of Pro-Lie Algebras

We saw that for every pro-Lie group G there exists a simply connected pro-Lie group
G̃ and a natural morphism with dense image πG : G̃ → G. Thus the structure of
simply connected pro-Lie groups has no small influence on the structure of pro-Lie
groups in general. We further saw that the structure of simply connected pro-Lie
groups, in a well-understood sense, is completely determined by the structure of their
Lie algebra. The lesson learned from Lie Theory of finite-dimensional Lie groups
is that one must first study the structure of Lie algebras carefully and then apply the
information gathered in this fashion to the group theory of Lie groups. It is no different
with pro-Lie groups even though the connection between pro-Lie algebras and pro-Lie
groups is more tenuous than in the finite-dimensional case.

We develop the representation theory and structure theory of pro-Lie groups si-
multaneously. Elementary module theory is usually preceded by a rush of simple
definitions which still turn out to be very effective. We record some to the extent they
are necessary for the reader to follow this overview.

Let L be a Lie algebra and E a vector space. Then E is an L-module if there is a
bilinear map

(x, v) �→ x · v : L× E→ E satisfying [x, y] · v = x · (y · v)− y · (x · v)
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for all x, y ∈ L and v ∈ E. A function f : E1 → E2 between L-modules is said to be
a morphism of L-modules if it is linear and satisfies

(∀x ∈ L, v ∈ E1) f (x · v) = x · f (v).

A submodule F of an L-module E is a vector subspace such that L · F ⊆ F .
An L-module E is said to be simple if {0} and E 	= {0} are its only submodules.
An L-module E is called semisimple if every submodule is a direct module sum-

mand.
If L is a topological Lie algebra, then a topological vector space V is said to be a

topological L-module if (x, v) �→ x · v : L × V → V is continuous in each variable
separately.

If the topological vector space V is weakly complete, and if the filter basis of
closed submodules W such that dim V/W < ∞ converges to 0, then V is said to be
a profinite-dimensional L-module. The profinite-dimensional modules have a perfect
duality; indeed ifE is the topological dual of a profinite-dimensionalL- module, thenE
is anL-module with respect to the module operation defined by 〈x ·ω, v〉 = −〈ω, x ·v〉
for x ∈ L, v ∈ V and ω ∈ E.

Duality permits us to transfer concepts from algebraic module theory to topo-
logical module theory. For instance, letV be a profinite-dimensional topological vector
space and an L-module. Then the module is said to be reductive if its dual module is
semisimple.

Duality then permits us to prove theorems like the following:

Theorem 28 (7.18). (a) LetV be a profinite-dimensionalL-module for a Lie algebraL.
Then the following statements are equivalent:

(i) V is reductive.
(ii) Every finite-dimensional quotient module of V is reductive.

(iii) V is the projective limit of finite-dimensional reductive module quotients.
(iv) V is isomorphic to a product of finite-dimensional simple modules.

(b) Every profinite-dimensional L-module has a unique smallest submodule V ss

such that V/V ss is reductive.

The theory and duality of L-modules are discussed in great detail, among many
other things, in Chapter 7.

Now these module theoretical concepts apply to the structure theory of pro-Lie
algebras. The key is the following remark. If g is a pro-Lie algebra, then the underlying
weakly complete topological vector space |g| is a topological L-module with respect
to the module operation defined by x · v = [x, v] for x ∈ g and v ∈ |g|. This module
is called the adjoint module gad. A pro-Lie algebra g is called reductive if its adjoint
module gad is a reductive g-module. It is called semisimple if it is reductive and its
center z(g) is zero.
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While the duality theory of profinite-dimensional L-modules works perfectly, the
theory of pro-Lie algebras has no duality theory in the sense that a pro-Lie algebra g
could have a Lie algebra as a dual object. However, its adjoint g-module gad has a
dual g-module, also called its coadjoint module gcoad. This module duality, however,
attaches to each pro-Lie algebra g an almost purely algebraic object, the coadjoint
module gcoad, and that is extremely helpful for the structure theory of pro-Lie algebras
as the following results will show.

Theorem 29 (The Structure Theorem of Reductive and Semisimple Pro-Lie Algebras).
(a) For a pro-Lie algebra g the following conditions are equivalent.

(i) g is reductive.
(ii) g is the product of a family of finite-dimensional simple or one-dimensional

ideals of g.

(b) Let g be a reductive pro-Lie algebra. Then the commutator algebra [g, g] is
closed and is a product of finite simple real Lie algebras. Further g ∼= z(g) ⊕ [g, g]
algebraically and topologically, and z(g) ∼= RI for some set I .

(c)Apro-Lie algebra is semisimple iff it is a product offinite simple real Lie algebras.
(d) Every pro-Lie algebra has a unique smallest ideal ncored(g) such that g/ncored(g)

is reductive.

Consequently, for a pro-Lie algebra, the following statements are equivalent.

(I) g is semisimple.
(II) g is the product of a family of finite-dimensional simple ideals of g. (7.27, 7.29)

In the light of the fact that pro-Lie algebras g arise as the Lie algebras of pro-Lie
groups G, the very appealing duality theory of profinite-dimensional g-modules is a
surprisingly effective tool for making the structure theory of pro-Lie groups algebraic.

Pro-Lie Algebras and Solvability

Recalling in the structure theory of finite-dimensional Lie algebras that there is always a
unique largest solvable ideal, called the radical, we cannot hope to be able to bypass the
question of solvability in any structure theory of pro-Lie algebras that is deserving of
this name. The fact that the underlying vector spaces of pro-Lie algebras are infinite-
dimensional as soon as the theory begins to be new and interesting is an ominous
warning that solvability is going to be a delicate matter likely to involve set theory
including well-ordering and ordinals.

Firstly, on a purely algebraic basis, in any Lie algebra we must define a transfi-
nite commutator series and use this transfinite series to define a general concept of
solvability. This proceeds as follows.

Let g be a Lie algebra. Set g(0) = g and define sequences of ideals g(α) indexed by
the ordinals α, card α ≤ card g via transfinite induction.

Assume that g(α) is defined for α < β.
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(i) If β is a limit ordinal, set g(β) =⋂α<β g(α).

(ii) If β = α + 1, set g(β) = [g(α), g(α)].
For cardinality reasons, there is a smallest ordinal γ such that g(γ+1) = g(γ ). Set

g(∞) = g(γ ).
Let ω denote the first infinite ordinal. Then g is said to be transfinitely solvable if

g(∞) = {0}.
If g is transfinitely solvable and γ ≤ ω, then g is called countably solvable.
If γ is finite and g(γ ) = {0}, then g is called solvable. Thus we have implications

solvable⇒ countably solvable⇒ transfinitely solvable. Any simple Lie algebra such
as sl(2,R) (that is, the Lie algebra of 2 × 2-matrices with trace 0) yields an example
with γ = 0 and g(∞) = g 	= {0}.

But we are dealing with topological Lie algebras. The natural objects here are the
members of the closed commutator series, giving another three reasonable concepts of
solvability right away.

Indeed, let g be a topological Lie subalgebra of a topological Lie algebra h. (For
instance, h = g.) Set g((0)) = g and define sequences of ideals g((α)) indexed by the
ordinals α, card α ≤ card g via transfinite induction.

Assume that g((α)) is defined for α < β.

(i) If β is a limit ordinal, set g((β)) =⋂α<β g((α)).

(ii) If β = α + 1, set g((β)) = [g((α)), g((α))].
For cardinality reasons, there is a smallest ordinal γ such that g((γ+1)) = g((γ )).

Set g((∞)) = g((γ )).
Letω denote the first infinite ordinal. Then g is said to be transfinitely topologically

solvable, if g(∞) = {0}. If g is transfinitely topologically solvable and γ ≤ ω, then g
is called countably topologically solvable.

If γ is finite and g((γ )) = {0}, then g is called topologically solvable.

However, the Lie algebras we have to consider here are not only topological Lie
algebras, they are in fact pro-Lie algebras, that is projective limits of finite-dimensional
ones. That suggests yet another concept of solvability, namely, a pro-Lie algebra g is
called prosolvable if every finite-dimensional quotient algebra of g is solvable.

It is known and proved just as in the case of topological groups in general that
a topological Lie algebra is solvable if and only if it is topologically solvable. Thus
there is a glimmer of hope that some of these seven reasonable concepts of solvability
coincide.

Theorem 30 (The Equivalence Theorem for Solvability of Pro-Lie Algebras; 7.53).
Let g be a pro-Lie algebra. Then the following assertions are equivalent:

(i) g is transfinitely solvable.
(ii) g is transfinitely topologically solvable.

(iii) g is countably solvable.
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(iv) g is countably topologically solvable.
(v) g is prosolvable.

(vi) g does not contain a finite-dimensional simple Lie algebra.

What a relief! We have to deal with only two concepts: The classical concept
of solvability (which does not play a great theoretical role in our context) and one
concept of “infinite” solvability which, in the later parts of the book, will be called
prosolvability.

Actually this theorem is astonishing. Simple examples show that there are prosolv-
able algebras that are not solvable such as an infinite product of a family of solvable
algebras with an unbounded family of solvable lengths. But it is not a priori clear that
there cannot exist a prosolvable pro-Lie algebra with transfinite commutator series of
arbitrary length in terms of ordinals.

We shall show that a pro-Lie algebra g has a unique largest prosolvable ideal which
is called its radical or solvable radical and is denoted by r(g).

Pro-Lie Algebras and Nilpotency

It is of course no surprise, that we play a similar game with the nilpotency of pro-Lie
algebras arriving, somewhere down the line, at the following result.

Theorem 31 (The Equivalence Theorem for Nilpotency of Pro-Lie Algebras; 7.57).
Let g be a pro-Lie algebra. Then the following assertions are equivalent:

(i) g is transfinitely nilpotent.
(ii) g is transfinitely topologically nilpotent.

(iii) g is countably nilpotent.
(iv) g is countably topologically nilpotent.
(v) g is pronilpotent.

(vi) For every pair x, y of elements in g the vector space endomorphism ad x satisfies
limn(ad x)ny = 0.

A comparison of the preceding two results produces a certain difference in the
structure of condition (vi) in the two cases. This in indicative of the fact, that the
treatment of the two cases is not entirely parallel.

In the case of nilpotency we shall show that a pro-Lie algebra g has a unique largest
pronilpotent ideal which is called its nilradical and is denoted by n(g).

We remarked earlier that every pro-Lie algebra has a unique smallest ideal ncored(g)
such that g/ncored(g) is reductive. We shall see (7.66 and 7.67) that ncored(g) is pro-
nilpotent and that

ncored(g) = [g, g] ∩ r(g) = [g, r(g)].
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Clearly, we have a chain of radicals to which we might add the center z(g)
def= {x ∈ g :

(∀y ∈ g) [x, y] = 0}:
z(g) ⊆ ncored(g) ⊆ n(g) ⊆ r(g)

and they may very well all be different.

While some results of the classical Lie algebra theory are rather difficult to recover
for the case of pro-Lie algebras such as for instance the theory of Cartan subalgebras,
there are others that are obtainable with comparatively little effort by some well chosen
basic definitions and the classical results. An example of these is the Theorem of Ado.

Theorem 32 (Theorem of Ado for Pro-Lie Algebras; 7.105). Every pro-Lie algebra g
has a faithful profinite-dimensional moduleM .

In addition, this module has the property that for every cofinite-dimensional sub-
moduleN and the associated finite-dimensional representationπN : g→ gl(M/N) for
every element x from the nilradical, the endomorphism πN(x) of the finite-dimensional
vector spaceM/N is nilpotent.

The Levi–Mal’cev Theorem for Pro-Lie Algebras

One of the core results of the theory of finite-dimensional Lie algebras over fields of
characteristic 0 is the semidirect splitting of the radical, a result that is usually labelled
the Levi–Mal’cev Theorem. It is one of the remarkable facts of the theory of pro-Lie
algebras that this theorem generalizes intact even though this does not happen by a
simple generalization of the finite-dimensional proof. Nor is the proof based on a
simple passage to the limit. We recall that in order merely to define the concepts of the
various radicals, one had to understand first what solvability and nilpotency meant in
the infinite-dimensional case.

The Levi–Mal’cev Theorem for a finite-dimensional Lie algebra g has two essential
parts: The first is an existence statement saying that there is a subalgebra s such that
the vector space g is the direct sum of the radical r(g) and s. The second part tells us in
which sense two subalgebras s1 and s2 satisfying these conditions agree: There is an
element x of the coreductive radical for which, due to its provenance, the vector space
endomorphism ad x, defined by (ad x)(y) = [x, y], is nilpotent and yields ead xs2 = s1.
Since ad x is nilpotent, ead x is a polynomial and is therefore defined over any field of
characteristic 0 and without any recourse to convergence and topology.

In the case of pro-Lie algebras, there is topology involved in the semidirect sum
decomposition and extra effort has to go into the question whether indeed s is closed
and whether the vector space direct sum is also a topological one.

If x ∈ ncored(g), then ead x = idg+ ad x + 1
2! · (ad x)2 + · · · is a well-defined

automorphism of g called the special automorphism (implemented by x); in order to
show that it is well defined, issues of convergence with respect to the topology of g
have to be clarified, and this topology is rarely first countable.
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Let us now summarize what we shall show in the line of Levi–Mal’cev type results
on pro-Lie algebras.

Theorem 33 (Levi–Mal’cev Theorem for Pro-Lie Algebras: Existence and Conjugacy;
7.52, 7.77).

(i) A pro-Lie algebra g is the semidirect sum r(g) ⊕ s of the radical and a closed
semisimple subalgebra s.

(ii) The radical r(g) is prosolvable, and any Levi summand is the cartesian product
of a family of finite-dimensional simple Lie algebras.

(iii) If h is a closed subalgebra of g such that g = r(g) + h then h contains a Levi
summand s of g.

(iv) Two Levi summands of a pro-Lie algebra are conjugate under a special auto-
morphism.

(v) A pro-Lie algebra g has only one Levi summand s, if and only if g is the direct
sum, algebraically and topologically, r(g)⊕ s.

(vi) If m is a semisimple closed subalgebra of a pro-Lie algebra g and s is a Levi
summand of g, then a conjugate of m under an inner automorphism of g is
contained in s, and m is contained in some Levi summand.

(vii) A semisimple closed ideal is contained in every Levi summand.

Simply Connected Pro-Lie Groups Revisited

Of course we wish to apply the Levi–Mal’cev Theorem for pro-Lie algebras to finding
out information about the structure theory of pro-Lie groups. This is really where the
well-known structure theory of compact connected groups arises (see [102, Chapter 9]),
and in that special case, the group structure rather well reflects the algebra structure.
The noncompact situation is much more complicated. However, in the class of simply
connected pro-Lie groups, the group structure perfectly reflects the Lie algebra struc-
ture. This was anticipated in our statement 14 above. Recalling that, on the level of
pro-Lie algebras we have an algebraic and topological semidirect sum g = r(g)⊕s with
a semisimple Levi–Mal’cev summand s and recalling that the structure of semisimple
pro-Lie algebras is very lucid by Theorem 29 above, we have to clarify first the structure
of simply connected prosolvable groups. Let us first remark, that we shall be able to
show that on a pronilpotent pro-Lie algebra n the Campbell–Hausdorff multiplication
(x, y) �→ x ∗ y = x + y + 1

2 · [x, y] + · · · is well defined, since the infinite series
that defines it in the ring of formal power series in two noncommuting variables can be
shown to be summable for all pairs (x, y) ∈ n× n. With respect to this multiplication,
(n, ∗) is a pro-Lie group.

Theorem 34 (Theorem on the Topological Structure of Simply Connected Pro-Lie
Groups with Prosolvable Lie Algebras; 8.13). LetG be a prosimply connected pro-Lie
group whose Lie algebra g = L(G) is prosolvable, that is, which is its own radical.
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Let n denote its Lie radical or its reductive radical, as the case may be. Then the
following statements hold:

(i) �(n) ∼= (n, ∗) may be considered as a closed normal subgroupN ofG such that
G/N is an abelian pro-Lie group whose exponential function is a homeomor-
phism, and L(G/N) is naturally isomorphic to g/n. Indeed,

(ii) expG/N : g/n→ G/N is an isomorphism of weakly complete vector groups.
(iii) The quotient morphism q : G → G/N admits a continuous cross section

σ : G/N → G such that σ(N) = 1
(iv) There is an N -equivariant homeomorphism ϕ : G → N × (G/N) such that

ϕ(n) = (n,N) for all n ∈ N , and prG/N �ϕ = q.
(v) G is homeomorphic to RJ for some set J .

(vi) G is simply connected in any sense for which the additive group of a weakly
complete topological vector space is simply connected.

This is indeed, for simply connected pro-Lie groups with a prosolvable pro-Lie
algebra, a fairly satisfactory state of affairs. The class of examples that illustrates how
prosolvable pro-Lie groups arise by extending the nilradical by an abelian group is as
follows.

Lemma 35 (The Center-Free Embedding Lemma; 9.41). Let K be any pro-Lie group
possessing enough finite-dimensional fixed point-free representations to separate the
points. This is the case for all compact groups K and all locally compact abelian
groups and all almost connected abelian pro-Lie groups. Then there is a center-free
pro-Lie group G with a normal subgroup V such that G/V ∼= K .

The construction is surprisingly straightforward: Let {Vj : j ∈ J } be a family of
fixed point free finite-dimensional K-modules providing enough representations
πj : K → Gl(Vj ) of K to separate the points. Then we set V = ∏j∈J Vj and
define π : K → Gl(V ) by π(k)(vj )j∈J = (πj (k)(vj ))j∈J . Then we define G to
be the semidirect product V �π K . If K is itself a weakly complete vector group,
thenG is a simply connected metabelian pro-Lie group (that is, solvable with commu-
tative commutator subgroup) such that n = V × {0} is the nilradical and coreductive
radical.

Another instructive example arises when we letK be any compact connected abelian
group. Then each character χ ∈ K̂ determines an irreducible representation πχ : K →
C ∼= R2. The construction of Lemma 35 provides us with a center-free metabelian pro-
Lie groupG = CK̂�π K . The Lie algebra k ofK is isomorphic to Hom(K̂,R), and the
image exp k of the exponential function is the dense proper analytic subgroupA(k,K),
which is exactly the arc component Ka of K and Ga = CK̂ �π |Ka Ka is the unique
dense subgroup A(g,G) of G with Lie algebra g. We discuss “analytic” subgroups of
pro-Lie groups extensively in Chapter 9 of this book.

The abstract quotient group π0(K) = K/Ka is isomorphic to Ext(K̂,Z). Thus
whenever this group is nonzero, the analytic subgroup A(k,K) is proper and dense.
It then follows that A(g,G) is a proper subgroup as well. All nontrivial Lie group
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homomorphic images G/N of G are of the form R2p × Tq with q > 0 and thus have
an infinite Poincaré group.

A good special case is the character group K = Q̂d of the discrete additive group
of rational numbers. Then by Pontryagin Duality the character group K̂ of K may be
identified with Qd . Here for each N ∈ N (G) the factor group G/N is a circle group
and so P(G/N) ∼= Z while G/N0 is of the form R2p × K and thus has a nontrivial
center.

Within any category of locally compact groups the construction of such groups
would be impossible as G is rarely locally compact in these examples.

The structure of simply connected pro-Lie groups is now rather completely de-
scribed in the next theorem.

Theorem 36 (Structure Theorem for Simply Connected Pro-Lie Groups; 8.14). LetG
be a simply connected pro-Lie group with Lie algebra g. Then

(i) G is the semidirect product R �I S of a closed normal subgroup R whose Lie
algebra L(R) is the radical r(g) and a closed subgroup S whose Lie algebra s
is a Levi summand of g.

(ii) There is a family of simply connected simple Lie groups Sj , j ∈ J such that
S ∼=∏j∈J Sj .

(iii) There is a closed normal subgroup N of G contained in R such that the pro-Lie
algebra L(N) = ncored(g) is the coreductive radical of g and that there is an
N -equivariant isomorphism ϕ : R → N × (R/N), where N ∼= (ncored(g), ∗)
and where R/N ∼= r(g)/ncored(g) is a vector group.

(iv) R is homeomorphic to RJ for some set J .
(v) G is homeomorphic to aproduct of copies of Randof a family of simply connected

real finite-dimensional simple Lie groups.
(vi) IfC denotes the identity component of the center ofG, thenG isC-equivariantly

homeomorphic to C ×G/C.

The actual course of events will be this: we shall arrive at this structure theorem
with the hypothesis of G being prosimply connected. This result will then allow us to
demonstrate finally that the following are equivalent statements for a pro-Lie groupG:

(i) G is prosimply connected.
(ii) G is simply connected.

(iii) πG : G̃→ G is an isomorphism.
(iv) πG : G̃→ G is bijective.

The equivalence of (iii) and (iv) is a consequence of the Open Mapping Theorem 8.
In the course of the development of the theory, however, the equivalence of (iii) and
(iv) is proved directly at this point in Chapter 8.
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Part 3. The Fine Lie Theory of Pro-Lie Groups

We have seen that pro-Lie algebras have a remarkably good structure theory and that, in
a first step, the structure of pro-Lie algebra translates in an almost one-to-one fashion
to simply connected pro-Lie algebras. Let us reiterate again that in the category of
locally compact groups this very satisfactory phenomenon cannot be seen because the
simply connected manifestation G̃ = �(L(G)) of a locally compact group is rarely
locally compact; indeed it is locally compact if and only if the radical r(L(G)) is finite-
dimensional and all simple factors of the semisimple pro-Lie algebra L(G)/r(L(G))
are compact simple Lie algebras (that is, simple real Lie algebras with a negative
definite Killing form) with the possible exception of finitely many simple factors.

Yet as soon as one renounces simple connectivity the problems of a global structure
theory start and are, as a rule, more serious than in the theory of Lie groups. First
we have to deal with the issue of what, in the situation of a pro-Lie group, constitutes
an analytic subgroup and what the relation between (closed) subalgebras of the Lie
algebra and connected subgroups might be.

The Lie Theory of Analytic Subgroups

In the theory of topological groups in general one gets accustomed to thinking of
subgroups as being closed. If one has a closed normal subgroup N of a topological
group, thenG/N is a Hausdorff topological group, and in the absence of normality, the
quotient space is still a good Hausdorff homogeneous space on whichG acts transitively.
However, as soon as Lie groups emerge in the picture, certain nonclosed subgroups
simply have to be taken into account, namely, the so-called analytic subgroups. A
subgroup H of a Lie group G is called analytic if it is an immersed submanifold. The
classical example upon which people base their intuition is the torus G = R2/Z2 and

the subgroupsH
def= (R ·(1, r)+Z2)/Z2 which are compact and therefore closed if and

only if r is rational and are nonclosed and dense inG if and only if r is irrational. These,
together with the subgroup (R ·(0, 1)+Z2)/Z2 are all analytic subgroups other than the
singleton one and G itself. Each one corresponds uniquely to a vector subspace (and
subalgebra) of the Lie algebra R2 ofG and all of them have to be taken into account to
make this correspondence work well. The example illustrates well the fact that analytic
subgroups depend in a chaotic fashion on the subalgebras. As one progresses more
deeply into the theory of finite-dimensional Lie groups, one learns that the example
is perhaps more typical than meets the eye at a first encounter. Of course, the closed
connected subgroups of a finite-dimensional Lie group are indeed analytic, these are
the “good” analytic subgroups, and the nonclosed ones which we illustrated above are
the “bad” analytic subgroups – but they are needed.

Another thing one learns in finite-dimensional Lie group theory is that analytic
subgroups can be characterized group theoretically in one of a variety of ways. We
wish to generalize the concept of “analytic subgroup” to the environment of pro-Lie
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groups, and an elaborate analysis and manifold theory is not immediately available
here – nor is it needed in the context of a structure theory of pro-Lie groups. Therefore
we should select a flexible and useful version of the various characterisations of analytic
subgroups and use it for a definition of an analytic subgroup of a pro-Lie group in the
general case. The one we opted for says that a subgroupH of a Lie groupG is analytic
if and only there is some connected Lie group C and a morphism of topological groups
f : C → G such that H = f (C). In Chapter 9 we select this definition for pro-Lie
groups:

Definition 37 (9.5). (i) LetG be a pro-Lie group andH a subgroup. ThenH is said to
be an analytic subgroup ofG if there is a morphism f : C → G of topological groups
from a connected pro-Lie group C into G such that H = f (C) and L(f )(L(C)) is
closed in L(G).

(ii) A subgroup H of a pro-Lie group G is said to be exponentially generated if

h
def= L(H) is a closed Lie subalgebra of L(G) and H = 〈exp h〉.

In any infinite-dimensional Lie theory there is the added complication that subal-
gebras of the Lie algebra may or may not be closed, and on the Lie algebra level we
insist that the Lie subalgebras we consider are closed. The definition above does not
demand that im L(f ) = L(H), however we shall show (9.6 (ii)) that this is the case.
This means that

any analytic subgroup H of a pro-Lie group uniquely determines its own Lie
algebra L(H).

Every connected closed subgroup of a pro-Lie group is analytic (9.7).
For each closed subalgebra h of the Lie algebra g = L(G) of a pro-Lie group the

inclusion h→ g induces a morphism �(h)→ �(g) = G̃, and in view of the universal
morphism πG : G̃ → G, the composition yields a morphism ih : �(h) → G. If we
write L(�(h)) = h, then ih : �(h)→ G is the unique morphism inducing the inclusion
L(ih) : h→ g. It is this morphism that has the special analytic subgroupA(h) or, more
accurately, A(h,G) ofG as its image. Let us retain this notation in the formulation of
the following proposition:

Proposition 38 (9.10, 9.11). For each closed subalgebra h of the Lie algebra L(G)
of a pro-Lie group G, there is at least one analytic subgroup H such that L(H) = h,
namely, H = A(h,G).

If h is an ideal, then �(h)may and will be identified with a closed normal subgroup
A(h, �(g)) of �(g).

The analytic subgroup A(h) is exponentially generated and satisfies L(A(h)) = h.
In particular, the analytic subgroup A(h) is arcwise connected.

Among all analytic subgroups H satisfying L(H) = h, the subgroup A(h) is the
smallest; it is contained in each H satisfying L(H) = h.

As a consequence of this proposition we obtain the following assertion that is one
possible generalisation of the classical correspondence between subalgebras of the Lie
algebra of a Lie group and its analytic subgroups.
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Scholium (Scholium following 9.12). LetG be a pro-Lie group and g its Lie algebra.
Denote the set of all analytic subgroups ofG byA(G) and the set of all minimal analytic
subgroups of G by A0(G). Then the assignment H �→ L(H) : A0(G) → C(g) is a
bijection with inverse function h �→ A(h) and the function h �→ A(h) : C(g)→ A(G)
is a surjection.

However, from most compact connected abelian non-Lie groups we can learn what
happens with analytic subgroups. Indeed let G be a compact connected abelian group
and Ga the arc component of the identity (see for instance [102, Chapter 8]). Then
Ga = 〈expG g〉 = A(g,G) is the minimal analytic subgroup with Lie algebra g =
L(G), andG is the largest analytic subgroup with Lie algebra g. All subgroupsH with
Ga ⊆ H ⊆ G satisfy L(H) = g and some of these may very well be analytic: For
instance (9.8 (iv))

the compact connected metric abelian group whose character group is the discrete
groupQ(N) has a continuumcardinality of different analytic subgroups all ofwhose
Lie algebras agree with g.

In formulating a nomenclature for analytic subgroups of a pro-Lie groupG, one is
in a quandary.

On the one hand, it is pretty clear that a closed connected subgroup of a pro-Lie
group should be called analytic. These have always, classically or otherwise, been the
“good” analytic subgroups.

The relevant representatives of the nonclosed analytic subgroups are the minimal
ones of the type A(h), and they are in a clean bijective correspondence with the closed
Lie subalgebras of the Lie algebra L(G). They are exactly the subgroups 〈expG h〉 for
the closed subalgebras; they are the ones that are amenable to all deeper developments
of a Lie theory of pro-Lie groups. They are the “good bad” analytic subgroups. They
are certainly needed in the Lie theory of pro-Lie groups. One might be tempted to
reserve the term “analytic subgroup” for these subgroups exclusively – but then one
would have excluded the “good analytic subgroups”, the closed connected ones.

So we think that our terminology is a good compromise, still extending the clas-
sical concept, including the “good analytic subgroups” and the “good bad analytic
subgroups” under one common roof. But we do have to allow for the presence of the
myriad other analytic subgroups that have little, if any theoretical significance we can
perceive. But there they are, and as long as they do not upset our scheme of things,
they may stay.

Centralizers and Normalizers

Like in classical Lie theory, centralizers pose no problems.
Let G be a pro-Lie group and H any subset. Then the centralizer or commutant

Z(H,G) = {g ∈ G : (∀h ∈ H) gh = hg} is closed in G and is therefore a pro-Lie
group.
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Let H be a subgroup of a connected pro-Lie group G and assume that H ⊆
〈expG h〉, where h = L(H). (This assumption is automatically satisfied if H is expo-
nentially generated or analytic.) Then the following conclusions hold:

(i) An automorphism α ofG satisfies α(h) = h for all h ∈ H iff L(α)X = X for all
X ∈ h.

(i′) An element g ∈ G is in Z(H,G) iff Ad(g)X = X for all X ∈ h.
(ii) L(Z(H,G)) = z(h, g).

(iii) Z(H,G)0 = 〈expG z(h, g)〉.
These results satisfy most demands when it comes to centralizers, and we provide

a few additional pieces of information in the book, but we do not need to go into them
here. If H = G then Z(H,G) is the center Z(G) of G; likewise z(h, g) is the center
of g on the Lie algebra level. So L(Z(G)) = z(g) and Z(G)0 = 〈expG z(g)〉. In
particular here is a proof that a connected pro-Lie group is abelian iff its Lie algebra is
abelian.

The normalizer story is a bit more delicate. LetH be a subgroup of a groupG. The
normalizer ofH inG is the setN(H,G) = {g ∈ G : gHg−1 = H }. If h is a subalgebra
of a Lie algebrag, then the normalizer ofh ing is the setn(h, g) = {X ∈ g : [X, h] ⊆ h}.
Sometimes n(h, g) is said to be the idealizer of the subalgebra h in g.

We shall prove the following facts (9.20), that illustrate well the significance of the
maximal and the minimal analytic subgroups having a fixed Lie algebra.

LetH be a subgroup of a pro-Lie groupG and assume thatH satisfies at least one
of the following conditions:

(a) H is a minimal analytic subgroup of G.
(b) H is a closed connected subgroup.

Then the following conclusions hold:

(i) An automorphism α of G satisfies α(H) = H iff L(α)(h) = h.
(i′) Let g be an element of G. Then gHg−1 = H iff Ad(g)h = h.
(ii) The normalizer N(H,G) is closed in G.

(iii) L(N(H,G)) = n(h, g).

Item (ii) may be surprising, since H may be a nonclosed analytic subgroup. The
closedness of the normalizer arises from the possibility of transporting the issue to the
Lie algebra level where H has a closed Lie algebra. This is not very much different
from the way it is in classical Lie theory for finite-dimensional Lie groups (see for
instance [102], Proposition 5.54), but some extra care is required.

Commutator Subgroups

The Lie theory of commutator subgroups of analytic groups is hard already in finite
dimensions, and many fairly elementary examples in the domain of pro-Lie groups
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show that certain difficulties we encounter here cannot be circumnavigated. We give
a pronilpotent simply connected pro-Lie group whose commutator subgroup is not
analytic. What we can prove is sampled by the following theorems, in which we
denote the closed commutator subgroup (respectively, closed commutator subalgebra)
by dots.

Theorem39 (9.26). For a connected pro-Lie groupG, the closed commutator subgroup
Ġ is a closed analytic subgroup which agrees with the closure A(ġ) of the unique
smallest analytic subgroup whose Lie algebra is the closed commutator subalgebra ġ
of the Lie algebra g = L(G) of G.

Theorem40 (Theorem on Commutator Subgroups of DenseAnalytic Subgroups; 9.32).
Let G be a connected pro-Lie group and h a closed subalgebra of g = L(G). Then

(i) L(A(h)) ˙ ⊆ ḣ ⊆ h.
(ii) In particular, L(A(h))/h is abelian.

(iii) The abstract group A(L(A(h)))/A(h) is abelian.

Corollary 41 (9.34). LetG be a pro-Lie group andH a dense analytic subgroup with
Lie algebra h, then for any N ∈ N (G), the algebraic commutator subgroup G′ of G
is contained in A(ḣ)N ⊆ HN . As a consequence

G′ ⊆
⋂

N∈N (G)

A(ḣ)N ⊆ A(ḣ)

and

A(ġ) = A(ḣ) ⊆ A(ġ) = Ġ.

Finite Dimensional Connected Pro-Lie Groups

We shall say, provisionally, but in perfect accord with a finer theory of topological
dimension, that a pro-Lie group is finite-dimensional, if dim L(G) <∞. Armed with
the arsenal of analytic subgroups we are able to deal with finite-dimensional pro–Lie
groups and show, that they are rather close to finite-dimensional Lie groups in most
respects. The class of almost connected finite-dimensional pro-Lie groups is seen to
coincide with the class of almost connected locally compact groups. (For the compact
case see for instance [102], Theorem 9.52.)

We shall denote the kernel of the universal morphism πG : G̃→ G by P(G) and
call it the Poincaré group of G. It is natural that in a theory of pro-Lie groups, finite-
dimensional pro-Lie groups play a significant role. This is primarily due to the fact
that for every normal subgroup N ∈ N (G) and its identity component N0 the pro-Lie
groupG/N0 is finite-dimensional, having the same Lie algebra as the Lie groupG/N .
IfG itself is finite-dimensional, thenN0 = {1} for every sufficiently smallN ∈ N (G).
In our discussion of finite-dimensional pro-Lie groups, we pass through the following
theorem, which in itself does not refer to the hypothesis of finite-dimensionality but
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is, despite its technical character at the root of a number of significant results. It deals
with a connected pro-Lie groupG, a normal subgroupN such thatG/N is a Lie group,
and with an intermediate member N1 of N (G), N0 ⊆ N1 ⊆ N and the Lie group

L
def= G/N1:

P(G/N0) −−−−−→ P(L) −−−−−→ P(G/N)⏐⏐� ⏐⏐� ⏐⏐�
L̃

=−−−−−→ L̃
=−−−−−→ L̃

ϕ

⏐⏐� πL

⏐⏐� ⏐⏐�πG/N
N1/N0 −−−−−→ G/N0

ρ−−−−−→ L −−−−−→ G/N.

Theorem 42 (9.39). LetG be a connected pro-Lie group and N an arbitrary member
of the filter basis N (G). Then there is a characteristic subgroup N1 ∈ N (G) that is

open in N such that the connected Lie group L
def= G/N1 and its universal covering

πL : L̃ → L, together with the quotient map ρ : G/N0 → L satisfy the following
conditions:

(∗) There is a lifting morphism ϕ : L̃→ G/N0 such that πL = ρ � ϕ,
(∗∗) N1/N0 = ker(ρ1)N = ϕ(P (L)) = comp(G/N0) is a compact metric totally

disconnected central subgroup of G/N0.
The group P(L)/(P (L) ∩ ker ϕ) is finite iff N0 has finite index in N1
iff N0 ∈ N (G). This is the case if P(L) is finite and this is the case if
P(G/N) = ker πG/N is finite.

(∗∗∗) Let D
def= {(ϕ(g)−1, g) ∈ N1/N0 × L̃ : g ∈ P(L)} ∼= P(L); then

(nN0, g)D �→ nN0 · ϕ(g) : N1/N0 × L̃
D

→ G/N0

is a well-defined isomorphism of locally compact metric groups, and
N/N1 × L̃, N/N0 × L̃ and G/N0 are all locally isomorphic.

(†) The subgroup (ϕ(P (L)) × G̃/N)/D is isomorphic to the minimal
analytic subgroup A(L(G/N0),G/N0) of G/N0 with Lie algebra
L(G/N0) ∼= L(G/N).

While this statement is fairly technical, it proves its value in the subsequent con-
clusions:

Proposition 43 (9.40). LetG be a connected pro-Lie groupwith the following property:

(•) In the filter basis N (G) every member contains a memberN such thatN/N0
is finite.

Then G = A(g,G).
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Theorem 44 (9.44). Let G be a finite-dimensional connected pro-Lie group with Lie
algebra g. Then G is locally compact metric, and there is a compact metric totally

disconnected member� ∈ N (G) such that the Lie group F
def= G/� and the quotient

morphism ρ : G→ F satisfy the following conditions:

(∗) There is a morphism ϕ : F̃ → G such that πF = ρ � ϕ.
(∗∗) � = ϕ(P (F )).
(∗∗∗) Let D

def= {(ϕ(g)−1, g) : g ∈ P(F)} ∼= P(F); then

(c, g)D �→ cϕ(g) : �× F̃
D

→ G

is a well-defined isomorphism of locally compact metric groups, and�×F ,
�× F̃ and G are all locally isomorphic.

(†) The subgroup ϕ(P (F ))×F̃
D

is isomorphic to the minimal analytic subgroup
A(L(G),G) of G with Lie algebra g ∼= L(F ).

We keep in mind: Connected finite-dimensional pro-Lie groups are locally compact
metric. Consequently, almost connected finite-dimensional pro-Lie groups are locally
compact. For any connected finite-dimensional pro-Lie group G there are a totally
disconnected compact abelian group � and a simply connected Lie group L such that
we have a quotient morphism�×L→ G whose kernel is a discrete central subgroup
of �× L projecting onto a dense subgroup of �.

We shall conclude a number of useful pieces of information from these
developments. It is sometimes useful to know that the limit representation G ∼=
limN∈N (G) G/N of a pro-Lie group in terms of its Lie group quotients yields a repre-
sentation

G ∼= lim
N∈N (G)

G/N0

of G in terms of finite-dimensional metric quotients of G modulo connected normal
subgroups N0.

There is a fairly significant conclusion coming out of this context:

Theorem 45 (Existence of the Largest Compact Normal Abelian Subgroup; 9.50).
Let G be a connected pro-Lie group.

(i) ThenG has a unique largest compact central subgroup KZ(G). The factor group
G/KZ(G) does not have nondegenerate compact central subgroups.

(ii) The center Z(G) is a direct product of a weakly complete vector group V
and a subgroup A of Z(G) containing the characteristic subgroup KZ(G);
moreover, the factor group Z(G)/V KZ(G) ∼= A/KZ(G) is prodiscrete and
free of nonsingleton compact subgroups. The characteristic closed subgroup
Z(G)0 comp(Z(G)) is the direct product of V and KZ(G).

By way of illustration, this theorem says that a connected pro-Lie group cannot
contain a central subgroup isomorphic to the additive group Qp of a p-adic rational
field or a discrete group isomorphic to a discrete Prüfer group Z(p∞) = 1

p∞Z/Z.
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However, on the other hand, we give a construction that shows the following (9.51):

Given an abelian pro-Lie group A such that the union comp(A) of its compact
subgroups is compact then there is a connected (metabelian) pro-Lie group G
such that A is (isomorphic to) the center of G.

A second major result using conclusions from our discussion of finite-dimensional
pro-Lie groups is the Open Mapping Theorem which we have already recorded in
Theorem 8. But a lot of information that has accrued at this stage in the book enters
its proof.

Part 4. Global Structure Theory of Connected Pro-Lie Groups

Since we have established a reasonable correspondence between subalgebras and an-
alytic subgroups and handled the Lie theory of commutator subgroups with some
success, we may hope to embark upon a global structure theory and deal with issues
like solvability, nilpotency, reductivity, semisimplicity in the absence of simple con-
nectivity.

Solvability and Nilpotency of Pro-Lie Groups

The question of solvability of infinite-dimensional Lie algebras that we discussed earlier
is paralleled by the question of solvability of arbitrary groups.

Definition 46 (10.1). Let G be a group. Set G(0) = G and define sequences of
subgroups G(α) indexed by the ordinals α, card α ≤ cardG via transfinite induction.

Assume that G(α) is defined for α < β.

(i) If β is a limit ordinal, set G(β) =⋂α<β G(α).
(ii) If β = α + 1, set G(β) = [G(α),G(α)].

For cardinality reasons, there is a smallest ordinal γ such thatG(γ+1) = G(γ ). Set
G(∞) = G(γ ).

Let ω denote the first infinite ordinal. Then G is said to be transfinitely solvable,
if G(∞) = {0}. If G is transfinitely solvable and γ ≤ ω, then G is called countably
solvable.

If γ is finite and G(γ ) = {0}, then G is called solvable.

We proceed to make a parallel definition for the infinite version of nilpotency.

Definition 47 (10.5). LetG be a group. SetG[0] = G and define sequences of normal
subgroups G[α] indexed by the ordinals α, card α ≤ cardG via transfinite induction.

Assume that G[α] is defined for α < β.

(i) If β is a limit ordinal, set G[β] =⋂α<β G[α].
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(ii) If β = α + 1, set G[β] = [G,G[α]].
For cardinality reasons, there is a smallest ordinal δ such that G[δ+1] = G[δ]. Set

G[∞] = G[δ]. Then G is said to be transfinitely nilpotent if G[∞] = {0}. If G is
transfinitely nilpotent and δ ≤ ω, then G is called countably nilpotent.

If δ is finite and G[δ] = {0}, then G is called nilpotent.

Since G(α) ⊆ G[α], any transfinitely nilpotent Lie group is transfinitely solvable.
As we are dealing with topological groups, we have topological versions of these

concepts as well.

Definition 48 (10.8). Let G be a subgroup of a topological group H . (For instance,
H = G.) Set g = L(G) andG((0)) = G; define sequences of normal subgroupsG((α))

indexed by the ordinals α, card α ≤ card g via transfinite induction.
Assume that G((α)) is defined for α < β.

(i) If β is a limit ordinal, set G((β)) =⋂α<β G((α)).
(ii) If β = α + 1, set G((β)) = [G((α)),G((α))].

For cardinality reasons, there is a smallest ordinal γ such that G((γ+1)) = G((γ )).
Set G((∞)) = G((γ )).

Letω denote the first infinite ordinal. ThenG is said to be transfinitely topologically
solvable, if G((∞)) = {1}. If g is transfinitely topologically solvable and γ ≤ ω, then
G is called countably topologically solvable.

If γ is finite and G((γ )) = {0}, then G is called topologically solvable.

And the nilpotent counterpart follows at once.

Definition 49 (10.9). Let G be a subgroup of a topological group. We set G[[0]] = G
and define sequences of closed normal subgroups G[[α]] indexed by the ordinals α,
card α ≤ card g via transfinite induction.

Assume that G[[α]] is defined for α < β.

(i) If β is a limit ordinal, set G[[β]] =⋂α<β G[[α]].
(ii) If β = α + 1, set G[[β]] = [G,G[[α]]].

For cardinality reasons, there is a smallest ordinal δ such that G[[δ+1]] = G[[δ]].
Set G[[∞]] = G[[δ]]. Then G is said to be transfinitely topologically nilpotent, if
G[∞] = {0}.

If G is transfinitely topologically nilpotent and δ ≤ ω, then G is called countably
topologically nilpotent.

If δ is finite and G[[δ]] = {0}, then G is called topologically nilpotent.

All of this may look a bit tedious, but as we are dealing with infinite groups and
with topological groups there does not appear any way to bypass these definitions.
However, since we are dealing here with pro-Lie groups more definitions are to follow
inevitably.
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Definition 50 (10.12). A pro-Lie groupG is called prosolvable if every (finite-dimen-
sional) quotient Lie group G/N , N ∈ N (G) is solvable. It is called pronilpotent if
every (finite-dimensional) quotient Lie group G/N , N ∈ N (G), is nilpotent.

We have transfinite theories of solvability and nilpotency for pro-Lie algebras on
the one hand and for pro-Lie groups on the other. The theory of analytic subgroups
and their correspondence to closed subalgebras is now launched on this side-by-side
situation with good success (see 10.14ff)

The results are sizeable.

Theorem 51 (The Equivalence Theorem for Solvability of Connected Pro-Lie Groups;
10.18). Let G be a connected pro-Lie group and g its Lie algebra L(G). Then the
following assertions are equivalent:

(i) G is transfinitely solvable.
(ii) G is countably solvable.

(iii) G is transfinitely topologically solvable.
(iv) G is countably topologically solvable.
(v) G is prosolvable.

(vi) G does not contain a finite-dimensional analytic simple subgroup.
(vii) g is prosolvable.

(viii) g does not contain a finite-dimensional simple Lie algebra.

Again it is a remarkable feature of connected pro-Lie groups that all reasonable
concepts of infinite solvability coalesce and that a genuine transfinite solvability does
in fact not occur.

The situation with nilpotency is, alas, not equally perfect as far as our knowledge
is concerned.

Theorem 52 (The Equivalence Theorem for Nilpotency of Connected pro-Lie Groups;
10.36). Let G be a connected pro-Lie group and g its Lie algebra L(G). Then the
following assertions are equivalent:

(i) G is transfinitely topologically nilpotent.
(ii) G is countably topologically nilpotent.

(iii) G is pronilpotent.
(iv) g is pronilpotent.

These conditions imply the following ones:

(v) G is transfinitely nilpotent.
(vi) G is countably nilpotent.

Is a transfinitely nilpotent connected pro-Lie group pronilpotent? We do not know.
A transfinitely nilpotent group has to be prosolvable since it is transfinitely solvable
and then Theorem 51 applies. The impediment for a proof is the failure of transfinite
nilpotency to be preserved by passing to quotients. Free topological groups are free
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groups in the algebraic sense and thus are countably nilpotent; but every topological
group is a quotient of a free topological group and thus of a transfinitely countably
nilpotent topological group. In the meantime, we are content to have what Theorem 52
gives us.

The relationship between the topological commutator series and the topological
descending central series on the Lie algebra and on the group level are expressed in a
somewhat delicate fashion involving the minimal analytic subgroups associated with a
closed subalgebra as follows:

Theorem 53 (Theorem on the Commutator Series of Pro-Lie Groups; 10.20). Let G
be a connected pro-Lie group. Then

G((α)) = A(g((α))) for all ordinals α.

Theorem 54 (Theorem on the Descending Central Series of Pro-Lie Groups; 10.38).
Let G be a connected pro-Lie group. Then

G[[α]] = A(g[[α]]) for all ordinals α.

It is quite natural that we should introduce the counterparts of the radical r(g),
the nilradical n(r), and the coreductive radical ncored(g) of a pro-Lie algebra g for a
connected pro-Lie group G. The definitions are a bit delicate, because some obvious
attempts at a definition are not feasible. Here is the way we proceed:

Definition 55 (10.23, 10.40). LetG be a pro-Lie group and g = L(G) its Lie algebra.
Then the closed subgroup 〈expG r(g)〉 will be denoted by R(G). This group is called
the radical of G or, if more clarity is required, the solvable radical of the group G.

The closed subgroups 〈expG n(g)〉 and 〈expG ncored(g)〉 will be denoted by N(G),
respectively Ncored(G). These groups are called the nilradical, respectively, coreduc-
tive radical of G.

Recall that Z(G) denotes the center ofG. Since Z(G)0 = 〈expG z(g)〉 and z(g) ⊆
n(g) ⊆ r(g) we notice that Z(G)0 ⊆ N(G) ⊆ R(G).

We say that a connected pro-Lie group G is semisimple, if R(G) = {1}, and
reductive, if R(G) = Z(G)0. The radical R(G) is a prosolvable connected closed
characteristic subgroup; the nilradical and the coreductive radical are pronilpotent
connected closed characteristic subgroups. More precisely (10.25, 10.28):

Theorem 56 (10.25). IfG is a pro-Lie group, then the radicalR(G) is the largest con-
nected transfinitely topologically solvable normal subgroup and is a closed connected
characteristic subgroup of G such that L(R(G)) = r(g). The factor group G0/R(G)

is semisimple.
If f : G→ H is a quotient morphism of connected pro-Lie groups, then

f (R(G)) = R(H).
Recall that for a morphism of almost connected pro-Lie groups to be a quotient

morphism, by the Open Mapping Theorem it suffices to be surjective.
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Theorem 57 (10.42). If G is a pro-Lie group, then the nilradical N(G) is the largest
connected transfinitely topologically nilpotent normal subgroup and is a closed con-
nected characteristic subgroup of G such that L(N(G)) = n(g).

Theorem 58 (10.43). If G is a connected pro-Lie group, then the coreductive radical
Ncored(G) is the smallest connected closed normal subgroup N such that G/N is
reductive. In particular, G/Ncored(G) and G/N(G) are reductive. It is a closed
connected characteristic subgroup of G such that L(Ncored(G)) = ncored(g).

If f : G→ H is a quotient morphism of connected pro-Lie groups, then

f (Ncored(G)) = Ncored(H).

In a pro-Lie group we have therefore a hierarchy of characteristic connected closed
subgroups:

G

|
G0
|

R(G)

|
N(G)

|
Ncored(G)

|
{1}.

The factor groupG0/R(G) is semisimple, the factor groupG0/Ncored(G) is reductive.
We remember also Z(G)0 ⊆ N(G).

So it is clearly time to say something about semisimple and reductive groups:

Theorem 59 (Characterisation of Semisimple and Reductive Connected Pro-Lie
Groups; 10.29). Let G be a connected pro-Lie group.

(i) G is semisimple iff g is semisimple, and G is reductive iff g is reductive.
(ii) G is semisimple iff G̃ is a product

∏
j∈J Sj of simply connected simple finite-

dimensional Lie groups Sj , j ∈ J . Also G is reductive iff G̃ is a product∏
j∈J Sj of pro-Lie groups Sj , j ∈ J which are either simply connected simple

finite-dimensional Lie groups or copies of R.
(iii) Assume that P is a connected proto-Lie group, embedded into its completion

G according to Theorem 4.1 and assume that g = L(P ) = L(G) such that g
is a semisimple pro-Lie algebra. This assumption is satisfied if P = G is a
semisimple pro-Lie group by (i) above. Then we have the following conclusions:

(a) G̃ = P̃ = �(g) ∼= ∏j∈J Sj where all Sj are simply connected simple Lie
groups, and

πP : G̃ =
∏
j∈J
Sj → P
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is a morphism with dense image whose kernel D is a closed subgroup of∏
j∈J Z(Sj ) and thus is a totally disconnected central subgroup of G̃.

(b) There is a quotient morphism f : P → ∏
j∈J Sj /Z(Sj ) with a totally

disconnected kernel ker f = Z(P ). The quotient P/Z(P ) is a center-free
semisimple pro-Lie group. The completionG of P is Z(G)P , a semisimple
connected pro-Lie group satisfying P/Z(P ) ∼= G/Z(G).

(c) (Sandwich Theorem) The group P is ‘sandwiched’ between two products
via two morphisms∏

j∈J
Sj

πG−−−→ P
f−−−→
∏
j∈J
Sj /Z(Sj )

whose composition is just the quotient morphism obtained by passing to the
quotient Sj → Sj/Z(Sj ) in each factor.

(d) Let G be a semisimple pro-Lie group and let A(g) be the minimal analyt-
ical subgroup with Lie algebra g = L(G). Then G = Z(G)A(g), and
A(g)/Z(A(g)) ∼= G/Z(g) ∼=∏j∈J Gj/Z(Gj ). If A(g) is center-free then
A(g) is complete and therefore equal to G.

Theorem 60 (Theorem on the Closure of Semisimple Analytic Subgroups; 10.32).

Let G be a pro-Lie group and s a closed semisimple subalgebra of g. Set H
def= A(s).

Then the following conclusions hold:

(i) H is topologically perfect, that is, [H,H ] = H .
(ii) [H,H ] ⊆ A(s).

(iii) H is reductive such that [L(H),L(H)] = s.
(iv) In particular,

L(H) ∼= RI × s, s ∼=
∏
j∈J

sj

for some set I and J and a family of simple finite-dimensional Lie algebras sj ,
j ∈ J . Therefore, H̃ ∼= RI ×∏j∈J Sj , Sj = �(sj ).

(v) H = Z(H)A(s) and H/Z(H) is a center-free pro-Lie group.
(vi) Let S be the image of

∏
j∈J �(sj ) in G̃; then

(a) A(s) = πG(S), and
(b) Z(H) = Z(A(s)).
(c) If L(H) = s, that is, if H is semisimple, then KZ(H)A(s, H) = H .

(vii) The minimal analytic subgroup A(s) is closed in G if and only if its center
Z(A(s)) is closed in G. This is the case for instance if Z(A(s)) is compact.

Much of what has been said, but not everything, is included in the following sum-
mary:

Theorem 61 (Characterisation of Reductive Pro-Lie Groups; 10.48). Let G be a con-
nected pro-Lie group. Then the following statements are equivalent:
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(i) G is reductive.
(ii) g is reductive.

(iii) g = z(g)⊕ ġ for a unique semisimple pro-Lie algebra ġ, obtained as the closed
commutator subalgebra of g.

(iv) g = a ⊕ r for a central closed subalgebra a ⊆ z(g) and a closed reductive

subalgebra r
def= L(A(ġ)).

(v) G = AS = AS for a closed connected central subgroup A and a semisimple
minimal analytic subgroup S.

(vi) G = Z(G)S for a semisimple minimal analytic subgroup S, that is, S = A(s)
for some semisimple subalgebra (indeed ideal) s.

(vii) G = Z(G)S for the minimal analytic subgroup S = A(ġ), and ġ is semisimple.

Essential ingredients of theorems on semisimple and reductive groups G are the
simple factors of ġ ∼= ∏j∈J sj . We say that sj is of bounded type if the simply
connected Lie group �(sj ) has a compact center. (See 10.50 for more details.) We say
that a semisimple pro-Lie algebra s is of bounded type if all of its simple factors are of
bounded type. This amounts to saying that the center of �(s) is compact.

This concept is very important in determining the structure of the minimal analytic
subgroup whose Lie algebra is a Levi summand.

Theorem 62 (10.52). Let G be a pro-Lie group and let s be a semisimple pro-Lie

subalgebra of g
def= L(G) defining a minimal analytic subgroup A(s).

(a) If Z(A(s)) is compact, then A(s) is closed.
(b) The following statements are equivalent:

(i) s is of bounded type.
(ii) s ⊆ L(G) for a pro-Lie group L(G) then A(s,G) is closed in G.

In other words, s is of bounded type if and only if A(s,G)) is closed in all pro-Lie
groups G.

Splitting Theorems for Pro-Lie Groups

An important class of structure theorems for topological groups is formed by the so
called splitting theorems. Assume thatN is a normal subgroup of a topological groupG.
There is a representation ι : G → Aut(N) defined by ι(g)(n) = gng−1; we do not
worry here about a topological group structure on the group Aut(N) of automorphisms
of the topological group N or any continuity properties of ι; however what is relevant
here is that the function (g, n) �→ ι(g)(n) = gng−1 : G × N → N is continuous,
allowing us to define a semidirect product G �ι N , that is, the product space N × G
with the multiplication (m, g)(n, h) = (mι(g)n, gh). The function μ : N �ι G→ G

defined by μ(n, g) = ng is a morphism of topological groups. If H is any subgroup
of G, then N �ι H is a subgroup of N �ι G, and the morphism μ restricts to a
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morphism μH : N �ι H → G whose image is NH . We note that the kernel of μH is
{(h−1, h) : h ∈ N ∩H } and that h �→ (h−1, h) : N ∩H → kerμH is an isomorphism
of topological groups. In particular μH : N �ι H → G is bijective if and only if
N ∩ H = {1} and NH = G. In the absence of any Open Mapping Theorem we
cannot assert that μH is an isomorphism. Now assume that we are given G and N ;
then a splitting theorem provides sufficient conditions for the existence of a subgroup
H ofG such that μH : N �ι H → G is an isomorphism. This is sometimes expressed
by saying that N is a semidirect factor of G and that H is a semidirect cofactor. In
fact, under these circumstances one also writes G = N �H which some readers may
consider a mild abuse of notation since the semidirect product sign � is reserved for
the “external” semidirect product.

We have already encountered some typical splitting theorems, for instance Theo-
rem 24 and Theorem 36. Those two theorems had quite different proofs. This variety
of methods will also be typical for the splitting theorems that we will discuss now and
prove in Chapter 11.

The information we have accumulated on reductive pro-Lie groups allows us to
establish a splitting theorem for reductive pro-Lie groups as follows:

Theorem 63 (Splitting Theorem for Reductive Pro-Lie Groups; 11.8). Let s = ġ be
the Levi summand of the pro-Lie algebra g of a semisimple connected pro-Lie groupG,
and assume that s is of bounded type. Then 〈expG g〉, the unique minimal analytic
subgroup with Lie algebra s, is the closed commutator subgroup Ġ of G, and is a
semidirect factor. That is, there is a closed connected abelian subgroup A ofG acting
on Ġ under inner automorphisms such that ι(a)(n) = ana−1 and such that

μA : Ġ�ι A→ G, μA(n, a) = na
is an isomorphism of pro-Lie groups.

Of course, A ∼= G/Ġ, so we could express this as saying that a reductive pro-Lie
group G whose Lie algebra has no simple factor of unbounded type is a semidirect
product of its closed commutator subgroup Ġ and its commutator factor groupG/Ġ. If
s = sl(2,R), then this assertion fails already for locally compact connected groups of
dimension 3. On the other hand, every compact connected group satisfies the hypothesis
of the theorem yielding the so-called Borel–Hofmann–Scheerer Splitting Theorem (see
[102, Theorem 9.39]):

Corollary 64. Every compact connected group G is the semidirect product of its
commutator subgroup G′ and a closed abelian subgroup isomorphic to G/G′.

Here one also uses the fact that the algebraic commutator subgroup of a compact
connected group is closed. (See [102, Theorem 9.2].)

One should draw the reader’s attention to the fact that under the hypotheses of
Theorem 63, by Theorems 61 and 62 there is a surjective morphism Ġ×Z0 → G for
the identity component Z0 of the center Z which, by the Open Mapping Theorem, is
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in fact a quotient morphism. But in general it has a prodiscrete kernel isomorphic to
Z0 ∩ Ġ. Therefore Ġ is not a direct factor.

The question how many cofactors we can have for Ġ is answered by the following
remark:

Assume that the hypotheses of Theorem 63 are satisfied. Let C(Ġ) denote the set
of cofactors of Ġ in G. Then the function

� : HomD(Z(G)0, Ġ
′)→ C(Ġ), �(f ) = {f (z)−1z | z ∈ Z},

is a bijection.(11.9)
An entirely different splitting theorem with rather powerful consequences arises

when the quotient group modulo a normal vector subgroup is compact.

Theorem 65 (The Vector Group Splitting Theorem for Compact Quotients; 11.15,
11.31). Let G be a pro-Lie group with a normal weakly complete vector subgroup N
such thatG/N is compact. ThenG has a compact subgroupK such thatG = N �K .
Moreover, two semidirect cofactors K1 and K2 for N are conjugate under an inner
automorphism implemented by an element of N .

For Lie groups and indeed for locally compact groups this result is fairly well known
to mathematicians working in the area of locally compact groups. (See e.g. [108].) Yet
we prove it here for the first time for pro-Lie groups in general.

Theorem 65 does generalize to prosolvable normal subgroups as follows:

Corollary 66 (Splitting Simply Connected Prosolvable Groups; 11.17, 11.32). Let
G be a pro-Lie group with a normal subgroup N such that N is simply connected
prosolvable and G/N is compact. Then G has a compact subgroup K such that
G = N � K . Moreover, two semidirect cofactors K1 and K2 for N are conjugate
under an inner automorphisms implemented by an element of N .

These results allow us to prove strong structure theorems for prosolvable groups
which give us a reasonably good insight into the structure of prosolvable connected
pro-Lie groups. First we need to attend to some business concerning pronilpotent pro-
Lie groups; we recall that the closed commutator subgroup of a connected prosolvable
group is pronilpotent.

Lemma 67 (Simple Connectivity of Pronilpotent Pro-Lie Groups; 11.27). For a con-
nected pronilpotent pro-Lie group G, the following statements are equivalent:

(i) G has no compact subgroups.
(ii) G has no compact normal subgroups.

(iii) G has no compact normal connected subgroups.
(iv) G is simply connected.
(v) expG : (g, ∗)→ G is an isomorphism of topological groups.

We note that Conditions (i), (ii), (iii) are group theoretical conditions, Condition (iv)
is a topological condition, and (v) is a Lie theoretical condition. The last one reconfirms



44 Panoramic Overview

what we said earlier: The Lie algebra here determines the group, and does so in a
particularly explicit way.

Now we have all the ingredients to prove the following structure theorem which
belongs to the type of “almost” splitting theorems.

Theorem 68 (Structure of Almost Connected Prosolvable Pro-Lie Groups; 11.28).
LetG be an almost connected pro-Lie group whose identity component is prosolvable.
Let C be the unique largest compact central connected subgroup, clearly contained in
the nilradical N(G0). Then there is a maximal compact subgroup K which is abelian
containing C, and there is a connected closed normal subgroup V containing N(G0)

such that V/C is simply connected and G/C = V/C � K/C. There is a compact
abelian subgroup M of G such that G = VM and V ∩ M is totally disconnected
central.

G∥∥∥ }
compact, splits mod V ∩M

V∣∣∣ } ∼= (L(V/N(G0)),+) splits topologically over N(G0)

N(G)0∣∣∣ } ∼= (L(N(G0))/C, ∗)
C = maximal compact connected central∥∥∥ }

compact central

{1}
Roughly speaking this theorem says that the compact subgroups come in two kinds:

one is deep down in the center and is connected, while the other is at the top and “almost”
splits as a semidirect cofactor for V which is simply connected modulo C.

From these results we can get a group theoretical characterisation of simple con-
nectivity for prosolvable groups in the spirit of Lemma 67 for pronilpotent groups.

Corollary 69 (Simple Connectivity of Prosolvable Lie Groups; 11.29). Let G be a
connected prosolvable pro-Lie group. Then the following statements are equivalent:

(i) G does not contain any nontrivial compact subgroup.
(ii) G is simply connected.

(iii) G is homeomorphic to (L(N(G)), ∗)× (L(G/N(G)),+).
If these conditions are satisfied, then G = 〈expG g〉.

Part 5. The Role of Compactness on the Pro-Lie Algebra Level

We have seen in various results on the structure of pro-Lie groups that compact sub-
groups play an important role. In Theorem 45 we say that each connected pro-Lie
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group contains a unique largest compact central subgroup. In describing the global
structure of pronilpotent and prosolvable pro-Lie groups (see notably Theorem 68) we
observed the crucial role of compact subgroups. In Chapter 12 of this book we inves-
tigate this role further in a systematic way. In particular, we are looking for maximal
compact connected subgroups and aim to show their conjugacy, where possible. Our
strategy, however, must be Lie theoretical. That is, we should be able to detect compact
connected subgroups by identifying their Lie algebras. This requires that we look back
at the module theory of pro-Lie algebras and try to transform the topological property
of compactness on the group level into algebraic properties on the algebra level.

Lie Algebra Modules and Compactness

Definition 70 (7.8). Let L be a Lie algebra, E a vector space and V a topological
vector space such that E and V are L-modules.

(i) V is called a profinite-dimensional L-module if it is complete as a topological
vector space and the filter basis M of closed submodulesM ⊆ V such that dim V/M <

∞ converges to 0.
(ii)E is called a locally finite-dimensionalL-module if for each finite subset S ofE

there is a finite-dimensional submodule F of E containing S.

Definition 71 (12.1). (i) Let L be a Lie algebra and let V be an L-module. Then V is
called a pre-Hilbert L-module if V is a real vector space with an inner product (• | •),
that is, a symmetric positive bilinear form, such that

(∀x ∈ L, v,w ∈ V ) (x · v|w) = −(v|x · w).
It is called a Hilbert L-module if, in addition, V is a complete topological vector space
with respect to the norm ‖v‖2 = √(v|v).

(ii) V is called a compact L-module if V can be given an inner product relative to
which it is a Hilbert L-module, and dim V <∞.

(iii) An L-module V is called procompact if V is profinite-dimensional and if all
finite-dimensional quotient modules are compact L-modules.

(iv) An L-module V is called an algebraically locally compact L-module if V
is locally finite-dimensional and if all finite-dimensional submodules are compact
L-modules.

The terminology of a “compact” L-module formulated in (ii) derives from the
adjoint module of a compact Lie group; for details see for instance [102, pp. 188ff.,
notably Proposition 6.2].

We define an algebraic property of a locally finite-dimensional module as “locally
compact” even though it has nothing to do with the topological property of local com-
pactness, but this is not any more deleterious than calling certain finite-dimensional
Lie algebras compact, and this practice is well established.
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It is not hard to see that some of the concepts we introduced appear in dual pairs.
Indeed for a profinite-dimensional L-module V over a Lie algebra L, the following
conditions are equivalent:

(i) V is a procompact L-module.
(ii) The topological dual V ′ of V is an algebraically locally compact L-module.

Therefore we understand the structure of procompact L- modules if we understand the
largely algebraic concept of an algebraically locally compact L-module. In this regard
we shall prove the following theorem with the aid of the Axiom of Choice:

Theorem 72 (The Structure of Algebraically Locally Compact Modules; 12.4).
(i) An algebraically locally compact L-module is a pre-Hilbert L-module which is

an orthogonal direct sum of compact submodules.
(ii)AnyL-submodule of an algebraically locally compactL-module is algebraically

locally compact and is an orthogonally direct summand.
(iii) Any L-module homomorphic image of an algebraically locally compact

L-module is algebraically locally compact.
(iv) For each algebraically locally compactL-moduleE there is aHilbertL-module

Ẽ in which E is dense in the Hilbert space norm.

As a consequence, every algebraically locally compactL-moduleE is a semisimple
L-module. By way of duality, we now can instantly formulate the following results on
procompact L-modules.

Theorem73 (The Structure of Procompact Modules; 12.6). (i)AprocompactL-module
is a direct product of compact simple L-modules and is a semisimple L-module.

(ii) A continuous homomorphic image of a procompact L-module is procompact.
(iii) A closed submodule of a procompact L-module is procompact.

The concept of an L-module for a Lie algebra L is parallelled by that of a
G-module where G is a group. This is what one learns in the elementary linear alge-
bra of group representations. If V is a topological vector space and G a topological
group, then V is called a jointly continuous topologicalG-module if the module action
(g, v) �→ g · v : G × V → V is continuous. We mentioned that the adjoint module
of a compact Lie group G is a compact g-module, and indeed the adjoint module of
a compact group G is a procompact g modules as we shall observe presently. It is
both noteworthy in its own right and useful in various applications we shall make that,
conversely, procompact modules give rise to compact groups.

Theorem 74 (The Compact GroupAssociated with a Procompact Module; 12.8). LetV
be a procompact L-module. Then there is a compact connected group GV ⊆ Aut(V )
such that V is a jointly topological GV -module and there is a homomorphism of Lie
algebras λ : L→ L(GV ) such that

(i) GV = 〈expGV λ(L)〉,
(ii) (∀x ∈ L, v ∈ V ) x · v = limh→0,h	=0

1
h
((expGV λ(h · x)) · v − v), and
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(iii) (∀x ∈ g, w ∈ V ) (expGV λ(x))(w) = w + xV (w)+ 1
2! · x2

V (w)+ · · · ∈ V .
(iv) A closed vector subspaceW of V is anL-module if and only if it is aGV -module.

One of the applications which we derive from this result says that if L = L1 + L2
is a Lie algebra with two subalgebras L1 and L2 satisfying [L1, L2] ⊆ L2, and if V is
a profinite-dimensional L-module such that V is a procompact Lj -module for each of
j = 1 and j = 2, then V is a procompact L-module.

Procompact Lie Algebras and Compactly Embedded Lie Subalgebras of
Pro-Lie Algebras

If g is a pro-Lie algebra, then the adjoint module gad is a profinite-dimensional
g-module, and the coadjoint module gcoad is a locally finite-dimensional g-module.

If k is any Lie subalgebra of g, then the restriction of the adjoint action of g on gad
to k makes gad a profinite-dimensional k-module and the restriction of the coadjoint
action of g on gcoad to k makes gcoad into a locally finite-dimensional k-module which
is dual to the k-module gad. In Definition 71 (iii) we defined the notion of a procompact
L-module for a Lie algebra L. This allows us now to say when a subalgebra of a
pro-Lie algebra is “compactly embedded.”

Definition 75. Let g be a pro-Lie algebra and k a Lie subalgebra. Then k is said to be
compactly embedded into g if the adjoint module gad is a procompact k-module.

If g is compactly embedded into itself, then g is said to be a procompact pro-Lie
algebra.

Obviously, a closed compactly embedded subalgebra is procompact in its own right.
One notices that every commutative pro-Lie algebra, that is, every weakly complete
vector space is a procompact Lie algebra, but a noncentral one-dimensional subalgebra
of the three-dimensional Heisenberg algebra is a compact (hence procompact) Lie alge-
bra which is not compactly embedded into the Heisenberg algebra. In the Heisenberg
algebra, every 2-dimensional vector subspace containing the 1-dimensional center and
commutator subalgebra is a maximal abelian subalgebra and is also an ideal. This
shows that maximal abelian subalgebras and ideals are not unique. It also shows that
the analytic subgroup belonging to a maximal abelian subalgebra may not be compact
in a Lie group having the Heisenberg algebra as Lie algebra.

Here is what it means to be a procompact pro-Lie algebra:

Theorem 76 (The Structure Theorem of Procompact Lie Algebras; 12.12).
(A) Let g be a pro-Lie algebra. Then the following statements are equivalent:

(i) g is procompact.
(ii) The coadjoint g-module gcoad is an algebraically locally compact g-module.

(iii) The coadjoint g-module gcoad is a direct sum of simple compact g-modules.
(iv) g is a direct product of simple compact Lie algebras or copies of R.
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(v) g is a direct product of its center z(g) and its commutator algebra g′, and
g′ is a product of simple compact Lie algebras.

In particular, for a procompact Lie-algebra g, the radical r(g) agrees with its cen-
ter z(g).

(B) A closed subalgebra of a procompact pro-Lie algebra is procompact.
(C) The image of a procompact pro-Lie algebra under a continuous morphism of

Lie algebras is procompact.
(D) A product of any family of procompact pro-Lie algebras is procompact.
(E) A closed procompact semisimple subalgebra k of a pro-Lie algebra g is com-

pactly embedded in g.
(F) g/r(g) is procompact iff g/ncored(g) is procompact.
(G) If V is a profinite-dimensional k-module for a semisimple procompact pro-Lie

algebra k, then V is a procompact k-module.
(H) If k is a procompact semisimple closed subalgebra of a pro-Lie algebra g, then

it is compactly embedded in g.
(I) Assume that a subalgebra g of a pro-Lie algebra h is the sum of two subalgebras

g1 and g2 such that, firstly, g1 and g2 are compactly embedded in h, and, secondly,
[g1, g2] ⊆ g2. Then g is compactly embedded in h.

Compactly embedded subalgebras are preserved under homomorphisms in the fol-
lowing sense: If ϕ : g1 → g2 is a surjective morphism of pro-Lie algebras and k is a
compactly embedded subalgebra of g1, then ϕ(k) is compactly embedded in g2.

Compactly embedded subalgebras behave well in many ways:

(i) If k is a compactly embedded subalgebra of g, then z(g)+ k is compactly em-
bedded.

(ii) The center z(g) of g is compactly embedded. The closure of a compactly em-
bedded subalgebra is compactly embedded.

(iii) A compactly embedded subalgebra k contained in a pronilpotent ideal n is con-
tained in the center z(g). In particular, a pronilpotent compactly embedded ideal
is central.

(iv) Any procompact subalgebra k of a prosolvable pro-Lie algebra g is abelian. In
particular, a compactly embedded subalgebra of a prosolvable pro-Lie algebra is
abelian.

Maximal Compactly Embedded Subalgebras of Pro-Lie Algebras

With the Axiom of Choice one establishes without major difficulty the existence of
maximal compactly embedded subalgebras:

Theorem 77 (Maximal Compactly Embedded Subalgebras: Existence; 12.15). Let g
be a pro-Lie algebra. Then
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(i) every compactly embedded subalgebra of g is contained in a maximal compactly
embedded subalgebra, and

(ii) every compactly embedded abelian subalgebra of g is contained in a maximal
compactly embedded abelian subalgebra.

So existence is an easy matter, but a proof of the fact that maximal compactly
embedded subalgebras are conjugate is quite a challenge. It was primarily for a proof
of this fact that we developed the theory of Cartan subalgebras since they turn out to
be the key here.

Cartan Subalgebras of Pro-Lie Algebras

Even in defining Cartan subalgebras in the context of pro-Lie algebras we need some
auxiliary concepts. The essence is this

Definition 78 (7.84). Let g be a pro-Lie algebra and h a subalgebra. Then we set

g0(h) = {x ∈ g : (∀h ∈ h, j ∈ � (g))(∃n = n(x, h, j) ∈ N) (ad h)n(x) ∈ j}
=

⋂
h∈h,j∈� (g)

⋃
n∈N

((ad h)n)−1(j)

=
⋂

h∈h,j∈� (g)

((ad h)dim g/j)−1(j),

and

g0(h) = {x ∈ g : (∀h ∈ h, j ∈ � (g)) (ad h)(x) ∈ j}
= {x ∈ g : (∀h ∈ h) [h, x] = 0} = z(h, g),

the centralizer of h in g.

These definitions still reflect their finite-dimensional counterpart, but the adjustment
to the pro-Lie algebra environment causes things to be more complicated. Accordingly,
the following theorem is not exactly easy to prove.

Theorem 79 (7.87). For a closed pronilpotent subalgebra h of a pro-Lie algebra g,
the following conditions are equivalent:

(i) g0(h) = h.
(ii) h is its own normalizer.

Once we have this theorem we can at least proceed with the definition of a Cartan
subalgebra of a pro-Lie algebra.

Definition 80 (7.88). A subalgebra h of a pro-Lie algebra g is said to be a Cartan
subalgebra if it is a closed pronilpotent subalgebra satisfying the equivalent conditions
of Theorem 79. That is, a Cartan subalgebra of a pro-Lie algebra is a closed pronilpotent
subalgebra that agrees with its own normalizer.



50 Panoramic Overview

For finite-dimensional Lie algebras, the existence of Cartan subalgebras is proved
by establishing that each regular element is contained in a unique Cartan subalgebra
where the regular elements are determined by finite-dimensional linear algebra and
form an open dense subset. We cannot follow this path in our environment. But with
the aid of the Axiom of Choice we prove:

Theorem 81 (Existence of Cartan Subalgebras; 7.93). Let g be a pro-Lie algebra and
i a cofinite-dimensional closed ideal. Then for each subalgebra hi of g containing i
such that hi/i is a Cartan subalgebra of g/i there is a Cartan subalgebra h of g such
that h+ i = hi.

In fact we shall see that the union of all Cartan subalgebras in a pro-Lie algebra is
dense. It is also a very useful fact to know that if f : g1 → g2 is a surjective morphism
of pro-Lie algebras and if h2 is a Cartan subalgebra of g2, then there exists a Cartan
subalgebra h1 of g1 such that f (h1) = h2. We shall finally show the following result,
generalizing a well-known fact on finite-dimensional Lie algebras but rather delicate
to prove in the context of pro-Lie algebras:

Theorem 82 (Conjugacy of Cartan Subalgebras of Prosolvable Pro-Lie Algebras;
7.101). Let h1 and h2 be two Cartan subalgebras of a prosolvable pro-Lie algebra g.
Then there is an x ∈ ncored(g) such that ead xh1 = h2.

Now we are able to exploit these facts for a proof of the conjugacy of maximal
compactly embedded subalgebras. First one verifies that a lemma which is prominently
proved in Bourbaki [19, Chapter 7], persists for pro-Lie algebras. Indeed:

Lemma 83 (12.17). Let g be a pro-Lie algebra and a a subalgebra satisfying the
following two conditions:

(i) a is abelian.
(ii) g is a semisimple a-module under the adjoint action.

Then a is contained in a Cartan subalgebra of g; in fact the nonempty set C(a, g) of
Cartan subalgebras of g containing a is the set of Cartan subalgebras of z(a, g), the
centralizer of a in g.

Definition 84. An inner automorphism of a pro-Lie algebra is a finite composition of
automorphisms of the form ead x with x ∈ g. An element a ∈ g is said to be conjugate
to b in g if there is an inner automorphism ϕ such that ϕ(a) = b.

Now we proceed by proving that

(i) if in a pro-Lie algebra g all Cartan subalgebras are conjugate, then all maximal
compactly embedded abelian subalgebras are conjugate,

and we conclude from this information and Theorem 82 that

(ii) in a prosolvable pro-Lie algebra all maximal compactly embedded subalgebras
are conjugate under inner automorphisms.
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This is the first step in a longer chain of arguments which end up in the following
conjugacy theorem.

Theorem 85 (Maximal Compactly Embedded Subalgebras: Conjugacy; 12.27). Let g
be a pro-Lie algebra.

(i) If k1 and k2 are two maximal compactly embedded subalgebras of g, then there
is an inner automorphism ϕ of g such that ϕ(k1) = k2.

(ii) If t1 and t2 are two maximal compactly embedded abelian subalgebras of g, then
there is an inner automorphism ϕ of g such that ϕ(t1) = t2.

(iii) If t is a maximal compactly embedded abelian subalgebra of g then there is a
compactly embedded subalgebra k of g containing t and k is unique modulo the
coreductive radical ncored(g), that is, if k1 is a maximal compactly embedded
subalgebra containing t, then there is an x ∈ ncored(g) such that ead xk1 = k.
In particular, if g is reductive, then k is unique. Moreover, there is an inner
automorphism ϕ of g such that ϕ(k1) = k and ϕ(t) = t .

From the conjugacy theorem we can derive some rather immediate consequences.

Corollary 86 (12.31). Let � be the set of pairs (a, k) where k is a maximal compactly
embedded subalgebra of a pro-Lie algebra g and a is a maximal compactly embedded
abelian subalgebra of g contained in k. Let the group Inn(g) of all inner automorphisms
act on � via ϕ · (a, k) = (ϕ(a), ϕ(k)). Then the action is transitive.

So in principle, if Inn(g)(a,k) is the isotropy subgroup of this action fixing the pair
(a, k), then the set� is bijectively equivalent to the quotient space Inn(g)/ Inn(g)(a,k).
By Corollary 8.18 in the book, which exploits Corollary 14 above, it then follows that
� is bijectively equivalent to a quotient space of �(g).

Theorem 85 permits us to intersect all maximal compactly embedded subalgebras
and to conclude, that in this fashion we obtain a unique maximal compactly embedded
ideal:

Corollary 87 (The Largest Compactly Embedded Ideal of a Pro-Lie Algebra; 12.34).
Let g be a pro-Lie algebra and r = r(g) its radical. Then

(i) there is a unique largest compactly embedded ideal m(g);
(ii) there is a unique largest compactly embedded abelian ideal, namely, the center

z(m(g)) = z(g);
(iii) m(g) ∩ r(g) = z(g) = z(m(g)) and m(g)′ = m(g) ∩ s for each Levi summand s

of g.

Further m(g), z(g), and m(g)′ are invariant under all automorphisms of g.

As far as the quotient g/m(g) is concerned, we have to be circumspect; indeed if g
is the 3-dimensional Heisenberg algebra, then m(g) = z(g) = [g, g] and g/m(g) is
abelian, hence procompact. Nevertheless, this appears to be the only point of caution,
because we have:
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Corollary 88 (12.35). The quotient algebra g/m(g) has no nondegenerate compactly
embedded semisimple ideal.

Part 6. The Role of Compact Subgroups of Pro-Lie Groups

The entire purpose of studying the nature of compactly embedded subalgebras of pro-
Lie algebras was to investigate compact subgroups of pro-Lie groups via their Lie
theory. A test of how good our chances are that this will work is the following charac-
terisation theorem of procompact pro-Lie algebras:

Theorem 89 (Group Theoretical Characterisation of Procompact Pro-Lie Algebras;
12.36). For a pro-Lie algebra g the following statements are equivalent.

(i) g is a procompact Lie algebra.
(ii) There is a simply connected topological group G of the form RI × S for some

set I and a compact simply connected compact group S such that g ∼= L(G).
(iii) There is a compact connected group G such that L(G) ∼= g.
(iv) There is a unique projective compact connected group G such that L(G) ∼= g.
(v) �(g) =∏i∈I Si for a family of Lie groups Si each of which is either isomorphic

to R or else is a compact simply connected Lie group.

In these circumstances, if L(�(g)) is identified with g as is possible by Theorem 6.4,
then exp�g) g = �(g). If H is a pro-Lie group with Lie algebra h containing g, then
expH g is an analytic subgroup of H , indeed the minimal analytic subgroup with Lie
algebra g.

For the concept of a projective compact group, which occurred in a unique fashion
in (iv) we must refer the reader to [102, Definition 9.75ff.] and Theorem 8.78ff. As
a consequence and further test for the effectiveness of pro-Lie theory we derive the
core structure theorem of compact connected groups from this result (12.37), which of
course is discussed in source books on compact groups:

Corollary 90 (The Structure Theorem of Semisimple Compact Connected Groups and
the Levi–Mal’cev Structure Theorem for Connected Compact Groups; 12.37). Each
compact connected group is a quotient modulo a central totally disconnected compact
subgroup of the product Z0(G)×∏j∈J Sj , where the Sj are simply connected simple
Lie groups and where Z0(G) is the identity component of the center of G.

We are now beginning to look for maximal compact subgroups of a pro-Lie group,
if there are any. The additive group of p-adic rationals (see Example 1.20 (A)(i)) is
a nondiscrete locally compact but noncompact abelian group which is a union of an
ascending chain of compact (open) subgroups; thus there is no maximal compact sub-
group in such a pro-Lie group. Of course, there are simple discrete abelian examples:
The groups Z(p∞) = (⋃∞n=1

1
pn

Z
)
/Z and

⊕∞
n=1 Z/mnZ (for a family of positive inte-

gersmn) are countably infinite torsion groups which are the union of ascending towers
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of finite groups. It is therefore not a priori clear whether, for instance, connected
pro-Lie groups have maximal compact subgroups at all.

We attack this question by linking the group theory of connected pro-Lie groups
with the Lie algebra theory of pro-Lie algebras. In one direction we have:

Proposition 91 (12.41). Let G be a pro-Lie group and H a compact subgroup with

Lie algebra h
def= L(H). Then eadg h = Ad(H) ⊆ Aut(g) is a compact subgroup and h

is compactly embedded.

In the other direction we must recall what we said in Theorem 74 about the compact
group GV associated with a procompact module V and find:

Proposition 92 (12.42). Let G be a pro-Lie group and h a compactly embedded sub-
algebra of g = L(G). Assume thatH is an analytic subgroup ofG with Lie algebra h,
and denote by V the weakly complete vector space g considered as the procompact
h-module under the adjoint action. Then Ad(H) ⊆ GV ⊆ Ad(g) ⊆ Aut(g), and

Ad(H) = Ad(H). In particular, Ad(H) is a compact group and agrees with ead h.

When we discussed analytic subgroups we saw that for a closed subalgebra h of
the Lie algebra g of a pro-Lie groupGwe could have many analytic subgroupsH with
L(H) = h. There was always a minimal one, there may fail to be a maximal one,
let alone a closed one. Yet if h is compactly embedded, the situation is better in this
regard:

Corollary 93. Let h be a maximal compactly embedded subalgebra of the Lie algebra g
of a pro-Lie groupG. Then for any analytic subgroupH ofG with L(H) = h one has
L(H) = h. In other words, among the analytic subgroups with Lie algebra h there is
a closed one which is the unique largest one.

If nothing else is being said we consider on Aut(g) the topology of pointwise con-
vergence, that is, the one induced from gg. If we now summarize the essential features
of this discussion we notice that on the group side, compactness occurs within the ad-
joint group. Indeed the center of any pro-Lie algebra is always compactly embedded,
but the identity component of the center in the group may easily fail to be compact:

Theorem 94 (12.45). Let h be a closed subalgebra of the Lie algebra g of a pro-Lie
group G. Then the following statements are equivalent:

(i) h is compactly embedded into g.
(ii) Ad(exp h) = ead h is a compact subgroup of Aut(g).

(iii) Ad(〈exp h〉) = 〈ead h〉 is a compact subset of Aut(g).

If one were to create a name for those groups which have procompact Lie algebras
or those whose adjoint groups are compact one might come up with the following
nomenclature:
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Definition 95 (12.46). (i) A connected pro-Lie groupG is called potentially compact,
if its Lie algebra g is a procompact pro-Lie algebra.

(ii) A subgroup H of a pro-Lie group G is called compactly embedded, if Ad(H)
is compact in Aut(g) (with respect to the topology of pointwise convergence).

With this terminology we get the following results:

Corollary 96 (12.47). Let H be an analytic subgroup of a pro-Lie group G and h the
Lie algebra of H inside the Lie algebra g of G. Then the following conditions are
equivalent:

(i) H is compactly embedded in G.
(ii) h is compactly embedded in g.

Theorem 97 (Characterisation of Potentially Compact Connected Pro-Lie Groups;
12.48). LetG be a connected pro-Lie group. Then the following conditions are equiv-
alent.

(i) G is potentially compact.
(ii) G contains a closed weakly complete central vector subgroup V and a maximal

compact subgroupC which is characteristic, such that the functionμ : V ×C →
G, μ(v, c) = vc is an isomorphism of topological groups.

(iii) There is a morphism f : G → K into a compact group with dense image such
that L(f ) : L(G)→ L(K) is an isomorphism.

If these conditions are satisfied, then G = Z0(G)G
′, where Z0(G), the identity com-

ponent of the center is isomorphic to V × comp(Z0(G)), and where the algebraic
commutator group G′ is a semisimple compact connected characteristic subgroup.

That terminology we chose also allows us to formulate very briefly what corre-
sponds, on the group level, to maximal compact embedded subalgebras, respectively,
maximal compactly embedded abelian subalgebras on the Lie algebra level.

Proposition 98 (12.52). LetG be a connected pro-Lie group and h a closed subalgebra
of g = L(G). Then h is maximal compactly embedded in g, respectively, maximal
compactly embedded abelian in g if and only if there is a maximal compactly embedded
connected subgroup H of G, respectively, a maximal compactly embedded connected
abelian subgroup H of G such that L(H) = h.

The Conjugacy of Maximal Compact Connected Subgroups

On our way to maximal compact connected subgroups of a connected pro-Lie group
we are now reaching the crucial step (12.53):

Theorem 99 (Maximal Compactly Embedded Connected Subgroups: Existence and
Conjugacy; 12.53). Each connected pro-Lie group G contains maximal compactly
embedded connected subgroups, respectively, maximal potentially compact connected
abelian subgroups, and these are conjugate in G under inner automorphisms.
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The desired result on maximal connected compact, respectively, maximal compact
connected abelian subgroups is now a relatively easy corollary.

Corollary 100 (Maximal Compact Connected Subgroups: Existence and Conjugacy;
12.54). Each connected pro-Lie group G contains maximal compact connected sub-
groups, respectively, maximal compact connected abelian subgroups. Maximal com-
pact connected subgroups, respectively, maximal compact connected abelian sub-
groups, are conjugate in G under inner automorphisms.

Intersecting a conjugacy class of closed algebras yields an ideal, and intersecting
a conjugacy class of closed subgroups yields a normal subgroup. These simple steps
provide us now with these results:

Theorem 101 (The Largest Compactly Embedded Connected Normal Subgroup of a
Pro-Lie Group; 12.56). Let G be a connected pro-Lie group and R(G) its radical.
Let Z(G)0 = VC denote the direct product decomposition of the identity compo-
nent of the center into a vector group factor V and the maximal compact subgroup
C = comp(Z(G)0) according to the Vector Group Splitting Lemma 22 for Connected
Abelian Pro-Lie Groups. Then the following assertions hold.

(i) There is a unique maximal compactly embedded connected normal subgroup
MaxCE(G).

(ii) L(MaxCE(G)) = m(g), the algebraic commutator subgroup MaxCE(G)′ is
compact and agrees with exp m(g)′, and MaxCE(G) = Z(G)0 exp m(g)′. There
is a quotientmorphismV×C×MaxCE(G)′ → MaxCE(G), givenby (v, z, c) �→
zc whose kernel is isomorphic to C ∩MaxCE(G)′.

(iii) (MaxCE(G) ∩ R(G))0 = Z(G)0 = Z(MaxCE(G))0 and MaxCE(G)′ =
(MaxCE(g) ∩ S)0 for each Levi factor S of G.

(iv) There is a unique maximal compact connected normal subgroup MaxC(G) and
MaxC(G) = comp(MaxCE(G)) = CMaxCE(G)′.

(v) The factor group G/MaxC(G) has no nontrivial compact connected normal
subgroups.

Corollary 102 (12.57). Let G be a connected pro-Lie group.

(i) G contains a largest compactly embedded connected abelian normal subgroup
which is central, namely,

Z(MaxCE(G))0 = Z(G)0,
the identity component of the center of MaxCE(G) and of G itself.

(ii) Similarly, G contains a unique largest compact connected abelian normal sub-
group which is also central, namely,

Z(MaxC(G)0) = comp(Z(MaxCE(G))0) = comp(Z(G)0).

(iii) The factor groupG/ comp(Z(G)0) has no nontrivial compact connected central
subgroups.
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Recall the three-dimensional Heisenberg group N = (R · X + R · Y + R · Z, ∗),
[X, Y ] = Z, x ∗y = x+y+ 1

2 · [x, y]. LetG = N/Z ·Z. Then Z(G) = MaxC(G) =
C(G) = (R ·Z)/(Z ·Z) ∼= R/Z = T. ButG/MaxC(G) ∼= R2 is abelian and therefore
procompact; that is C(G/C(G)) = G/C(G) = R2 	= {0}. Thus, in general, G/C(G)
and G/MaxC(G) may have compactly embedded normal subgroups.

Sometimes it facilitates notation if one introduces a new name.

Definition 103 (12.58). A groupGwill be called compactly simple, if it is a topological
group in which every compact normal subgroup is singleton.

With this terminology we finally get:

Theorem 104 (Largest Compact Normal Subgroup of a Pro-Lie Group; 12.59). Every
connected pro-Lie groupG has a unique largest compact normal subgroup MaxK(G)
and G/MaxK(G) is a compactly simple connected pro-Lie group.

Yamabe’s Theorem ([206], [207]) states that every locally compact almost con-
nected group is a pro-Lie group. In a locally compact pro-Lie groupG, all sufficiently
small members of the standard filter basis N (G) are compact. In view of these two
facts we see that

a locally compact almost connected Lie group is compactly simple only if it is a
compactly simple Lie group.

Naturally, we now wish to know as much as possible about compactly simple
groups. The following is a step in this direction.

Proposition 105 (12.60). LetG be a connected pro-Lie group without nontrivial com-
pact central subgroups. Then the following conclusions hold.

(i) Every compact connected normal subgroup is semisimple and center-free.
(ii) The center Z(G) of G is an abelian pro-Lie group isomorphic to Z(G)0 ×H ,

where the identity component Z(G)0 of the center Z(G) is a vector group iso-
morphic to RI for some set I and whereH is a totally disconnected subgroup of
Z(G) which contains no compact subgroups.

(iii) The nilradical N(G), that is, the largest pronilpotent connected closed normal
subgroup, is simply connected and thus is isomorphic to (n(g), ∗) where n(g) is
the nilradical of g = L(G).

(iv) The radical R(G) is a semidirect product V �K of a simply connected normal
subgroup V containing N(G) and a compact connected group.

TheAnalytic SubgroupsWhose LieAlgebras EqualThat of the Full Group

We have the ingredients for significant results on the unique minimal analytic subgroup
A(g,G) = 〈expG g〉 with full Lie algebra g in any pro-Lie groupG. We discover, that
a certain characteristic, but not necessarily connected, supergroup of the radical R(G)
plays an important role.
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Definition 106 (12.63). Let G be a connected pro-Lie group, let q : G → G/R(G)

denote the quotient map and define Q(G)
def= q−1(KZ(G/R(G))). Call Q(G) the

extended radical of G.

So the extended radical is an extension of the radical by a compact totally discon-
nected abelian group. Of course we would like to know some typical properties of this
extended radical.

Proposition 107 (12.64). For a connected pro-Lie groupG, the extended radicalQ(G)
satisfies the following conditions:

(i) Q(G) is a prosolvable characteristic subgroup of G whose identity component
is the radical R(G).

(ii) Q(G) contains a closed subgroup V that is normal in Q(G), contains the nil-
radical N(G) of G and is simply connected modulo KZ(G)0.

(iii) Q(G) contains a maximal compact abelian subgroupK such thatQ(G) = VK
and V ∩K = KZ(G)0.

(iv) K contains KZ(G).
(v) There is a totally disconnected compact subgroup D of K such that K =
A(L(K),K)D andQ(R) = R(G)D.

Now we are ready for a completely general result on the dense characteristic sub-
group A(g,G) = 〈expG g〉 of a connected pro-Lie group G.

Theorem 108 (Supplementing the Minimal Analytic Subgroup Generated by the Full
Lie Algebra; 12.65). Let G be a connected pro-Lie group and K a maximal compact
subgroup of the extended radicalQ(R). Then

G = K · A(g,G).
There is a totally disconnected compact subgroup D of K such that

G = D · A(g,G) and Q(G) = R(G)D.
There is a connected compact abelian subgroup C of G containing K . In particular,
G = C · A(g,G) is generated by divisible groups.

This result has many consequences. One immediate outcome is the following:

Corollary 109 (12.66). The abstract group G/A(g,G) is abelian. The algebraic
commutator subgroup of G is contained in A(g,G).

The next corollary, however, requires the full power of Open Mapping Theorem
for Almost Connected Pro-Lie Groups (Theorem 8). In addition one has to ascertain
that the group G acts automorphically on the simply connected universal group G̃ via
a homomorphism α : G→ Aut(G̃).
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Corollary 110 (The Resolution Theorem for Connected Pro-Lie Groups; 12.68). LetG
be a connected pro-Lie group. Then there is a totally disconnected compact subgroup
D of the extended radical and a quotient morphism of pro-Lie groups

δ : G̃�α D→ G, δ(x, k) = πG(x)k.
The morphism

x �→ (x−1, πG(x)) : π−1
G (D)→ ker δ

is an isomorphism of prodiscrete groups. The morphism δ induces an isomorphism
L(δ) of pro-Lie algebras. There is an exact sequence

1 → π−1(D)→ G̃�D
δ→ G→ 1.

The following consequence is a kind of Levi–Mal’cev decomposition theorem on
the group level. We recall that it is rather frustrating in general to imitate the clean
Levi–Mal’cev splitting of the Lie algebra on the group level.

Corollary 111 (12.69). LetG be a connected pro-Lie group and let g = r(g)+ s be a
Levi–Mal’cev decomposition. Then G = Q(G) · A(s,G), A(s,G) = 〈expG s〉.

Under special conditions more elegant conclusions may be drawn, like for instance
the following:

Theorem 112 (12.70). Let G be a connected pro-Lie group and let g = r(g)+ s be a
Levi decomposition of its Lie algebra. Assume the following hypotheses:

(i) [r(g), s] = {0}, and
(ii) R(G)/KZ(G)0 is simply connected.

Then G = KZ(G) · A(g,G).
The preceding results motivate a further definition:

Definition 113 (12.72). A connected pro-Lie groupG will be called centrally supple-
mented if

G = Z(G)A(g,G) = Z(G)πG(G̃).
By Theorem 112, for example, all reductive connected pro-Lie groups and all

prosolvable pro-Lie groups which are simply connected modulo the maximal connected
central compact subgroup are centrally supplemented. The Center-Free Embedding
Lemma 35 gives us plenty center-free metabelian connected pro-Lie groupsG in which
A(g,G) is a proper subgroup and which, therefore, are not centrally supplemented.

For centrally supplemented connected pro-Lie groups, there exist more elegant
versions of Theorem 108 and Corollary 110, namely:

Theorem 114 (The Resolution Theorem for Centrally Supplemented Pro-Lie Groups;
12.74). Let G be a connected centrally supplemented pro-Lie group. Then there is a
prodiscrete central subgroup D of G such that there is a quotient morphism

δ : G̃×D→ G, δ(x, d) = πG(x)d
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inducing an isomorphism L(δ) of Lie algebras, and the kernel ker δ is prodiscrete and
isomorphic to π−1(D) ∩ A(g,G). There is an exact sequence

1 → π−1(D)→ G̃×D δ→ G→ 1.

We noted in discussing the universal morphism πG : G̃ → G that already the
example of compact connected abelian groups shows that for non-Lie groups, πG fails
rather significantly to be a universal covering morphism (which it is if G is a Lie
group!). In general it is neither surjective, nor open, let alone a local isomorphism.
The morphism δ in the Resolution Theorems is as close as one can get to adjust πG
in such a fashion that something resembling a universal covering results: At least it
is surjective, open, and has a prodiscrete kernel. Resolution Theorems for compact
abelian groups and compact groups were described for the first time in our book [102]
in Chapters 8 (Theorem 8.20) and 9 (Theorem 9.51).

One of the applications we are making of (a special case of) the Resolution Theorems
is that we can prove a fact on maximal compact subgroups of connected pro-Lie groups
that is overdue. We know that maximal compact connected subgroups exist and are
conjugate, and we know that a unique maximal compact normal subgroup exists. Yet
up to this point we do not know whether maximal compact subgroups exist. Now in
this direction we show that maximal compact subgroups of connected pro-Lie groups
exist and are connected, and therefore are all conjugate. However, the situation is
really better. We shall come up with a significant result, that illustrates quite well
our motivation to invest so much energy into the investigation of compact and notably
maximal compact subgroups. The core theorem is the following.

Theorem 115 (Theorem on the Maximal Compact Subgroups; 12.81). Let G be an
arbitrary connected pro-Lie group. Then:

(i) G has at least one maximal compact subgroup C.
(ii) Every maximal compact subgroup is connected.

(iii) All maximal compact subgroups are conjugate under inner automorphisms.
(iv) There exists a set J and a homeomorphism ε : C × RJ → G such that

ε(C × {0}) = C. Also Ga = ε(Ca × RJ ) = 〈expG g〉.
None of these statements is obvious. Our proof gives many more details about

Statement (iv). This last one, taken together with the Borel–Scheerer–Hofmann Split-
ting Theorem (see [102, Theorem 9.39], and see also Theorem 11.8 in this book) gives
the following statement:

Theorem 116 (Theorem on the Topological Splitting of Pro-Lie Groups; 12.87). Every
connected pro-Lie group is homeomorphic to a direct product of a compact connected
semisimple group, a compact connected abelian group, and a space RJ for a set J .

Clearly, this gives us a characterisation of the local compactness of a connected
pro-Lie group. The cardinal of J is invariantly attached to G, and we are justified (as
we shall see in detail) to call this cardinal the dimension of the quotient space G/C.
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We shall call this cardinal the manifold rank of G. The group G is locally compact if
and only if its manifold rank is finite.

These theorems will be anticipated a few times in the course of the book, so for
instance in the structure theorem for connected abelian pro-Lie groups (Theorem 23)
and Lemma 22, or the Structure Theorem 36 for Simply Connected Pro-Lie Groups.

An obvious but striking consequence is that all the information that algebraic topol-
ogy (homotopy, homology, cohomology) gives us on compact connected groups yields
this precise information on connected pro-Lie groups, since according to the preceding
theorems each maximal compact subgroup C of a connected pro-Lie group G is a ho-
motopy deformation retract and thus is homotopically equivalent (that is, isomorphic
in the homotopy category) to G.

Another consequence will be that a connected pro-Lie groupG is locally compact if
and only if the linear codimension of the Lie algebra L(C) of a maximal compact sub-
group C ofG is finite. This is equivalent to saying that the factor groupG/MaxK(G)
of G modulo the unique largest compact normal subgroup is a Lie group. (The proof
of this fact uses Yamabe’s Theorem.)

It does perhaps not come as a surprise that with the powerful tools that these results
provide one can successfully revisit the scenes of earlier investigations. One example
is the Open Mapping Theorem which we presented early in this overview, namely, in
Theorem 8, being aware that it requires tools that become available at a later stage. The
setting of Open Mapping Theorems is always the same: We have a surjective morphism
f : G→ H of topological groups and we are hoping for additional sufficient conditions
which will allow us to conclude that f is an open mapping and thus is equivalent to a
quotient morphism. The perennial illustration is the identity map Rd → R from the
discrete additive group of real numbers to the additive group of real numbers in its
natural topology. This is a bijective morphism between abelian Lie groups that fails to
be open. If G and H are pro-Lie groups we have seen in Theorem 8 that if G/G0 is
compact then f is open. We will show the following result.

Theorem 117 (Alternative Open Mapping Theorem; 12.85). Assume that f : G→ H

is a surjective morphism from a pro-Lie groupG onto a connected pro-Lie groupH and
that the quotient group G/ ker f is complete. If the morphism L(f ) : L(G)→ L(H)
of pro-Lie algebras is surjective, then f is open.

In Theorem 4.20 and its corollaries which we previewed in Theorem 15 above we
shall show that if f is open, then L(f ) is a quotient morphism. We can express the
gist of the situation by saying

A bijective morphism f : G → H of pro-Lie groups, of which at least one is
connected, is an isomorphism if and only if it induces an isomorphism
L(f ) : L(G)→ L(H) of Lie algebras.

When formulated in this fashion it becomes evident that this circle of ideas belongs
genuinely to a Lie theory of pro-Lie groups.

This last theorem permits us to prove a structure theorem, well known but not trivial
for Lie groups and a hard fact for pro-Lie groups:
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Theorem 118 (12.87). The center of a connected pro-Lie group is contained in some
closed connected abelian subgroup.

Part 7. Local Splitting According to Iwasawa

We already referred to Iwasawa’s paper [120] of 1949 as one of the most influential
contributions to the structure theory of topological groups. One of the results in that
paper turned out to be immensely practical and like no other result it illustrates how
the structure theory of locally compact groups reduces largely (but not completely!) to
the structure theory of compact groups and classical Lie theory.

Theorem 119 (Iwasawa’s Local Splitting Theorem for Connected Locally Compact
Groups). Any identity neighborhood of a connected locally compact groupG contains
a compact normal subgroup N such that G/N is a Lie group and that the groups G
and N ×G/N are locally isomorphic.

This enables us to produce a quotient morphism from N × G̃/N to G, where L̃ is
the universal covering group of a connected Lie group L and where the kernel of this
morphism is discrete. In general, N is not connected, but this quotient map is the next
best thing to a covering morphism.

Any general theory of pro-Lie groups will have to be measured by the elucidation
that it offers of this result. Does it generalize to connected pro-Lie groups? The answer,
alas, is no. In Chapter 13, which deals with this topic we illustrate this negative situation
by producing a center-free pronilpotent pro-Lie group, a metabelian center-free pro-
Lie group and a class two nilpotent pro-Lie group, none of which permits locally
splitting in the sense of the Iwasawa Local Splitting Theorem. The latter example is
the Heisenberg group of the realm of pro-Lie groups. So what, if anything, is the
obstruction that prevents us from proving a straightforward generalisation?

Let G be an arbitrary pro-Lie group. Note right away that we do not insist that it
be connected. Its identity component G0 has a largest connected normal pronilpotent
subgroup N(G0) which we call the nilradical which we already mentioned several
times. Naturally, it contains the identity component Z(G0)0 of the center of G0. We
shall call the quotient N(G0)/Z(G0)0 the nilcore of G, and we shall also abbreviate
it by N (G). We shall show (13.16) that the nilcore always is a simply connected
pronilpotent pro-Lie group. We know from Theorem 34 and its context that its Lie
algebra n has an everywhere defined Campbell–Hausdorff multiplication

∗ : n× n→ n, X ∗ Y = X + Y + 1
2 [X, Y ] + · · ·

such that the exponential function exp : (n, ∗) → N (G) defines an isomorphism of
pro-Lie groups. The Lie algebra of the nilcore determines its structure completely. It
is homeomorphic to the weakly complete topological vector space underlying n which
is isomorphic to RJ for a set J with a uniquely defined cardinality which we also
call the nildimension of G, written ν(G). That is a cardinal valued invariant of G.
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The counterexamples mentioned above all have infinite nildimension. We show in
Chapter 13 the following:

Theorem 120 (The Local Splitting Theorem for Pro-Lie Groups; 13.19). Let G be
a pro-Lie group and assume its nildimension ν(G) to be finite. Then every identity
neighborhood contains an almost connected normal pro-Lie subgroup N such that
G/N is a Lie group and the groups G and N ×G/N are locally isomorphic.

No connectivity is required, but apart from the hypothesis that nildimension be
finite nothing is required – except, of course, that we are talking about pro-Lie groups.
We recognize, that the obstruction is the nilcore. On the other hand, we should also
recognize that it is easy to visualize even nilpotent pro-Lie groups of arbitrary nildimen-
sion that do have local splitting, for instance, ifH3 is the three-dimensional Heisenberg

group, then G
def= HJ3 for an infinite set J is a class two nilpotent pro-Lie algebra of

nildimension ν(G) = card J , and by its very construction, G has local splitting.
The hypothesis ν(G) <∞ implies global structural results:

Theorem 121 (The Finite Nildimension Theorem;13.19, 13.22). Let G be a pro-Lie
group. Then the following statements are equivalent:

(i) The nildimension ν(G) is finite.
(ii) G is locally isomorphic to the product of a closed normal almost connected

subgroup with a reductive identity component, and a connected Lie group.

If these conditions are satisfied, then there is a compact totally disconnected central
subgroupD ofG and an open surjectivemorphismμ : D×G̃→ G,μ(d, x) = dπG(x)
with a prodiscrete kernel.

However, in Theorems 120 and 121, the hypothesis ν(G) <∞ is acceptable insofar
as it is implied by the assumption that G be locally compact. Indeed: if G is locally
compact so is its nilcore N (G), and since we saw that N (G) is homeomorphic to RJ

with card J = ν(G) we see that N (G) is locally compact iff ν(G) < ∞. Therefore
we deduce the Iwasawa Local Splitting Theorem for Locally Compact Groups in the
following form which is more general than the classical version:

Corollary 122 (Iwasawa’s Local Splitting Theorem Revisited). Let G be a locally
compact pro-Lie group. Then there is an open subgroup G ofG and there are arbitrarily
small compact normal subgroups N of G such that G/N is a Lie group and G and
N ×G/N are locally isomorphic.

Classically, the Iwasawa Local Splitting Theorem 119 required the hypothesis of
connectivity. The presentation of the local splitting theory in the frame work of pro-
Lie group theory, culminating in Theorem 120 and Corollary 118 does not require this
hypothesis, thanks to an effective pro-Lie theory.

———————

Pro-Lie-tarians of the world: unite!
Karl Morrix, 2007


