
Introduction

The two basic kinds of homology theories for algebras that are considered in non-com-
mutative geometry are K-theory and cyclic .co/homology. Periodic cyclic homology
HP�.A/ extends de Rham cohomology H�dR.M/ for manifolds in the sense that
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for any smooth compact manifold M ; here C1.M/ denotes the Fréchet algebra of
smooth functions onM . The dual theory HP�.A/ is called periodic cyclic cohomology.
Both are special cases of bivariant periodic cyclic homology HP�.A;B/. We are
going to study two closely related (in fact, almost identical) variants of periodic cyclic
homology called analytic cyclic homology HA� and local cyclic homology HL�. Both
have dual cohomology theories and extend to bivariant theories.

Several of the tools we develop to study these theories are useful for other purposes
as well. Therefore, even if you are not at all interested in cyclic homology, you may
find that Chapters 1 and 3 and parts of Chapter 2 contain interesting ideas in functional
analysis; the construction in Chapter 6 can also be applied in the context of bivariant
K-theory. The Appendix contains a brief survey of some preliminaries on homological
algebra in symmetric monoidal categories and constructions with differential forms.

Each chapter has its own introduction which summarises its contents. In this in-
troduction to the whole book, we first discuss the shortcomings of periodic cyclic
homology that justify the existence of analytic and local cyclic homology, and we
discuss their relationship to the entire cyclic cohomology of Alain Connes. Then we
discuss some of the preliminaries from functional analysis and algebra that we need to
understand analytic and local cyclic homology and mention a few particularly important
ideas, including excision and invariance for isoradial subalgebras.

What is wrong with periodic cyclic homology?

We get HP�.A/ by a limiting process from the cyclic homology HC�.A/, which is in
turn computable from Hochschild homology HH�.A/ by a spectral sequence. Hence
periodic cyclic homology only gives reasonable results for algebras whose Hochschild
homology is sufficiently rich. Since Hochschild homology is closely related to dif-
ferential forms, this requires a certain amount of differentiability. Therefore, periodic
cyclic homology yields poor results for C �-algebras; similarly, de Rham cohomol-
ogy only makes sense for smooth manifolds. When we study a C �-algebra A, we
use HP�.A1/ for an appropriate dense subalgebra A1, which plays the role of the
subalgebra C1.M/ of smooth functions in the algebra C.M/ of continuous functions.
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This works well enough in many concrete cases. But HP�.A1/may depend on the
choice of the subalgebraA1. For instance, consider a connected Lie groupG, say, the
circle group T1. Let C �.G/ be the group C �-algebra of G. Let C1.G/ � C �.G/
be the dense subalgebra of smooth functions. Let R.G/ � C1.G/ be the dense
subalgebra that is spanned by the matrix coefficients of irreducible representations.
Both R.G/ and C1.G/ behave like 0-dimensional spaces, so that their periodic cyclic
homology agrees with the 0th Hochschild homology, HH0. The latter turns out to be
different for R.G/ and C1.G/ (see §2.4). Although C1.G/ is a more obvious choice
of smooth subalgebra, R.G/ gives better results in the sense that the Chern–Connes
character

K�.A/˝Z C Š K�.A1/˝Z C ! HP�.A1/

is an isomorphism for A1 D R.G/, but not for A1 D C1.G/.
Another drawback of periodic cyclic cohomology is its built-in finite dimensional-

ity: it only admits Chern–Connes characters for finitely summable Fredholm modules.

Entire to analytic cyclic homology and cohomology

Entire cyclic cohomology extends periodic cyclic cohomology by, roughly speaking,
allowing infinite-dimensional cochains with sufficiently slow growth. The main ap-
plication is to construct Chern–Connes characters for #-summable Fredholm modules
(the summability condition restricts the growth of the singular values of certain com-
pact operators). The JLO cocycle defined in [53] (and named after its creators Jaffe,
Lesniewski, and Osterwalder) provides an explicit formula for such a character. The
JLO cocycle and related formulas are useful for index computations such as the proof
of the local index formula of Alain Connes and Henri Moscovici ([10]); thus entire
cyclic cohomology is interesting even for algebras like C1.M/ for which we know
that it coincides with periodic cyclic cohomology.

Entire cyclic cohomology goes beyond Hochschild cohomology, but it does not yet
address the first shortcoming of periodic cyclic cohomology mentioned above: a result
of Masoud Khalkhali ([62]) yields HE�.A/ D HP�.A/ for nuclear C �-algebras, so
that we seem to gain nothing. Nevertheless, some apparently small technical changes
yield a theory with considerably better properties.

First we pass from entire cyclic cohomology to the dual homology theory HE�
(see also [34]). To define this theory properly, we first need a category of algebras
on which to define it. The growth condition for entire cyclic cochains only depends
on the collection of (von Neumann) bounded subsets of A, which we call its von
Neumann bornology. A bornology is a suitable family of subsets, called bounded
subsets, and a bornological algebra is an algebra over R or C with a bornology such
that the multiplication is bounded. This category of algebras is the natural domain for
entire cyclic homology and cohomology. The chain complex that defines entire cyclic
homology carries a bornology by construction, but it carries no obvious topology in
general.
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We may choose another bornology on a topological algebra than the von Neumann
bornology. In fact, our default choice is the bornology of precompact subsets because
this yields considerably better results. To avoid confusion with the existing entire
theories, we call our theories analytic cyclic homology and cohomology and denote
them by HA� and HA�. Both are defined for complete bornological algebras. When
we apply them to topological algebras, it is understood that we equip them with the
precompact bornology; in contrast, entire cyclic homology and cohomology use the
von Neumann bornology.

Another reason to change notation is that the apparent importance of entire functions
for entire cyclic cohomology is an artefact created by looking only at a cohomology
theory. The relevant function algebra is the algebra C..t// of analytic power series, that
is, power series with a non-zero radius of convergence. The space of entire functions
only appears because it is the dual space of C..t//. Analytic power series in several non-
commuting variables are a crucial ingredient in our conceptual approach to analytic
cyclic homology.

Unlike the periodic and entire cyclic theories, analytic cyclic homology yields good
results for C �-algebras (with the precompact bornology). It is split-exact, C �-stable,
invariant under continuous homotopies, and additive for C �-completions of infinite
direct sums. Standard results related to the Universal Coefficient Theorem for Kasparov
theory yield a Chern–Connes character K�.A/˝C ! HA�.A/ and show that it is an
isomorphism ifA belongs to the bootstrap category (see §7.2). In particular, for locally
compact topological spaces X we have

HA�
�
C0.X;C/

� Š K�.X/˝C Š H�c .X IC/:
We also construct a Chern–Connes character from the Kasparov K-homology K�.A/ to
analytic cyclic cohomology HA�.A/; notice that we require no summability condition.

This should suffice to make you curious about analytic cyclic homology. But a lot
of preparation is needed until we can prove these results. The good news is that many
of these preliminary results are useful for other purposes as well; therefore, large parts
of this book may be useful to readers with no interest in cyclic homology. The main
difficulty in learning about analytic cyclic homology is that it requires a good deal of
both functional analysis and homological algebra; even more, the results that we need
from these areas are omitted in most textbooks for beginners.

Background from functional analysis: bornologies

Bornological vector spaces have not received much attention by functional analysts,
although there are several situations where they work better than topological vector
spaces. As a general rule, this happens whenever we combine (homological) algebra
and functional analysis. I have used bornological vector spaces for problems in repre-
sentation theory and homological algebra in [68]–[72]. We spend some time reviewing
the basic theory of bornological vector spaces in Chapter 1.
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Besides basic issues of functional analysis, we particularly emphasise categorical
constructions. Much of this is needed in order to discuss the relationship between
complete bornological vector spaces and inductive systems of Banach spaces. This
relationship is crucial for the more exciting results about analytic cyclic homology
mentioned above. Since inductive systems are rather abstract objects, the only elegant
way to deal with them is via general methods from category theory. We use some of
these techniques already in the context of bornological vector spaces – where they are
not yet so crucial – to exhibit the similarities between both setups.

It is not surprising that tensor products are a crucial ingredient for our cyclic theories
and therefore duely studied in Chapter 1. In addition, approximation properties play
an important technical role in several proofs. In connection with tensor products, we
emphasise symmetric monoidal categories. It has already been noticed by Guillermo
Cortiñas and Christian Valqui that this is the right context for studying cyclic homology
theories. When we study Hochschild homology or periodic cyclic homology for, say,
Banach or complete locally convex topological algebras, then we use the completed
projective tensor product and restrict attention to continuous maps. Here we study

algebras in the categories Cborn of complete bornological vector spaces and
��!
Ban of

inductive systems of Banach spaces. In each case, the definitions are essentially the
same but employ different tensor products. Careful readers should wonder which prop-
erties of the cyclic theories extend to these more exotic kinds of algebras. The notion of
a symmetric monoidal category formalises the basic associativity, commutativity, and
monoidal properties of tensor products that we need to define algebras and modules
and do homological algebra with them. All the basic features of Hochschild, cyclic,
and periodic cyclic homology extend to algebras in any Q-linear symmetric monoidal
category.

Another crucial concept from functional analysis is the notion of . joint/ spectral
radius for bounded subsets in bornological algebras. The spectral radius %.S/ of a
bounded subset S in a bornological algebra is defined exactly as for a single element:
it is the infimum of the set of scalars r > 0 for which

.r�1 S/1 WD
1[
nD1

.r�1 S/n

is bounded. This notion contains more information than the spectral radius of single
elements because the elements of S need not commute. Roughly speaking, spectral
radius estimates ensure that certain power series in several non-commuting variables
converge.

The joint spectral radius is an intrinsically bornological concept because it deals with
subsets. Even for commutative algebras, where the joint spectral radius usually contains
no more information than the spectral radius for single elements, the bornological
framework is more suitable to study the functional calculus. This was noticed already
by Lucien Waelbroeck ([107]).

We use the spectral radius to define two classes of bornological algebras with
good functional calculus. A bornological algebra is called locally multiplicative if
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%.S/ < 1 for all bounded subsets S , and analytically nilpotent if %.S/ D 0 for all
bounded subsets S . Both classes of algebras play an important role for analytic cyclic
homology.

The spectral radius generates a useful notion of smooth subalgebra. LetA andB be
locally multiplicative bornological algebras. A bounded homomorphism f W A ! B

with dense range (in a suitable sense) is called isoradial if %
�
f .S/IB� D %.S IA/

for all bounded subsets S � A. In most applications, f is injective, so that we may
view A as a dense subalgebra of B . The isoradiality condition means that A � B is
closed under functional calculus in several non-commuting variables. We check that
this condition behaves nicely with respect to various constructions like extensions and
tensor products, and we study several important examples. It is much harder to get
a good notion of smooth subalgebra in the context of topological algebras; the most
useful definition is due to Bruce Blackadar and Joachim Cuntz (see [3]).

Some relevant algebraic notions

We study algebras and modules in the somewhat exotic categories Cborn and
��!
Ban. As

we have already explained, we use the framework of symmetric monoidal categories
to deal with this. We recall a few basic facts about algebras and modules in this
generality in Chapter 1 and in the Appendix. We also need various familiar results
about Hochschild homology and periodic cyclic homology; we briefly discuss them in
the Appendix, mostly in the general framework of symmetric monoidal categories.

The categories Cborn and
��!
Ban are not Abelian, so that we need homological al-

gebra over non-Abelian categories. A side effect of this is that the passage from chain
complexes to homology forgets too much information. For chain complexes of vector
spaces, the homology functor is an equivalence of categories from the homotopy cate-
gory of chain complexes to the category of vector spaces; thus we lose no information
at all. For chain complexes in more general Abelian categories, things already get more
complicated; but at least we can detect exactness of chain complexes using homology.
Once we are in non-Abelian categories, even this fails.

The lesson is that we should not take homology and instead consider functors with
values in suitable homotopy categories or derived categories of chain complexes. This
is crucial in [69], [71], [72] where we need certain chain complexes to be contractible
and not just exact. Similarly, we usually treat analytic cyclic homology as a functor
HA to the category of chain complexes of bornological vector spaces. This point
of view is already implicit in the definition of bivariant cyclic homology theories
because the elements of the bivariant group HA0.A;B/ are exactly the morphisms
HA.A/! HA.B/ in a suitable homotopy category of chain complexes.

The most sophisticated homological algebra that we need enters in the definition of
bivariant local cyclic homology; our definition is essentially equivalent to the original
one by Michael Puschnigg in [86], [88]; but we use a more efficient category of algebras.
This both simplifies and generalises the theory.
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The dual theory HA� is not as well-behaved as we would like; for instance, we
cannot compute HA�.A/ forA WD C0

�
.0; 1�

�
, although we know that HA.A/ is locally

contractible, that is, on each bounded subset of HA.A/ we can define a contracting
homotopy. But these maps do not fit together to a global map, and the failure of the
Hahn–Banach Theorem for bornological vector spaces prevents us from computing the
cohomology. To repair this defect, we replace ordinary cohomology by an appropriate
derived functor (called local cohomology). This yields local cyclic cohomology and
bivariant local cyclic cohomology. These constructions become more transparent in
the context of inductive systems of chain complexes. The basic idea is that we replace
an inductive system of chain complex by its homotopy direct limit.

There is a variant HL�.A/ of HA�.A/ as well, which repairs the lack of exactness
of the completion functor for bornological vector spaces. But this makes no difference
in practice: we show in Chapter 2 that HL�.A/ Š HA�.A/ if A is a Fréchet algebra
(with the precompact bornology) or if A has a suitable approximation property. Even
though the two theories agree for all practical purposes, we must first distinguish
them to prove such a statement. The assertions about the analytic cyclic homology
of C �-algebras are based on this isomorphism and therefore implicitly use the local
cyclic theory.

The Cuntz–Quillen approach to cyclic theories

The chain complexes HA.A/ and HL.A/ are defined in Chapter 2 as completions of the
cyclic bicomplex because this approach to cyclic homology is probably known to most
readers. But later we switch to another chain homotopy equivalent complex that is
more adequate for the analytic and local cyclic theories. The cyclic bicomplex relates
periodic cyclic homology to Hochschild homology and thus provides a useful scheme
to compute periodic cyclic homology and cohomology. But since the whole point of
the analytic and local cyclic theories is to go beyond the limitations of Hochschild
homology, the cyclic bicomplex offers no clues how to understand these theories.

The approach of Joachim Cuntz and Daniel Quillen ([25], [26]) is more useful
because it allows to treat periodic, analytic, and local cyclic homology in a very similar
fashion. We use it both to prove properties shared by all three theories and to establish
the special features of the local cyclic theory.

The Cuntz–Quillen approach uses two ingredients: a completed tensor algebra and
the X-complex. The X-complex is a very small quotient of the cyclic bicomplex,
which is therefore easy to study by hand; we recall its definition in §A.6.3. The most
important ingredient is the completed tensor algebra. The usual tensor algebra is defined
by a universal property: algebra homomorphisms TA! B correspond to linear maps
A! B; it is not so interesting because it completely forgets the algebra structure. The
completed tensor algebras that we study have a similar universal property for linear
maps that are almost multiplicative in a suitable sense.
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To make this precise, we need the curvature of a linear map f W A! B , which is
the bilinear map

!f W A � A! B; .a1; a2/ 7! f .a1 � a2/ � f .a1/ � f .a2/:
The map f is an algebra homomorphism if and only if !f D 0. We say that f
has analytically nilpotent curvature if the spectral radius of !f .S; S/ � B vanishes
for each bounded subset S � A. We briefly call such maps lanilcurs. The analytic
tensor algebra TA is defined so that algebra homomorphisms TA ! B correspond
to lanilcurs A ! B . This universal property is our main tool. We will see that
HA.A/ is chain homotopy equivalent to X.TA/. The pro-tensor algebra that appears
in the Cuntz–Quillen approach to periodic cyclic homology can be characterised by a
similar universal property, which we state in Chapter 4. Various formal properties like
homotopy invariance for smooth homotopies, invariance under nilpotent extensions,
stability for algebras of nuclear operators, and additivity can be proved easily in this
framework. Furthermore, it allows us to compute some simple examples.

The deepest common property of the periodic, analytic, and local cyclic theories is
excision. One way to formulate this is that an extension of algebras I � E � Q

with a bounded linear section induces an exact triangle

HA.I /! HA.E/! HA.Q/! HA.I /Œ1�

in the homotopy category of chain complexes; this induces various long exact sequences
for homology.

Excision is crucial for many computations. It was established by Joachim Cuntz
and Daniel Quillen ([27]) for the periodic cyclic theory and by the author and Michael
Puschnigg for the analytic and local cyclic theories. The elegant proof we present here
appeared previously in [66].

Invariance for smooth subalgebras

A remarkable property of local cyclic homology is that the obvious map

i W C1.M/! C.M/

for a smooth compact manifold M is an HL-equivalence. More generally, the same
statement holds for any isoradial homomorphism that has approximate bounded linear
sections in a suitable sense. We want to indicate why this is true. Along the way, we
see why it is important to use precompact bornologies and invert local chain homotopy
equivalences. The following sketch is made more precise in Chapter 6.

Any smoothing operator yields a bounded linear map s W C.M/! C1.M/. There
is a sequence .sn/ of smoothing operators such that i ı sn and sn ı i converge towards
the identity maps on C.M/ and C1.M/; this convergence is not uniform in norm,
but it is uniform on precompact subsets. This is the point where it is crucial to use the
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precompact bornology on C.M/. Since i ı sn converges towards the identity map, the
curvature !iısn D i ı !sn converges towards !id D 0. Thus %

�
i ı !sn.K;K/

� ! 0;
now we use that i is isoradial to conclude that %

�
!sn.K;K/

� ! 0. That is, the
maps .sn/ approximately have analytically nilpotent curvature for n!1.

The same argument that shows that lanilcurs induce maps on TA also shows that
maps with sufficiently small curvature such as sn induce maps on bounded subsets
of TA. More precisely, for each bounded submultiplicative disk S � TA there is
n 2 N such that sn induces an algebra homomorphism on the Banach subalgebra of
TA generated by S .

The composite maps i ı sn and sn ı i are homotopic to the identity map via an
affine homotopy. Again, these homotopies have approximately analytically nilpotent
curvature. As a result, the map i induces a local homotopy equivalence T C1.M/!
T C.M/. Since the X-complex for quasi-free algebras is homotopy invariant (for
smooth homotopies, say), the induced chain map X

�
T C1.M/

�! X
�
T C.M/

�
is a

local chain homotopy equivalence. The definition of the bivariant local cyclic theory
ensures that such chain maps become invertible. This finishes the proof that i is an
HL-equivalence.

What is missing?

Finally, there are a few important aspects of the infinite cyclic cohomology theories
that we study that are left out in this book due to limitations of time, space, and energy.

First, there is the JLO cocycle ([53]) and its bivariant generalisation by Denis Perrot
([79], [80]). Instead, I present another character construction that does not require any
summability condition. It would be worthwhile to compare these constructions.

Secondly, there is the work of Michael Puschnigg on the local cyclic homology of
group algebras ([85], [87]). It is difficult to compute local cyclic homology by hand.
Besides some easy cases, all the computations we shall do in this book use formal
properties of the theory to reduce the problem to a K-theory computation. It is an
important point that there are examples where local cyclic homology can be computed
directly and is more accessible than K-theory.

Thirdly, Christian Voigt has extended periodic and analytic cyclic cohomology
theories to the equivariant setting for algebras with actions of groups or even quantum
groups in [103]–[105]. This theory is also based on suitable completed tensor algebras,
so that many of our arguments carry over to it.


