
Preface

Characterization problems in mathematical statistics are statements in which the de-
scription of possible distributions of random variables follows from properties of some
functions in these variables. One of the famous examples of a characterization prob-
lem is the classical Kac–Bernstein theorem ([65], [13]). This theorem characterizes
a Gaussian distribution by the independence of the sum �1 C �2 and of the differ-
ence �1 � �2 of independent random variables �j . Taking into account that the char-
acteristic function of the random variable �j with distribution �j is the expectation
fj .y/ D O�j .y/ D EŒei�j y �, it is easily verified that the Kac–Bernstein theorem is
equivalent to the statement that, in the class of normalized continuous positive definite
functions, all solutions to the Kac–Bernstein functional equation

f1.uC v/f2.u � v/ D f1.u/f1.v/f2.u/f2.�v/; u; v 2 R;

are of the form fj .y/ D expf��y2 C ibjyg, where � � 0, and bj 2 R.
The Kac–Bernstein theorem was the first among characterization theorems where

independent linear forms of independent random variables �j under different restric-
tions on �j were studied. These studies were completed with the following Skitovich–
Darmois theorem ([98], [23]): Let �j , j D 1; 2; : : : ; n, n � 2, be independent
random variables, and j̨ , ǰ be nonzero real numbers. If the linear forms L1 D
˛1�1 C � � � C ˛n�n and L2 D ˇ1�1 C � � � C ˇn�n are independent, then all random
variables �j are Gaussian. Just as in the case of the Kac–Bernstein theorem, the
Skitovich–Darmois theorem is equivalent to the statement that, in the class of nor-
malized continuous positive definite functions, all solutions to the Skitovich–Darmois
functional equation
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fj . ǰ v/; u; v 2 R;

are of the form
fj .y/ D expf��jy

2 C ibjyg; .1/

where �j � 0 and bj 2 R.
The Skitovich–Darmois theorem was generalized by Ghurye and Olkin ([54]) to the

multivariable case when, instead of random variables, random vectors �j in the space
Rm are considered, and coefficients of the linear forms L1 and L2 are nonsingular
matrices. In this case the independence of L1 and L2 also implies that all independent
random vectors �j are Gaussian. The proof of the Ghurye–Olkin theorem is also reduced
to solving the corresponding functional equation. It should be noted that nonsingular
matrices are topological automorphisms of the group Rm.

Next Heyde proved the following result ([61]): Let �j , j D 1; 2; : : : ; n, n � 2,
be independent random variables, and let j̨ , ǰ be nonzero real numbers such that
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ˇi˛
�1
i ˙ ǰ˛

�1
j ¤ 0 for all i ¤ j . If the conditional distribution of L2 D ˇ1�1 C

� � � Cˇn�n given L1 D ˛1�1 C � � � C˛n�n is symmetric, then all �j are Gaussian. This
statement is closely related to the Skitovich–Darmois theorem. The Heyde theorem
is also equivalent to the assertion that, in the class of normalized continuous positive
definite functions, all solutions to the Heyde functional equation
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fj . j̨u � ǰ v/; u; v 2 R;

are of the form (1).
In the last 30 years much attention has been devoted to generalizing of the classical

characterization theorems into various algebraic structures such as locally compact
Abelian groups, Lie groups, quantum groups, symmetric spaces (see e.g., [2], [29],
[31]–[44], [46], [47], [49], [52], [55], [56], [64], [78]–[82], [84]–[87], [91], [93],
[94]).

These investigations were motivated, first of all, by the desire to find the natural
limits for possible extensions of the classical results. The present book is devoted
to generalization of the Kac–Bernstein, Skitovich–Darmois, and Heyde characteriza-
tion theorems to the case where independent random variables take values in a second
countable locally compact Abelian group X , and coefficients of linear forms are topo-
logical automorphisms ofX . It turns out that the possibility to prove a characterization
theorem forX not only depends on the structure ofX but also determines its structure.
For example, assume that independent random variables �1 and �2 take values in X
and their characteristic functions do not vanish, then the independence of �1 C �2 and
�1 � �2 implies that �j are Gaussian if and only if X contains no subgroup topologi-
cally isomorphic to the circle group T . Note that in the case of groups as well as in
the classical case, the proof of this theorem can be reduced to solving of some func-
tional equation in the class of normalized continuous positive definite functions on the
character group of X .

We describe and comment on the main contents of the book.
Chapter I contains mainly well-known facts from abstract harmonic analysis and the

theory of infiniteAbelian groups. In Section 1 we give the basic definitions and consider
some examples of locally compact Abelian groups. In particular, we describe all
subgroups of the additive group of the rational numbers Q, the groups ofp-adic integers
�p , and a-adic solenoids †a. We formulate structure theorems for various classes of
locally compact Abelian groups and describe the topological automorphism groups of
the groups Rn, T n, �p , †a. The basic results of Ulm theory for countable p-primary
Abelian groups are also presented. In Section 2 we discuss some aspects of probability
distributions on locally compact Abelian groups (the Bochner theorem, properties of
characteristic functions, the Lévy–Khinchin formula, idempotent distributions).

Chapter II is devoted to Gaussian distributions on a locally compactAbelian groupX .
In Section 3 we define Gaussian distributions and study their properties. In Section 4
we describe locally compact Abelian groups where every Gaussian distribution has
only Gaussian factors (the group analogue of the Cramér theorem of decomposition of
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a Gaussian distribution). In Section 5 we study properties of continuous polynomials
on locally compactAbelian groups. We describe locally compactAbelian groups where
any distribution�with a characteristic function of the form O�.y/ D eP.y/, whereP.y/
is a continuous polynomial, is Gaussian (the group analogue of the Marcinkiewicz theo-
rem). The group analogues of the Cramér and Marcinkiewicz theorems are basic tools
for proving characterization theorems in Chapters III–VI. In Section 6 we consider
Gaussian distributions in the sense of Urbanik, i.e., such distributions on X which any
character transforms into Gaussian distributions on the circle group T . We describe
locally compact Abelian groups for which the class of Gaussian distributions coincides
with the class of Gaussian distributions in the sense of Urbanik.

In Chapter III we study distributions of independent random variables �1 and �2

taking values in a locally compact Abelian group X such that �1 C �2 and �1 � �2

are independent. In Section 7 we describe all groups X where such distributions
are invariant with respect to a compact subgroup K of X and that, under the natural
homomorphism X 7! X=K, induce Gaussian distributions on the factor group X=K.
This is the widest subclass of locally compact Abelian groups on which the Kac–
Bernstein type theorem can be proved. It consists of all groupsX having the connected
component of zero without elements of order 2.

If the connected component of zero of a group X contains elements of order 2,
then for such groups the following natural problem arises: to describe all possible
distributions of independent random variables �j taking values in X and such that the
sum �1 C �2 and the difference �1 � �2 are independent. We present a solution to this
problem in Section 8 for the group R � T and the a-adic solenoids †a. In Section 9
we study distributions of independent identically distributed random variables �1 and
�2 taking values in a locally compact Abelian group X such that �1 C �2 and �1 � �2

are independent (Gaussian distributions in the sense of Bernstein).

Chapters IV and V are devoted to some group analogues of the Skitovich–Darmois
theorem. Let �j , j D 1; 2; : : : ; n, n � 2, be independent random variables taking
values in a locally compact Abelian groupX , and j̨ , ǰ be topological automorphisms
of X . Put L1 D ˛1�1 C � � � C ˛n�n and L2 D ˇ1�1 C � � � C ˇn�n.

In Chapter IV we assume that the characteristic functions of independent random
variables �j do not vanish. We prove in Section 10 that independence of the linear
formsL1 andL2 implies that all �j are Gaussian if and only ifX contains no subgroup
topologically isomorphic to the circle group T . Under the condition that the charac-
teristic functions of �j do not vanish, this is the widest subclass of locally compact
Abelian groups on which the Skitovich–Darmois theorem can be extended.

Assume that a group X contains a subgroup topologically isomorphic to the circle
group T . Then the following natural problem arises: to describe all possible distribu-
tions of independent random variables �j taking values in X and having the property
that the linear forms L1 and L2 are independent. The remainder of Chapter IV is
devoted to solution of this problem. It turns out that if the characteristic functions of
independent random variables �j with distributions �j do not vanish and L1 and L2

are independent, then the distributions �j can be replaced by their shifts �0
j in such
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a way that all �0
j are supported in the connected component of zero of the group X .

Hence the problem can be reduced to the case when X is connected. An important
characteristic of a connected locally compact Abelian groupX is its dimension dimX .
If dimX D 1, then X is topologically isomorphic to one of the following groups: the
real line R, an a-adic solenoid †a or the circle group T . If dimX D 2, then either
X contains no subgroup topologically isomorphic to the circle group T or X is topo-
logically isomorphic to one of the following groups: T 2, R � T or †a � T . Assume
that the number of random variables �j is equal to 2. In Section 11 we describe for the
two-dimensional torus T 2 all possible distributions of the random variables �j in the
case when linear forms L1 and L2 are independent. Generally speaking, these distri-
butions are not Gaussian, and we describe, in particular, all topological automorphisms

j̨ , ǰ of the two-dimensional torus T 2 for which the corresponding distributions are
Gaussian. In Section 12 we solve the same problem for the groups R � T and†a � T .

In ChapterV we omit the assumption that the characteristic functions of independent
random variables �j do not vanish and suppose that �j take values in different classes
of locally compact Abelian groups (finite, discrete, discrete torsion, compact totally
disconnected, etc.) Since Gaussian distributions on a totally disconnected group are
degenerate, idempotent distributions play an important role on such groups. It turns
out that, in contrast to the classical situation, there are essential distinctions between
the cases when we deal with linear forms of two random variables, of three random
variables, or of n � 4 random variables. In the group situation some new effects appear
which do not hold on the real line. To show this consider the following example. Let
Z.5/ be the group of residues modulo 5, and �j , j D 1; 2; : : : ; n, n � 2, be independent
random variables with values in Z.5/. If n D 2 and the linear forms L1 and L2 are
independent, then all random variables �j have idempotent distributions. If n D 3 and
the linear forms L1 and L2 are independent, then we can only assert that at least one
of the random variables �j has an idempotent distribution. On the other hand for every
n � 4 there exist independent random variables �j , j D 1; 2; : : : ; n, taking values
in Z.5/ and automorphisms j̨ , ǰ of Z.5/ such that the linear forms L1 and L2 are
independent, but all �j have non-idempotent distributions.

In Section 13 we consider two independent random variables �1 and �2. We prove
that ifX is a discrete group and the linear formsL1 andL2 are independent, then �1 and
�2 have idempotent distributions. We also describe compact totally disconnected groups
for which this property holds true. We prove that the Skitovich–Darmois theorem fails
for compact connected groups. In Section 14 we study the case when the number n
of random variables �j , j D 1; 2; : : : ; n, is greater than 2. First we assume that the �j
take values in a finite group. Then we study the case whenX is either a compact totally
disconnected group or a discrete torsion group. We describe in both cases the groups
X for which independence of the linear formsL1 andL2 implies that either all random
variables �j have idempotent distributions or at least two of the random variables �j have
idempotent distributions, or at least one of the random variables �j has an idempotent
distribution. Further we consider an arbitrary number n � 4 of random variables �j ,
andX is assumed to be either a discrete torsion group or a compact group. We note that
our proof of the Skitovich–Darmois theorem for discrete Abelian groups in the case
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when n D 2, in contrast to the proof of the Skitovich–Darmois theorem for discrete
Abelian groups in the case when n > 2, does not use the Ulm theory.

In Section 15 we consider independent random variables �1 and �2 taking values
in an a-adic solenoid †a. We describe all possible distributions of random variables
�j assuming that the linear forms L1 and L2 are independent. The result depends on
both an a-adic solenoid and topological automorphisms j̨ ; ǰ .

In Chapter VI we study group analogues of the Heyde theorem. Let �j , j D
1; 2; : : : ; n, n � 2, be independent random variables taking values in a locally com-
pact Abelian group X . Let j̨ , ǰ be topological automorphisms of X satisfying the
condition

.i/ ˇi˛
�1
i ˙ ǰ˛

�1
j are topological automorphisms of X for all i ¤ j:

Let L1 D ˛1�1 C � � � C ˛n�n and L2 D ˇ1�1 C � � � C ˇn�n. Assume first that the
characteristic functions of the independent random variables �j do not vanish. In
Section 16 we prove that symmetry of the conditional distribution of the linear form
L2 given L1 implies that all �j are Gaussian if and only if X contains no elements of
order 2. This result can not be improved. If a group X contains elements of order 2,
then the following natural problem arises: to describe all possible distributions of
independent random variables �j taking values in X and having the property that the
conditional distribution of the linear form L2 given L1 is symmetric. We assume that
on the group X there exist topological automorphisms j̨ , ǰ satisfying condition (i).
A simple example of such a group is the two-dimensional torus X D T 2, and even
in this case the problem is very interesting. It turns out that the distributions which
are characterized by the symmetry of the conditional distribution of the linear form
L2 given L1 are convolutions of Gaussian distributions concentrated on a dense one-
parameter subgroup of T 2 and distributions supported in the subgroup of T 2 generated
by elements of order 2.

In Section 17 we drop the assumption that the characteristic functions of indepen-
dent random variables �j do not vanish. We first study the case when �j take values
in a finite group and then �j take values in a discrete group X . In the case when X
is discrete and the number of random variables �j is 2, we prove in particular that the
symmetry of the conditional distribution of the linear form L2 given L1 implies that
the random variables �1 and �2 have idempotent distributions if and only if the group
X contains no elements of order 2.

In the appendix we study the Kac–Bernstein and Skitovich–Darmois functional
equations on locally compact Abelian groups in the classes of continuous and measur-
able functions.
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