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The Preview presents a tour along the main results of these lecture notes. Itintroduces
concepts and notation that will be used throughout the book. It should help the reader
to follow the thrust of the ideas developed in the individual lectures, and to determine
which lectures are of sufficient interest to merit a closer look.

A recipe

The question addressed in these lectures is simple: Given a multivariate sample cloud,
what can one say about the underlying distribution in a region containing only one or
two points of the sample?

Typically the region is a halfspace, and one is concerned about the eventuality
of future data points lying far out in the region. We shall use the terminology of
financial mathematics and speak of loss and risk. The data cloud could just as well
contain data of insurance claims, or data from quality control, biomedical research,
or meteorology. In all cases one is interested in the extremal behaviour at the edge
of the sample cloud, and one may use the concepts of risk and loss. In a multivariate
setting risk and loss may be formalized as functions which increase as one moves
further out into the halfspace.

In first instance the answer to the question above is: “Nothing”. There are too few
points to perform a statistical analysis. However some reflection suggests that one
could use the whole sample to fit a distribution, say a Gaussian density, and use the
tails of this density to determine the conditional distribution on the given halfspace.
In financial mathematics nowadays one is very much aware of the dangers of this
approach. The Gaussian distribution gives a good fit for the daily log returns, but not
in the tails. So the proper recipe should be: Fit a distribution to the data, and check
that the tails fit too. If one can find a distribution, Gaussian say, or elliptic Student,
that satisfies these criteria, then this solves the problem, and we are done. In that case
there is no need to read further.

What happens if the data cloud looks as if it may derive from a normal distribution,
but has heavy tails? There is a convex central black region surrounded by a halo of
isolated points. The cloud does not exhibit any striking directional irregularities.
Such data sets have been termed bland by John Tukey. Only statistical analysis is
able to elicit information from bland clouds.

Rather than fitting a distribution to the whole cloud, we shall concentrate on the
tails. We assume some regularity at infinity. In finite points regularity is expressed
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by the existence and continuity of a positive density at those points. Locally the
distribution will then look like the uniform distribution; under proper scaling the
sample cloud will converge vaguely to the standard Poisson point process on R¥ as
the number of points in the sample increases. We want to perform a similar analysis at
infinity. Of course, in a multivariate setting there are many ways in which halfspaces
may diverge. This problem is inherent to multivariate extremes. In order to obtain
useful results, we have to introduce some regularity in the model setup.

Ansatz. Conditional distributions on halfspaces with relatively large overlap asymp-
totically have the same shape.

Let us make the content of the Ansatz more precise.

Definition. Two probability distributions (or random vectors Z and W) have the
same shape or are of the same trype if they are non-degenerate, and if there exists an
affine transformation o such that Z is distributed like o(W). A random vector Z
has a degenerate distribution if it lives on a hyperplane, equivalently, if there exists a
linear functional £ # 0 and a real constant ¢ such that £Z = c a.s.

For instance, all Gaussian densities have the same shape. Shape (or type) is a
geometric concept. Given a non-degenerate Gaussian distribution on R¢ one can find
coordinates such that in these coordinates the distribution is standard Gaussian with
density

e_(w12+...+w§)/2/(2n,)d/2’ w = (wl, ey wd) € |Rd.

A basic theorem in this setting is the Convergence of Types Theorem (CTT). It
allows us to speak of a sequence of vectors as being asymptotically Gaussian. We
write Z, = Z if the distribution functions (dfs) of Z, converge weakly to the
distribution function (df) of Z.

Theorem 1 (Convergence of Types). If Z,, = Z and W,, = W, where W,, and Z,,
are of the same type for each n, then the limit vectors, if non-degenerate, are of the
same type.

Proof. See Fisz [1954] or Billingsley [1966]. U

At first sight the CTT may look rather innocuous. In many applied probability
questions involving limit theorems it works like a magic hat from which new models
may be pulled: In the univariate setting the Central Limit Problem for partial sums
yields the stable distributions; the Extreme Value Problem for partial maxima yields
the extreme value distributions. See Embrechts, Kliippelberg & Mikosch [1997],
Chapters 2 and 3. In the multivariate setting, in Chapter II below, the CTT yields the
well-known multivariate max-stable laws; in Chapter III the CTT yields a continuous
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one-parameter family of limit laws; and in Chapter IV the CTT yields two semi-
parametric families of high risk limit laws, one for exceedances over (horizontal)
linear thresholds, one for exceedances over elliptic thresholds.

Let us try to give the intuition behind the CTT in the case of a Gaussian limit.

A sequence of random vectors Z, is asymptotically normal if there exist affine
normalizations «,, such that

Wy =0, (Zn) = W,

where W is standard normal. The validity of the term asymptotic normality would
seem to derive from geometric insight. In geometric terms one may try to associate
with each Z, an ellipsoid E}, that is transformed into the unit ball B by the normaliza-
tion. These ellipsoids E, = «,(B) may be related to the expectation and covariance
of Z, (if these exist and converge), or to certain convex level sets of the density of
Z, (if the density exists and is unimodal). Perhaps the correct intuition is that large
sample clouds from distributions that are asymptotically Gaussian are asymptotically
elliptic, and that affine transformations that map the elliptic sample clouds into spher-
ical sample clouds may be used to normalize the distributions. The normalizations are
thus determined geometrically. The same geometric intuition forms the background
to these lectures. Instead of convergence of the whole sample cloud we now assume
convergence at the edge. Since we want to keep sight of individual sample points,
we assume convergence to a point process.

Affine transformations are needed to pull back the distributions as the halfspaces
diverge. Let us say a few words about the space A = +A(d) of affine transformations
on R?. Recall that an affine transformation has the form

whz=oa(w)=Aw +a, (1)
where «a is a vector in [Rd, and A an invertible matrix of size d. The inverse is
2 w=al(z) =AYz —a).

The set s is a group since ! € o, and the composition of two affine transformations
is an affine transformation:

w > (ef)(w) = a(Bf(w)) = A(Bw + b) +a.

Convergence «,, — « means a, — a and A, — A componentwise, or, equivalently,
op(w) — o(w) for all w € RY, or for w = 0,e1,...,eq, Where eq,...,e4 are
linearly independent vectors. From linear algebra it is known that 4 — A~! is
continuous on the group GL(d) of invertible matrices of size d. Hence a — o~ ! is
continuous. Obviously («, 8) = «f is continuous. So 4 is a topological group. It
is even a Lie group. It is possible to see #4(d) as a subgroup of GL(1 4 d) by writing

c(w)=Aw+a =z (clz 91)(11)):((1—1—1/110):(;)' )
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This representation makes it possible to apply standard results from linear algebra
when working with affine transformations. We usually write Z for the random vector
with components Z; and

W=a12)=A4"YZ—-a) 3)

for the normalized vector. Now assume «,; Y(Z,) = W where W is non-degenerate.
The normalizations «;, are not unique. They may be replaced by normalizations S,
which are asymptotic to oy,:

Bn~ oy = a; By —id, 4)

where id stands for the identity transformation. Asymptotic equality is an equivalence
relation for sequences in .

Warning. If o, — id thena,, ! — id. However a, ~ f8, does notimply o, ! ~ 1,
not even in dimension d = 1. Here is a simple counterexample:

Example 2. Let X,, be uniformly distributed on the interval (1,7 + 1). Properly
normalized, the X, converge in distribution to a rv U which is uniformly distributed
on the interval (0, 1). Indeed (X, — 1)/n = U; butalso X,,/n = U. Seta,(u) =
nu + 1 and B,(u) = nu. Then B, 'a,(u) — u but a,B,'(x) = x + 1. So
oy ~ By does not imply ;! ~ B, 1. Indeed, asymptotic equality means that the
normalized variables o, ' (X,,) and f;, 1 (X,,) are close, not the approximations c, (U)

and B, (U). O

After this digression on shape, geometry and affine transformations, let us return
now to the basic question of determining the distribution on a halfspace containing
only a few (or no) points of the sample, and to our Ansatz that high risk scenarios
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on halfspaces with relatively large overlap have distributions with approximately the
same shape. Here a high risk scenario of a random vector Z for a given halfspace H
is just the vector Z conditioned to lie in H. For halfspaces far out this corresponds
to our interpretation of a rare or extreme event. The reader may wonder whether the
Ansatz implies that all high risk scenarios asymptotically have the same shape. Note
that the condition of a relatively large overlap is different for light tails and for heavy
tails. For a Gaussian distribution the directions of two halfspaces far out have to be
close to have a relatively large overlap; for a spherical Cauchy distribution there is
considerable overlap even if the directions of the halfspaces are orthogonal. See the
figure above.

In the univariate case the condition that high risk scenarios, properly normalized,
converge leads to a one-parameter family of limit shapes, the generalized Pareto
distributions. These GPDs may be standardized to form a continuous one-parameter
family, indexed by € R:

G.(v) =1—(1+w);"", v=>o0. (5)

By continuity Gy is the standard exponential df. The associated univariate limit theory
has been applied in many fields. It is our aim to develop a corresponding theory in
the multivariate setting.

We shall denote the high risk scenario for Z associated with the halfspace H by
zZH, By definition, Z H lives on H, and for any Borel set £

P{zH c E}=P{Zc ENH}/P{Z c H}.

Halfspaces are assumed to be closed, and P{Z € H} is assumed positive.

One may impose the condition that the high risk scenarios Z, properly nor-
malized, converge for any sequence of halfspaces H, under the sole restriction that
P{Z € H,} is positive and vanishes for n — co. This assumption is quite strong.
It presupposes a high degree of directional homogeneity in the halo of the sample
cloud. In order to understand multivariate tail behaviour, a thorough analysis of the
consequences of this strong assumption seems like a good starting point. This analy-
sis is given in Chapter III, the heart of the book. As an illustration we exhibit below
the three plane projections of a data cloud in R3, consisting of the log-returns of three
stocks on the Dutch stock exchange AEX over the period from 2-2-04 until 31-12-05.
The data were kindly made available by Newtrade Research.

One may also start with the weaker assumption that the high risk scenarios con-
verge for halfspaces which diverge in a certain direction. This is done in Chapter IV
for horizontal halfspaces. The Ansatz now holds only for horizontal halfspaces. Write
z = (x, y) where y is the vertical component of z and x the s-dimensional horizontal
part, with h = d — 1. Similarly write Z = (X,Y) € R?*!. High risk scenarios for
horizontal halfspaces HY = R" x [y, o0) correspond to exceedances over horizontal
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thresholds. Let a(y) be affine transformations mapping Hy = {y > 0}, the upper
halfspace, onto H”. The vectors W, = a(y)~"(Z#") live on H,. Now suppose
that the «(y) yield a limit vector:

W, = o[(y)_l(ZHy) =W, P{Y =y} —>0. (6)

Assume the limit is non-degenerate. What can one say about its distribution? It is not
difficult to see that «(y) maps horizontal halfspaces into horizontal halfspaces, and
that this implies that the high risk scenarios ¥ [:°) of the vertical coordinate, with
the corresponding normalization, converge to the vertical coordinate V' of the limit
vector, W = (U, V). By the univariate theory the vertical coordinate of the limit
vector has a GPD, see (5).

One may prove more. Suppose (6) holds. Let Z;, Z,, ... be independent obser-
vations from the distribution = of Z. Choose y, so that P{Y > y,} ~ 1/n. Set
on = a(y,) where a(y)"'(ZH") = W as above. Then the normalized sample
clouds converge in distribution to a Poisson point process:

Ny = (o, Y (Zy), ..., (Zn)} = No. (7)

The mean measures of the sample clouds N,, converge weakly to the mean measure
p of the limiting Poisson point process Ny on all horizontal halfspaces J on which p
is finite:
Pn = na;l(n) — p weaklyon J, p(J) < oco. (®)
The restriction of p to H is a probability measure, the distribution of W.
The equivalence of the two limit relations (6) and (7) is the Extension Theorem

in Section 14.6. It is a central result. The first limit relation is analytical. It raises
questions such as:

1) What limit laws are possible?

2) For a given limit law, what conditions on the distribution of Z will yield
convergence?
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The second relation is more geometric. Here one may ask:

1) Does convergence in (8) also hold for halfspaces J which are close to horizon-
tal?

2) Will the convex hull of the normalized sample cloud converge to the convex
hull of Ny?

For the novice to the application of point process methodology to extreme value
problems this all may seem to go a bit too fast. Modern extreme value theory with
its applications to more involved problems in risk management, however, needs this
level of abstraction. See McNeil, Frey & Embrechts [2005] for a good discussion
of these issues. In the one-dimensional case one already needs such a theory for
understanding the Peaks Over Thresholds method based on (5), or the limit behaviour
of several order statistics, as will be seen in Section 6.4. So bear with us and try to
follow the general scheme.

The vector W in (6) is the limit of high risk scenarios for horizontal halfspaces. It
follows that the high risk scenarios W # ” all have the same shape. This result follows
from the trivial fact that a high risk scenario of a high risk scenario is again a high risk
scenario, at least for horizontal halfspaces. In the univariate setting, the exponential
distribution, the uniform distribution and the Pareto distributions all have the fail
property: Any tail of the distribution is of the same type as the whole distribution. In
fact this tail property characterizes the class of GPDs. It may also explain why these
distributions play such an important role in applications in insurance and risk theory.
In the multivariate setting the tail property is best formulated in terms of the infinite
measure p in (8): There exists a one-parameter group”* of affine transformations y*,
t € R, such that

Yi(p)=¢e'p, teRr. )

These equations form the basis of the theory developed in the lectures below. The
equations are simple. They succinctly express the stability inherent in the limit law
in terms of symmetries of the associated infinite measure. The stability allows us to
tackle our basic problem of describing the distribution tail on a halfspace that contains
few sample points.

Definition. A measure on an open set in R is a Radon measure if it is finite for
compact subsets. An excess measure is a Radon measure p on an open set in R¢ that
satisfies (9) and gives mass p(Jy) = 1 to some halfspace Jy.

Excess measures play a central role in this book. They are infinite, but have
a simple probabilistic interpretation in terms of point processes. The significance
of point processes for extreme value theory has been clear since the appearance of

4One-parameter groups of matrices should not frighten a reader who has had some experience with finite
state Markov chains in continuous time or with linear differential equations in R? of the form x = Ax.
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the book Resnick [1987]. In our more geometric theory the excess measure is the
mean measure of the Poisson point process which describes the behaviour of the
sample cloud, properly normalized, at its edge, as the number of data points tends to
infinity. An example should make clear how excess measures may be used to tackle
our problem of too few sample points.

Example 3. Suppose !, t € R, is the group of vertical translations, y’: (u,v)
(u,v+1) on "1, A measure p of the form dp(u, v) = dp* (u)e™"dv will satisfy (9)
for any probability measure p* on R”. The halfspace Jo = H. has mass one and
p is an excess measure. Conversely one may show that any excess measure with
the symmetries y’ above has the form dp(u, v) = dp*(u)e ’dv if one imposes the
condition that p(Hy) = 1. O

The probability measure p* in the example above is called the spectral measure.
The product form of the excess measure in the example makes it possible to estimate
the spectral measure even if the upper halfspace contains few points. One simply
chooses a larger horizontal halfspace, containing more points. Something similar
may be done for any excess measure for exceedances over horizontal thresholds.
We shall not go into details here. Suffice it to say that such an excess measure is
determined by its symmetry group y’, t € R, and a probability measure p* on the
horizontal coordinate plane R”. The spectral measure p* may be interpreted as the
conditional distribution of U given V' = 0 for the limit vector W = (U, V') on Hy
in (6). The exponential distribution on the vertical axis enters the picture via the
Representation Theorem for the limit vector:

w =yT(U*,0), (10)

where the vector U* in R” has distribution p*, and T is standard exponential, in-
dependent of U*. This decomposition of W reflects the symmetry of the excess
measure expressed in (9). It enables one to build probability distributions on half-
spaces H far out, and then to estimate probabilities P{Z < E} for EBH, and
expectations E@(Z ) for loss functions ¢: H — [0, c0). Here is the recipe. As-
sume a;ll (ZH) = W, where W lives on a halfspace Jo, and has a non-degenerate
distribution that extends to an excess measure p, and where H = a g (Jy) are half-
spaces such that P{Z € H} — 0.

Recipe. Replace ZH by oy (W) and compute P{ag (W) € E} = plag' (E))/p(Jo)
and the integral Eo(ag (W)) = fJO poagdp/p(Joy) interms of the excess measure.
Given the symmetry group and the normalization ag one only needs to know the
spectral measure p* to compute these quantities. The spectral measure may be
estimated from data points lower down in the sample cloud. O

The spectral measure is dispensable. It is the symmetries in (9) that do the job.
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These allow us to replace a halfspace containing few observations by a halfspace
containing many observations, and on which the distribution has the same shape”.

Given the recipe, it is clear what one should do to develop the underlying theory:
determine the one-parameter groups y' in 4(d), and for each determine the excess
measures (if any) and their domains of attraction. This is done in Section 18.8 for
d = 2. For linear transformations the program has been executed by Meerschaert
and Scheffler in their book Meerschaert & Scheffler [2001] on limit laws for sums of
independent random vectors. Let us give a summary of the theory in MS.

We may restrict attention to one-parameter matrix groups by (2). Such one-
parameter groups are simple to handle. The group y’, ¢ € R, is determined by its
generator C. One may write y* = e’C, where the right hand side is defined by its
power series. There is a one-to-one correspondence between matrices C of size d and
one-parameter groups of linear transformations on R?. If one chooses coordinates
such that C has Jordan form, one may write down the matrices for ¢’ by hand for
any dimension d. See Section 18.12 for details. Now we have to choose p. Let p
be a Radon measure on an open set OBR? that satisfies y*(p) = e’p, t € R. For an
excess measure there still has to be a halfspace Jy of mass one.

Example 4. Lebesgue measure on RY satisfies (9) with y' = diag(d}, ... ,ag) for
any diagonal matrix with a; > 0, and a; ...ay = 1/e. However there are no half-
spaces of measure one. There are, if one restricts the measure to an orthant, or a
paraboloid. O

If y* for t > 0 maps the horizontal halfspace Jo onto a proper subset of itself,
then any probability measure p* on R” may act as spectral measure for a measure p
that satisfies (9) and gives mass one to Jy. Similarly, if the y* for ¢ > 0 are linear
expansions, and the image of the open unit ball B = {||w| < 1} contains the closed
unit ball, a probability measure p* on the sphere 0B = {||jw|| = 1} will generate a
measure p on R4 \ {0} that satisfies (9), and gives mass one to the complement of the
ball B. In the second case there are many halfspaces of finite mass: p(J) is finite
for any halfspace J that does not contain the origin. Constructing excess measures
is not difficult!

Given the excess measure p, the halfspace J of mass one, and the one-parameter
group ¥’ in (9), we still have to determine the domain of attraction. Recall that Z
lies in the domain of attraction of W if (6) holds. We write Z € D"(W), and call
D" (W) or D" (p) the domain of W or p for exceedances over horizontal thresholds.
Let Z € D"(p) have distribution 7. The basic limit relation (8) for horizontal

3Coles and Tawn, in their response to the discussion of their paper Coles & Tawn [1994] write: “Anderson
points out that our point process model is simply a mechanism for relating the probabilistic structure within
the range of the observed data to regions of greater extremity. This, of course, is true, and is a principle
which, in one guise or another, forms the foundation of all extreme value theory.”



22 Preview

halfspaces J may be reformulated as
e'B(t) Y(m) = p weaklyon J, p(J) < oo. (11)

The B(¢) belong to the group A" of affine transformations mapping horizontal half-
spaces into horizontal halfspaces. One may choose §: [0, 00) — A" to be continu-
ous, and to vary like y':

B(tn)  B(tn + 50) = ¥, 1y — 00, 5, — 5, s €R. (12)

In a slightly different terminology this states that 8 varies regularly with index C,
where C is the generator of the symmetry group y’. Section 18.1 contains a brief
introduction to multivariate regular variation. Regular variation of linear transforma-
tions is treated in more detail in Chapter 4 of Meerschaert & Scheffler [2001]. The
central result, the Meerschaert Spectral Decomposition Theorem, states that one may
restrict attention to one-parameter groups ¥’ for which all complex eigenvalues of y
have the same absolute value. See Section 18.4 for details.

Does one really need the theory of multivariate regular variation to handle high
risk scenarios?

There are good reasons for using regular variation to study multivariate extremes.
We list four:

1) The theory is basic. Nothing essential is lost if one assumes #,, = n and s, = 1
in (12). In the final resort, regular variation is about sequences of the form:

Bm)=BO)Y1...Vn, VYn—>Y. (13)

One gets back the original curve §, or a curve asymptotic to the original curve, by
interpolation. Details are given in Section 18.2.

2) The theory contains a number of deep results that clarify important issues in
applications. We give two examples of questions that may be resolved by the Meer-
schaert Spectral Decomposition Theorem, the fundamental result in the multivariate
theory of regular variation.

i) Suppose y*, ¢ € R, is a group of linear transformations. Is it possible to choose
the origin in z-space and normalizations B(t) ~ B(¢), mapping w into z, that are
linear in the new coordinates?

ii) Suppose the symmetries y*, ¢ € R, in appropriate coordinates in w-space,
are diagonal. Is it possible to choose coordinates in z-space and normalizations
B(t) € GL, asymptotic to B(z) for t — oo, that are diagonal in the new coordinates?

The answer to 1) is “Yes” if y is an expansion, or a contraction ; see Lemmas 15.15
and 16.13 below. This result explains why univariate extreme value theory is so
much simpler for heavy tails than for distributions in the domain of the Gumbel law.
Univariate linear normalizations are non-zero scalars! The answer to ii) is “Yes” if
the diagonal entries in y are distinct.
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3) Regular variation enables us to construct simple continuous densities in the
domain of attraction of excess measures with continuous densities. By the transfor-
mation theorem the density g of the excess measure in (9) satisfies

') =gw)/q". q=eldetA], y'(w)=b(t)+Aw. (14)

For y! € A" one also has the decomposition

g, v) = g )& (v), 15)

where g is the density of a univariate GPD, see (5), and the conditional densities g,
all have the shape of the density g* of the spectral measure p*.

Example 5. The Gauss-exponential density e " */2¢=? /(27r)"/2 determines an ex-

cess measure p on R**!. Vertical translations y* : (1, v) — (u, v+1) are symmetries.
The spectral density is standard Gaussian. For any curve §: [0, c0) — A" that varies
like ! there exists a vector Z = (X, Y) with distribution 7, and continuous density

fGxy) = ) f ) (16)

such that e’ 8(t)"!(w) — p weakly on all horizontal halfspaces. The density f
satisfies

fE@)) | itugpy
S (B(12)(0))
The density f of Y satisfies the von Mises condition for the univariate Gumbel

domain, see Section 6.6; the conditional densities f, of X given Y = y in (16) are
Gaussian. O

t, — 00, W, — (U,v) € RAHL 17)

A continuous density f as above will be called a typical density for g* and S.

4) Multivariate regular variation has a strong geometric component. This is par-
ticularly clear if the excess measure is symmetric in a geometric sense. Let p = p; be
a Euclidean Pareto measure on R? \ {0}. These measures are spherically symmetric
with densities ¢/||w|¢**, where A = 1/t > 0 describes the decay rate of the tails,
and ¢ = ¢; > 0 may be chosen so that p(Jo) = 1 for the halfspace Jo = R" x[1, c0).

Definition. Bounded convex sets F}, and E}, of positive volume are asymptotic if
Fy~ Eyn < |FyN Ey| ~ |FyU Ep|. (18)
Here | A| denotes the volume of the set A.

Exercise 6. The reader is invited to investigate what a sequence of centered ellipses E,
in the plane looks like if E,,+1 ~ E,, and if the area | E,| is constant. O
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Example 7. Start with a sequence of open centered ellipsoids Ey, E1, ... such that
E,+1 ~ 2E,. Also assume E, contains the closure of E,_; forn > 1. Forc > 1 one
may use interpolation to construct a unimodal function f with elliptic level sets such
that { f > 1/c"} = E, forn > 1, and such that { f = 1} is the closure of Eqy. For
¢ > 24 the function f is integrable, say [ fdx = C < oo. Suppose the ellipsoids

E@) ={f > 1/c'} vary regularly:
E(ty +s,) ~2°E(ty), t, — 00, s, — 5, s € R. (19)

The probability distribution 7z with density f/C lies in the domain of the Euclidean
Pareto excess measure p;, where ¢ = 2¢+1/7_One may choose linear transformations
B(t), depending continuously on ¢ > 0, such that 8(¢)(B) = E(t¢), and such that §
varies like y*: w > 2'w. Then

¢ B(t) () — pr weaklyon RY \ ¢B, t — 0o, £ > 0.
Details are given in Section 16. O

The reader will notice that densities occupy a central position in our discussions.
In the multivariate situation densities are simple to handle. Densities are geomet-
ric: sample clouds tend to evoke densities rather than distribution functions. If the
underlying distribution has a singular part, this will be reflected in irregularities in
the sample cloud. Such irregularities, if they persist towards the boundary, call for
a different statistical analysis. In the theory of coordinatewise maxima dfs play an
all-important role. Densities have been considered too, see de Haan & Omey [1984]
or de Haan & Resnick [1987], but on the whole they have been treated as stepchildren.
In our more geometric approach densities are a basic ingredient for understanding
asymptotic behaviour. From our point of view the general element in the domain of
attraction of an excess measure with a continuous density is a perturbation of a prob-
ability distribution with a typical density. From a naive point of view we just zoom
in on the part of the sample cloud where the vertical coordinate is maximal, adapting
our focus as the number of sample points increases. Under this changing focus the
density with which we drape the sample cloud should converge to the density of the
limiting excess measure.

Proper normalization is essential for handling asymptotic behaviour and limit
laws in probability theory. The geometric approach allows us to ignore numerical
details, and concentrate on the main issues. Let us recapitulate: In order to estimate
the distribution on a halfspace containing few sample points one needs some form
of stability. The stability is formulated in our Ansatz: High risk scenarios far out in
a given direction have the same shape. If one assumes a limit law, then there is an
excess measure. The symmetries of the excess measure make it possible to estimate
the distribution on halfspaces far out by our recipe above. The symmetries also impose
conditions on the normalizations. These conditions have a simple formulation in terms
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of regular variation. One may choose the normalizing curve § in (11) to vary like y*.
Roughly speaking, the group of symmetries y* of the excess measure enforces regular
variation on the normalizations.

The four arguments above should convince the reader that regular variation is not
only a powerful, but also a natural tool for investigating the asymptotic behaviour of
distributions in the domain of attraction of excess measures.

In these notes we take an informal approach to regular variation, dictated by its
applications to extremes. Attention is focussed on three situations:

1) for coordinatewise extremes the symmetries y* and the normalizations o, are
coordinatewise affine transformations (CATS);

2) for exceedances over horizontal thresholds the symmetries ¥’ and normaliza-
tions «, belong to the group 4A”: they map horizontal halfspaces into horizontal
halfspaces;

3) for exceedances over elliptic thresholds the symmetries y?, t > 0, are linear
expansions, and so are the renormalizations o, Yo, i1.

The theory of coordinatewise extremes is well known, and there exist many good
expositions. Our treatment in Chapter II is limited to essentials. Exceedances are
treated in Chapter IV. Exceedances over horizontal thresholds describe high risk
scenarios associated with a given direction; exceedances over elliptic thresholds may
be handled by linear expansions. The theory developed in MS is particularly well
suited to exceedances over elliptic thresholds. Arguments for using elliptic thresholds
for heavy tailed distributions are given in Section 16.1. The basic limit relation (8)
now reads

na;l(n) — p weaklyon B¢, &> 0, (20)

where B is the open unit ball, and «;, are linear expansions. If (20) holds we say
that 7 lies in the domain of p for exceedances over elliptic thresholds, and write
m € D*®(p). Example 7 is exemplary. It treats an excess measure on R? \ {0}
with a spectral measure p* which is uniformly distributed over the unit sphere, and a
symmetry group of scalar expansions

Yi(w) =e"w, teRk. 1)

If we allow p* to have any distribution on the unit sphere dB, but assume the
normalizations f(¢) to be scalar, then the ellipsoids B(z)(B) are balls. The limit
relation for the high risk scenarios simplifies:

Z"r=> W, r— oo, (22)

where Z" is the vector Z conditioned to lie outside the open ball r B. In this situation it
is natural to use polar coordinates and write Z = R{ with R = || Z||. The distribution
of (¢, R/r), conditional on R > r, converges to a product measure dp* X dG on
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0B x [1, 00), where p* is the spectral measure, and G a Pareto distribution on [1, 00)
with density A/r*T1, 1 = 1/1. The spectral measure gives an idea of the directions
in which the data extremes cluster; the parameter 7 in (21) describes the decay rate
of the tails.

Here we have another example of the close relation between symmetry and inde-
pendence! In this model it is again obvious how to estimate the distribution of the
high risk scenarios Z” for values of r so large that only one or two sample points fall
in the complement of the ball 7B.

Asymptotic independence is not the subject of these lectures. Our theory is based
on concepts like scale invariance, self-similarity and symmetry. It is geometric and
local. Independence is a global analytic assumption. It allows one to draw far-
reaching conclusions about extremes, but the techniques are different from those
developed here.

So far we have assumed convergence of a one-parameter family of high risk
scenarios indexed by horizontal halfspaces H”, ¥ 1 oo, Or by an increasing family
of ellipsoids E; = «;(B). These situations yield alimit measure with a one-parameter
family of symmetries, the excess measure described in (9). Let us now return to high
risk scenarios Z# where the halfspaces H are allowed to diverge in any direction.
For simplicity assume Z has a density. Assume convergence of the normalized high
risk scenarios to a non-degenerate vector W on H: For each halfspace H of positive
mass there exists an affine transformation oy mapping H4 onto H such that

ag (ZH)y=> W, P{ZeH}—O0. (23)

The limit describes the tail asymptotics in every direction. In Section 13 we shall
exhibit a continuous one-dimensional family of excess measures p;, T > —2/h,
h = d — 1, corresponding to the multivariate GPDs. The densities, standardized to
have a simple form, and without norming constant, are

h
go(u,v) = e~ tu'u/2) w = (u,v) € R"*1,
| ’ t=0, Jo={v =0}
w # 0,

. =1 d+/1’
ge(w) = 1/]jw] T=1/A>0, Jo={v>1}

v<—ulu/2,

(T A—1
g v) = (v mwt U/ 2 a) <0, Jo=tv > 1.

The reader may recognize the Gauss-exponential and the Euclidean Pareto excess
measure from the examples above. In all cases the vertical coordinate of the high risk
limit distribution determined by the restriction of p; to Jy has a univariate GPD, with
Pareto parameter 7, see (5). For t < 0,1 = 1, the excess measure p, is Lebesgue



Preview 27

measure on the paraboloid {v < —uTu/2}. For t = —2/h the excess measure
is singular. The symmetry of the excess measures p;, T > —2/h, is impressive.
Instead of the one-parameter group y’, ¢ € R, in (9) there now is a symmetry group
of dimension 2,4,7,... ford = 2,3,4,.... Many halfspaces have finite mass. The
probability distributions dp’ = 1;dp/p(J) associated with such halfspaces all have
the same shape. The measure p has the tail property to an excessive degree. The
domains of attraction, £ (7), of the measures p, are investigated in Chapter III.

Before giving a detailed description of the contents of the various chapters we still
want to consider two topics: the relation to the multivariate theory of coordinatewise
maxima, and the range where the theory will apply.

How do coordinatewise maxima fit in?

The subject of this book may be described as geometric extreme value theory since
we are looking at the behaviour of the extreme points of sample clouds as the number
of data points increases without bound. We are concerned with the convex hull, but
also with the points of the cloud below the surface. Since we are zooming in at the
scale of individual sample points, the limit, if we assume convergence, has to be a
Poisson point process whose mean measure is finite and positive on some halfspace.
Such limits were first considered by Eddy [1980].

The geometric approach and the analytic, coordinatewise approach are comple-
mentary. The geometric theory is interested in linear combinations of coordinates,
the analytic theory in maxima of coordinates. There is a difference in interpretation.
In the geometric theory for exceedances over horizontal or elliptic thresholds there
is one variate (the vertical, or the radial) that measures risk, and an /-dimensional
ancillary vector; in the analytic theory all d coordinates play an equal role. The
geometric approach looks at exceedances, the analytic approach at maxima. In the
univariate situation the two theories are equivalent. In higher dimensions the relation
between extremes and exceedances is most clearly seen in the behaviour of sample
clouds, and the limiting Poisson point process. In the geometric approach the mean
measure of the limit process is called an excess measure, in the analytic approach, it
is called an exponent measure; but actually these two terms denote the same® object.

One might say that the theory of coordinatewise maxima is concerned with high
risk scenarios on sets that are not halfspaces, but complements of shifted negative
orthants. Instead of divergent sequences of halfspaces H, one considers sets of the
form

[—o0, oo)d \ [-00,a,), ap € IRd, (24)

where the points a, increase towards the upper endpoint of the df. Since the com-
plement of a shifted negative orthant contains many halfspaces, convergence of the
coordinatewise maxima implies convergence of high risk scenarios on many half-

 Exponent measures may give mass to hyperplanes at —oo; excess measures live on open subsets of
R¥. The differences will be discussed more fully at various points in these lectures.
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spaces. Below we formulate a result that expresses these ideas. One has to distinguish
between heavy and light tails. The upper tail of a df F on R is light if

t"(1—F(t)) >0, t—o0,m=12,.... (25)

It is heavy if there exists an integer m > 1 such that (1 — F(t)) — oo fort — oco.

If all components have heavy upper tails the relation between coordinate maxima
and exceedances is simple. One assumes that Z has non-negative components. The
exponent measure lives on [0, 00)?\{0}. Itis an excess measure, whose symmetries y*
are linear diagonal expansions for ¢t > 0. The max-stable limit G = lim F" o «,,
has the form G = e~ R, where R is the distribution function of the excess measure.
So the df G determines the mean measure, and hence the distribution, of the Poisson
point process describing the asymptotic behaviour of the sample clouds. The normal-
izations «,, are diagonal matrices. Weak convergence F”" o o, — G implies weak
convergence na;, ' (dF) — dR on the complement of any &-ball ¢ B centered in the
origin.

Vectors whose components have light upper tails have exponent measures that
may charge planes and lines at —oo. The normalizations are CATs, coordinate affine
transformations, z; = a;jw; + b;, i = 1,...,d. Let us show how coordinatewise
extremes for light tails fit in.

Proposition 8. Let Z have df F with marginals F; having light upper tails. Sup-
pose Z lies in the domain of attraction DY (p) for coordinatewise maxima: There
exist CATs o, such that

F™ (o (w)) = G(w) = e R® yeakly,

R(w) = p([—o0, oo)d \ [Foo,w)), we RY. (26)

Choose q € R? such that Hi(¢;) < 1fori = 1,...,d, and set a, = a,(q) and

Q = [—00,00)4 \ [-00, q). Then Otn_l(Z(_‘x”“”)C) = W, where W has distribution

lodp/p(Q). Let J = {§ > cIBRY with £ € (0,00)4. If P{W € R?} is positive,
then

a, ' (zHy = W, H, =a(J)), (27)

where WY has distribution 1 5dp/p(J).

Proof. Relation (26) is standard; see Theorem 7.3. In the limit relation (27) the
crucial point is that the condition P{W € R¢} > 0 ensures that p(J ) is positive. This
implies

P{Z € Hp}/P{Z & (—00.an)} — p(J)/p(Q).

For JBQ the result follows by a simple conditioning argument. The general case
follows by the symmetry of p. O
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What happens if P{W € R} = 0 in the proposition above?

The figure below suggests that a more geometric approach which zooms in on a
boundary point of the sample rather than on the max-vertex may be useful in certain
situations.

6 -
4 W=(U.,V)
S
27
0]
0,
o
727
[ [ [ [ [
-2 0 2 4 6

The rectangle R around the point P contains more information about the edge of this 10 000
point sample from the normal distribution than the square S around the max-vertex W = (U, V).

The standard normal distribution on the plane lies in the domain DY (p) of the max-
stable df exp —(e™ + e~?) (independent Gumbel marginals). In order to describe
the coordinatewise maximum, the sample cloud is enclosed in a coordinate rectangle.
The coordinatewise maximum is the upper right hand corner of the rectangle, the
max-vertex. Now the scaling is crucial. For a heavy tailed distribution, a spherical
Student distribution for instance, the scaling preserves the origin, which remains in
the picture. For the light tailed Gaussian distributions, however, the normalization
zooms in on a small (empty) square around the max-vertex. It fails even to see the
shape of the sample cloud. As a result all bivariate Gaussian densities with standard
normal marginals yield the same bivariate extreme asymptotics.



30 Preview

Let us now say a few words on the applicability of the theory presented in this
book.

Our approach to risk is that of an observer, rather than a risk manager. Given a
multivariate data set describing the past behaviour, and a loss function, our aim is to
describe the tail behaviour of the distribution underlying the data set. Such a descrip-
tion enables one to construct large synthetic samples, and to study the behaviour of
the associated random losses. This procedure is known as stress testing and scenario
analysis. We are not concerned with the problem of changing the parameters of the
underlying distribution, redirecting the dynamics which produced the data set, or
altering the loss function by a suitable form of risk transfer. These issues are treated
in McNeil, Frey & Embrechts [2005] for financial risk; and for risk in the realm of
reliability engineering in Bedford & Cooke [2001].

Einstein showed that the erratic movement of pollen grains suspended in a drop of
water, as observed by Brown at the beginning of the 19th century, could be described
by smooth probability distributions exhibiting a large degree of symmetry. Complex
dynamical systems may give rise to symmetric probability distributions. Symmetries
in a data set may reflect regularities inherent in the dynamical system which produces
the data. If so, the symmetries are likely to persist. The validity of our model
depends on this persistence of the symmetry. For Brownian motion as a model for
the movement of pollen grains, Einstein [1906] imposed a bound of 10~7 seconds
for applicability. So too, in financial or meteorological or biological applications the
symmetry will break down at a certain level.

To fix ideas let us posit an ultimate probability pg in the range 10™°° to 10729,
Halfspaces with probabilities below this value have no reality for risk management.
Replacing the conditional distribution on such a halfspace by any other distribution
does not influence the policy of the risk manager. This means that the endless variety
of the ever slower pirouettes performed by the sequence of ellipses E, in Exercise 6
above, forms part of the mathematical theory, but has no bearing on risk management,
since the probabilities P{Z € Ej, } lie below the threshold value py after a few hundred
terms. By the same argument the existence of moments falls outside the range of
realistic risk theory. (Convergence of integrals is determined by the behaviour of the
distribution on invisible halfspaces.) This collateral result is not as disturbing as it may
seem on first sight. For heavy tails the value of the exponent where the moment first
fails to exist, is a convenient measure of risk, but for a realist the difference between
a Gaussian distribution and a Cauchy distribution is established by the behaviour of
samples of size a hundred. She is not interested in the tail behaviour at risk levels
10~°°. The assumption of an ultimate probability pg also has advantages. It provides

7A finite universe does not preclude a model with infinite upper tail for spatial variables. String theory
tells us that four-dimensional space-time may break down at magnitudes of 10739 meters to reveal six
hidden dimensions curled up into compact sets. This does not mean that models with continuous densities
for spatial or temporal quantities are invalid.
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us with the liberty to choose the behaviour of the distribution on invisible halfspaces
to suit our fancy. We find it convenient to assume convergence of high risk scenarios.

Having said this much on applicability, we may now proceed with our proper task,
the mathematical investigation of the consequences of the assumption that high risk
scenarios converge.

Contents

The book consists of twenty lectures, grouped into five chapters. There is a basics
chapter on point processes, a final chapter listing open problems, and in between
there are three chapters covering three different topics: coordinatewise extremes,
multivariate GPDs, and exceedances over thresholds (horizontal and elliptic).

Chapter II treats the basic univariate extreme value theory, and provides an
overview of the theory of coordinatewise maxima. Our focus is on exponent mea-
sures rather than max-stable dfs. The Chapters III and IV form the body of the book.
They present two different views on high risk scenarios. In Chapter III the high
risk scenarios Z# converge to a common limit law, in whatever direction the half-
spaces H diverge. This restricts the class of limit laws. We present a one-parameter
family of limit laws, the multivariate GPDs. It is not known whether other limit laws
exist. Chapter III is a relatively self-contained account of what is known about the
domains of attraction of the multivariate GPDs. The elegant theory of multivariate
GPDs, and their domains of attraction, should be useful in situations where the sam-
ple cloud is bland or where the dimension is high, and where one is interested in
the overall extremal behaviour rather than the asymptotic behaviour in a particular
direction. Such an approach may be of interest to the supervisor or regulator; it al-
lows a diversified view of the extremal behaviour of widely varying positions in the
underlying market. The theory presented in Chapter IV is different. In this chapter
we look at exceedances. For linear thresholds this means that we look at halfspaces
moving off in a given direction. Such a model is of interest to the trader or risk
manager taking directional positions in the underlying market. For simplicity we
assume the thresholds horizontal. For heavy tails, elliptic thresholds are more natural
since there is no difference between the local and the global theory. This is explained
in Section 16.1. Heavy tailed vectors are normalized by linear contractions. The
theory of exceedances presented in Chapter IV has the same structure as the theory
of coordinatewise maxima. The limit laws are known. The excess measure, like the
exponent measure, satisfies a one-parameter group of symmetries. The normaliza-
tions are more complex than the CATs used for coordinatewise extremes, and call
for a geometric approach. The asymptotics may be handled by regular variation.
A complete characterization of the domains of attraction is available for a number of
limit laws. It is presented in Sections 15.2 and 16.7.
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These notes offer probability theory rather than statistics. If one accepts the idea
that excess measures may occur as the mean measure of a limiting Poisson point
process describing the asymptotic behaviour of sample clouds at their edge, then
good estimates of the excess measure and the normalizations allow one to simulate
large samples that may then be used in risk analysis. The task of the probabilist is to
analyse the model. What do excess measures look like? For any given excess measure,
what does the domain of attraction look like? What normalizations are allowed? What
moments will converge? What does the convex hull of the sample cloud look like?
Does it converge? These are some of the questions that will be addressed in the present
text.

Chapter I treats point processes. The first four sections are standard theory:
An intuitive introduction; the Poisson point process as a limit of superpositions of
sparse point processes; the distribution of point processes; and their convergence. In
Section 5 extremes enter the scene. We consider the n-point sample cloud N, from
the probability distribution 7, = «;;!(7r) on R¢, and assume vague convergence
N, = Ny to a Poisson point process Ny. In applications the mean measure p of
the limit process is an infinite Radon measure on an open set O, for instance R¢
or R% \ {0}. We are interested in convergence of the convex hulls of the sample
clouds. That means that we have to determine the halfspaces HB30 on which p is
finite, and on which the mean measures n, converge weakly to p. The class of such
halfspaces determines two open cones in the dual space, the intrusion cone A and the
convergence cone I'. Modulo some minor regularity conditions convex hulls converge
if A isnon-empty, and I' = A. We also discuss loss functions, and approximate their
integrals by sample sums.

Chapter II treats the theory of maxima. It consists of two sections. Section 6 treats
the univariate situation. The domains of attraction for exceedances and maxima coin-
cide. The domain of attraction £ (0) of the exponential law is described in terms of
densities which satisfy a von Mises condition. The section also contains an elemen-
tary proof of Bloom’s basic theorem on self-neglecting functions. The second part,
Section 7, assumes some acquaintance with the theory of coordinatewise extremes.
We concentrate on the domain of max-stable distributions with standard exponential
marginals on (—oo, 0). This allows us to treat exponent measures that charge coor-
dinate planes in —oo. The sample copula yields a simple tool for investigating the
dependency structure. Non-linear normalization of the coordinates provides a direct
link to copula theory.

Chapter III starts with an extensive introductory section treating applications,
examples, and the general asymptotics of high risk scenarios. For coordinatewise
maxima, powers of distribution functions play an important role; in the theory of
high risk scenarios one encounters powers of densities. Unimodal densities (with
convex level sets) seem to reflect quite well the shape of the sample clouds to which
the theory applies. Pointwise convergence of densities often is a first step towards
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the derivation of limit theorems for distributions. We establish simple asymptotic
expressions for excess probabilities, P{Z € H}, in terms of densities.

There is a continuous one-parameter family of multivariate GPDs, indexed by a
shape parameter 7. As in the univariate case the family falls apart in three power
families, corresponding to the sign of the parameter t. Excess measures of the heavy
tailed distributions, corresponding to T > 0, have a spherically symmetric density.
Tails of distributions in D (7) for Tt > 0 may be approximated by tails of elliptic
Student distributions. Distributions in D (t) for ¢ < 0 have bounded support; the
convex hull of the support is egg-shaped. The latter distributions receive only cursory
treatment; their role in risk theory is limited.

Special attention is given to O (0), the domain of the Gauss-exponential law. As
in the univariate setting, the parameter value t = 0 is the most interesting mathe-
matically. Section 9 introduces the class RE of rotund-exponential densities. These
have the form

f(z) e~ ¥onp(2)

where the function e~ satisfies the von Mises condition for the univariate domain of
attraction DT (0). The function np is the gauge function of a rotund set D. Such a set
is egg-shaped: convex, open, and bounded, it contains the origin, and the boundary
is C2 with continuously varying positive definite curvature. One may think of the
gauge function as a norm, generated by the set D, when —D = D. The rotund-
exponential densities extend the class of spherical Weibull densities ce™ 171" | r > 0.
They allow us to treat sample clouds whose central part is egg-shaped rather than
elliptic. Their simple structure should make them tractable for statistical analysis.
The normalizations oy may be written down explicitly in terms of ¥ and D. In
Section 9 we prove pointwise convergence as H diverges:

flaa )/ f@n(0) — e~ WDy — v) e R (28)

in Section 10 we prove L'-convergence of these quotients for unimodal densities.
Section 11 introduces flat functions. Flat functions play the same role in the multi-
variate theory as slowly varying functions do in the univariate theory. Finally it will
be shown that the normalizations induce a Riemannian metric on the convex open set
O = {f > 0}. Conversely, the metric determines the normalizations, and hence the
global structure of distributions in the domain 0 (0).

We mention two results from Section 13 that should give an impression of the
scope and of the limitations of the theory of multivariate GPDs.

e Let A be a linear map from R? onto R™. If the vector Z € R? lies in D(7),
then so does A(Z).

e A vector Z € D(r) with independent components is Gaussian (and T = 0).

Chapter IV treats exceedances over horizontal and elliptic thresholds. The first
two sections treat horizontal thresholds. The first is theoretical. We prove the Exten-
sion Theorem: If the high risk scenarios Z# for horizontal halfspaces H, properly
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normalized, converge in distribution to a non-degenerate limit vector W, then there
is an excess measure p, and the normalized sample clouds converge in distribution to
a Poisson point process Ny with mean measure p weakly on all horizontal halfspaces
on which p is finite. This is the step from (6) to (11) and (12). Next we determine the
limit laws and excess measures for exceedances over horizontal thresholds. Up to a
non-essential multiplicative constant, the excess measure p is determined by its sym-
metry group y*, ¢ € R, and a probability measure pj on R”, the spectral probability
measure, which is the conditional distribution of U given V' = 0, where W = (U, V)
is the high risk limit vector on H... Section 14.9 describes the situation in R>.

A question that is important for applications is: To what extent may one relax
the condition that the halfspaces be horizontal? The excess measure is finite for a
horizontal halfspace Jy by definition. Is it also finite for non-horizontal halfspaces
close to Jo? Does weak convergence no,, () — pin(8) hold on such halfspaces? A
related question is whether the convex hull of the normalized sample cloud converges
to the convex hull of the limiting Poisson point process. The book gives partial
answers to these questions.

A considerable part of Chapter IV is taken up by the analysis of specific examples,
and a discussion of the relation to the limit theory for coordinatewise extremes.
Section 15 investigates the excess measures and domains of attraction for three simple
symmetry groups y’: vertical translations, scalar contractions, and scalar expansions.
For vertical translations a complete description of the domains of attraction is given.

The next two sections of Chapter IV treat heavy tailed distributions normalized by
linear contractions. Here we shall work with elliptic thresholds. Section 16 presents
the basic theory. The introduction to this section gives more information. The main
result is a complete characterization of the domain of attraction D°(p) for excess
measures with a continuous positive density. Section 17 contains examples, and a
more detailed analysis of the domain of attraction in the case of scalar symmetries.
We also give a careful analysis of the relation between limit laws for exceedances
over elliptic thresholds and multivariate regular variation. For very heavy tails sample
sums are determined asymptotically by the extremes, and domains of attraction for
operator stable distributions and for excess measures coincide: D5 (p) = D*®(p).
In this situation excess measures may be interpreted as Lévy measures for multivariate
stable processes without a Gaussian component. The theory for exceedances over
elliptic thresholds coincides with the limit theory for sums of independent vectors
developed in MS. The theory for exceedances may thus provide a simple introduction
to the limit theory for operator stable distributions.

The theoretical results on regular variation in groups and regularly varying mul-
tivariate probability distributions developed by Meerschaert and Scheffler in their
monograph MS are essential for a deeper understanding of the domain D (p). The
Spectral Decomposition Theorem (SDT) clears up the mysterious disparity between
the domains of attraction of excess measures with scalar symmetries and those with
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diagonal non-scalar symmetries. Section 18 contains a brief introduction to the the-
ory of multivariate regular variation, and to the SDT. The second half of this section
treats the general theory of excess measures on R?. Finally Section 18.14 presents an
example that shows that the three approaches to the asymptotics of multivariate sam-
ple extremes developed in these notes — coordinatewise maxima, exceedances over
linear thresholds, and exceedances over elliptic thresholds — may yield conflicting
results.

Chapter V lists some fifty open problems. Together with the hundred examples
scattered throughout the text these serve to enliven the presentation, and to mark the
boundary of our present knowledge. The second part of the chapter describes some
of the difficulties that a statistician may encounter if she decides to apply the theory
to concrete data sets.

We have provided this lengthy introduction because the book does not have a clear
linear structure. It is a collection of essays. Moreover, there is a certain ambiguity
in the subject matter. Basically the book is about high risk scenarios. Chapter III
may be read from this point of view without bothering about point processes. The
reader will then observe that each of the limit laws extends naturally to an infinite
measure, and he will observe that this excess measure has an extraordinary degree of
symmetry. The excess measure is infinite, but has a simple probabilistic interpretation:
The normalizations that are used to obtain a non-degenerate limit law for the high
risk scenarios may be applied to the sample clouds to yield a limiting Poisson point
process. The excess measure is the mean measure of this Poisson point process.
This convergence of sample clouds is the second point of view. From this point of
view it is natural to start with an overview of point processes, Sections 1-5. The
point process approach unifies the univariate theory of extremes and exceedances in
Section 6. Section 7 treats the limit theory for coordinatewise maxima under linear
and non-linear coordinatewise normalizations from the same point of view. A natural
counterpart to the limit theory for high risk scenarios developed in Chapter III is
the limit theory for exceedances over thresholds developed in Chapter IV. The two
sections on horizontal thresholds are only loosely connected, as are the next two
sections on exceedances over elliptic thresholds. In fact it might be more instructive
to start with one of the examples in Section 15 or in Section 17 in order to gain an
impression of this part of the theory, rather than working through the technicalities
leading up to the Extension Theorem in Section 14. Similarly the open problems in
Chapter V should give a good impression of the scope of geometric extreme value
theory, as treated in this monograph. Sections 5 and 18 have a special standing.
They contain background material. Section 5 looks into the question: How does one
describe convergence of sample clouds to a limiting Poisson point process in terms
of halfspaces? Section 18 treats multivariate regular variation and the general theory
of excess measures and their symmetries. It contains subsections on the Meerschaert
Spectral Decomposition Theorem, on Lie groups, and on the Jordan form of a matrix.
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The book treats only a part of extreme value theory. For extremes of stationary
processes, of Gaussian fields, or of time series, the reader may consult Berman [1992],
Davis & Resnick [1986], Dieker [2006], Finkenstiddt & Rootzén [2004] or Leadbetter,
Lindgren & Rootzén [1983], and the references cited therein. For extremes in Markov
sequences see Perfekt [1997]; for exceedances see Smith, Tawn & Coles [1997].
Extremes in function spaces and for stochastic processes are treated in Giné, Hahn &
Vatan [1990], de Haan & Lin [2003] and Hult & Lindskog [2005]. Limit behaviour
of convex hulls has been investigated in Eddy & Gale [1981], Groeneboom [1988],
Brozius & de Haan [1987], Baryshnikov [2000], Briker, Hsing & Bingham [1998],
and Finch & Hueter [2004]. Statistics for coordinatewise extremes are treated in
de Haan & Ferreira [2006]; for heavy tails see Resnick [2006].

Interest in exceedances over linear thresholds is not new. We mention early papers
by de Haan [1985], de Haan & de Ronde [1998], and Coles & Tawn [1994]. The
last two contain nice applications to meteorological data. Exceedances over linear
thresholds seem to fit snugly within the framework of coordinatewise extremes, as
is shown by Proposition 8. It is only by taking a geometric point of view that one
becomes aware of the limitations imposed by the coordinatewise approach, due to
the restriction to CATs in the normalization. The strong emphasis on coordinates in
multivariate extreme value theory so far may also explain why the relevance of the
theory of multivariate regular variation developed in MS has not been realized before.

Notation

Halfspaces are closed, and denoted by H = {{ > c} or J. Horizontal halfspaces
have the form {y > c}, or {n > y}, where 5 is the vertical coordinate. We often
use the decomposition z = (x, y) € Rt into a vertical component y € R and a
horizontal part x € R”. So h = d — 1 is the dimension of the horizontal coordinate
plane {y = 0}.

The set of affine transformations o w — Aw + b on R? is denoted by A4 =
A(d). If the linear part is a diagonal matrix with positive entries we call « a CAT
(coordinatewise affine transformation). CATSs are simple to handle, and they are
the transformations used in coordinatewise extreme value theory. The CATs form a
closed subgroup of 4. So do the translations w +— w + b and the set A" of affine
transformations that map horizontal halfspaces into horizontal halfspaces. For the
closed subgroups of linear transformations, and the compact subgroups of orthogonal
and special orthogonal transformations (with determinant one) we use the standard
notation GL(d), O(d), and SO(d). We write GL, O and SO if the dimension is not
specified.

In general 7 denotes the distribution of a vector Z = (X, Y) in R**!. We assume
that Z lies in the domain of attraction of a limit vector W = (U, V). This means that
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W, =a, 1(ZHn) = W for certain sequences of halfspaces H, where Z denotes
the vector Z conditioned to lie in the halfspace H. We regard o, as transformations
from (u, v)-space to (x, y)-space, and hence use the inverse ;! to normalize. This
corresponds to the usual practice in the univariate case where one subtracts a location
parameter and divides by a scale parameter.

The table below lists the domains of attraction introduced in the text:

DT (r), t€R | (6) | domain of the univariate GPD G,
D(r), t>—-1/2h | (8) | ...of the multivariate GPD 7, for high risk scenarios
DY(p) DNW) | (7) | ... for coordinatewise maxima and minima,
normed by CATs
2t DY C)| 6D | ...... normed by monotone transformations
D"(p) | (14) | ...for exceedances over horizontal thresholds
D>®(p) | (16) | ...for exceedances over elliptic thresholds
D9 (p) | (17) | domain of operator stable vectors with Lévy measure p

Domains of attraction (in brackets the section in which they are introduced).

The argument of O in the table above is the Pareto parameter t, or the excess
measure, exponent measure, or Lévy measure p, or the limit vector W, or the max-
stable copula C. One could add a number of extra parameters, the dimension d, the
generator of the symmetry group, restrictions on the normalizations in the form of
a subgroup (CATs, linear maps, diagonal maps, scalar maps, translations, etc.); one
could specify that convex hulls converge, that densities converge, or that densities be
unimodal. Since the theory is still in flux we restrict the notation to essentials.

We mention three possible sources of confusion:

1) The high risk limit vector W lives on a halfspace Jy. In the limit relation
oel_{l (ZH) = W itis assumed that P{Z € H} is positive — in order to have well-
defined high risk scenarios —, that P{Z € H} — 0 — in order to have an interesting
limit relation —, and that ag (Jo) = H —in order to ensure that the normalized high
risk scenarios Wy = aI_{l (ZH) live on Jy. Often Jy = H., the upper halfspace,
but it may sometimes be convenient to choose some other halfspace, for instance
Jo = {v > jo}with jo = 1or jo = —1, ortoleave the precise form of Jy unspecified.
This confusion already exists in the univariate case where Pareto distributions may
be standardized to live on [0, c0) or on [1, 00).
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2) The spectral measure is a finite measure, which together with the one-parameter
group of symmetries y’, r € R, determines the excess measure. One may take it to
be a probability measure by dividing p by a harmless positive constant. The spectral
measure lives on R” or on the unit sphere. It has the advantage over the excess
measure that it is arbitrary. The spectral measure bears no relation with the spectral
decomposition. The latter concerns the symmetries and the normalizations.

3) Exceedances over elliptic thresholds is an alternative to exceedances over linear
thresholds which is particularly well suited to distributions with heavy tails. Actually,
as explained in Section 16.1, we shall hardly consider high risk scenarios of the form
ZE°. The limit relation aEl (ZE C) = W only occurs in Section 17.7. The really
interesting relation is

e'B(1) 1 (w) = p weakly on eB¢, t — o0, £ > 0.

In the terminology of MS this just says that the probability measure 7 varies regularly
with exponent C, where the one-parameter linear expansion group y’ = ¢’C,t € R,
satisfies y’(p) = e’ p.

A function f > 0 on R is called unimodal if the level sets { f > ¢} are convex
forc > 0.

Limits are often one-sided. If y is the upper endpoint of a distribution on R then
Y — Yoo always means convergence from below. In limits for sequences indexed
by n we implicitly assume n — oo.

B is the open centered Euclidean unit ball, £}, are open ellipsoids.

N, and N are point processes, usually on R?, or on an open set OBR.

d = h+ 11is the dimension of the vectors Z = (X, Y)and W = (U, V) in R"*1.

7 is the Pareto (shape) parameter, p the excess measure, 7 a probability distribu-
tion. The vertical component of the measure p on R?*1 is 5, and & for o € A" is the
univariate affine transformation of the vertical coordinate induced by «.

The abbreviations rv, df and iid are standard in probability theory and statistics.

The relation = denotes equality in distribution; = denotes convergence in distri-
bution, p := P{X, > c} defines p as the probability of a certain event. We use the
notation a, < b, or a, = o(b,) to signify that a,, /b, — 0; a, ~ b, means that
ay/b, — 1 and a, =< b, means that the quotients a, /b, and b, /a, are bounded
eventually. We use int(E) and cl(E) to denote the interior and the closure of a set E,
and c(E) to denote the convex hull.

The basic terminology and notation have been introduced in the Preview. Special
notation could not be avoided completely. One may always consult the Index at the
end of the book. In the text itself the index entry is in bold face or emphasized by
printing it in italics to contrast with the surrounding text. In the case of multiple
entries, the bold face page number in the Index will guide the reader to the formal
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definition. In the Bibliography the numbers in square brackets refer to the pages on
which the item is cited.

The table of contents is detailed. Starred sections may be skipped. They are
technical or treat subjects which are not used in the remainder of the text. There are
a number of sections treating specialized subjects: Sections 2.6 and 17.6 treat Lévy
processes and convergence to operator stable processes: Section 6.7 discusses self-
neglecting functions; Section 5.3 treats halfspaces and convex sets; Section 18.1 gives
a brief introduction to multivariate regular variation; Sections 16.9 and 18.4 discuss
the Spectral Decomposition Theorem; Section 18.8 describes the excess measures on
the plane; Section 18.9 treats orbits of one-parameter groups of affine transformations
on R¥; Section 18.13 treats Lie groups, and Section 18.12 treats the Jordan form, and
the spectral decomposition of one-parameter groups.

EKM and MS denote two books which will be cited frequently. Embrechts, Kliip-
pelberg & Mikosch [1997] contains the fundamental material on which this mono-
graph is built, and is an excellent guide to applications in finance and risk theory.
Meerschaert & Scheffler [2001] contains an in-depth exposition of the analytic theory
of multivariate regular variation for linear transformations, functions, and measures.



