
CHAPTER 1

Introduction

The two main objects of these notes are the standard integer lattice
Zd ⊂ Rd consisting of points with integer coordinates and a polyhedron
P ⊂ Rd consisting of points satisfying a finite set of linear inequalities.
The unifying topic is how to count integer points in a polytope (bounded
polyhedron). For example, we conclude by inspection that the polygon
P in Figure 1 contains seven integer points, or, in other words, that
|P ∩ Z2| = 7.
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Figure 1. The integer lattice Z2 ⊂ R2, a polygon P ⊂
R2, and an integer point m ∈ P .

As the dimensions of our polytopes grow and their analytic descrip-
tions become more complicated, “by inspection” no longer works and
we need a theory. The first step towards such a theory is to realize that
the number of |P ∩ Zd| of integer points in a d-dimensional polytope
P ⊂ Rd is a valuation, that is

|P ∩ Zd| = |P1 ∩ Zd| + |P2 ∩ Zd| − |Q ∩ Zd| provided

P = P1 ∪ P2 and Q = P1 ∩ P2.

This observation allows us to cut a given polytope into simpler pieces,
enumerate integer points in those pieces and then obtain the total num-
ber of points by carefully accounting for various overlapping parts. This
is indeed very useful, but not good enough: it turns out that for many
polytopes there is no way to dissect them into a reasonably few simple
pieces. We need more freedom in “cutting and pasting” of polyhedra.
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What we need, is to be able to extend the valuation property further to
unbounded polyhedra, since it turns out that only unbounded polyhedra
(namely cones) are simple enough to deal with, as far as the integer
point enumeration is concerned. This requires us to somehow make
sense of the number of integer points in an unbounded polyhedron.
Fortunately, a way of counting for infinite sets has long been known
under the name of generating functions.

With an integer point m = (µ1, . . . , µd) in Rd we associate a mono-
mial xm = xµ1

1 · · · xµd

d in d variables x1, . . . , xd. We consider the sum

(1.1)
∑

m∈P∩Zd

xm,

where P is a polyhedron and Zd ⊂ Rd is the standard integer lattice.
We will show that for rational polyhedra P (that is, polyhedra defined
by linear inequalities with integer coefficients) if the series (1.1) con-
verges for some x, it converges to a rational function f(P,x). Moreover,
we will be able to define a rational function f(P,x) even if the series
(1.1) does not converge for any x. If P is bounded, we obtain the num-
ber |P ∩ Zd| of integer points in P by computing the value of f(P,x)
at x1 = · · · = xd = 1.

Let us see how this theory plays out in the familiar though admit-
tedly not very exciting case of d = 1.

Suppose that P+ = [0,+∞) is the positive ray. With every non-
negative integer m we associate a monomial xm and consider the sum
over non-negative integer m, see Figure 2.
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Figure 2. Points on the positive ray P+.

The corresponding generating function is given by the formula for
the infinite geometric series:

+∞∑
m=0

xm =
1

1 − x
provided |x| < 1,

so we say that

f(P+, x) =
1

1 − x
.
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Similarly, for the negative ray P− = (−∞, 0], we get

0∑
m=−∞

xm =
1

1 − x−1
provided |x| > 1,

see Figure 3, so we say that

f(P−, x) =
1

1 − x−1
.
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Figure 3. Points on the negative ray P−.

Let us consider integer points on the line R1, see Figure 4. Although
the series

+∞∑
m=−∞

xm

does not converge for any x, we are able to find the rational function
f(R1, x) using the valuation property. Indeed, we have

R1 = P+ ∪ P− and P+ ∩ P− = {0}.
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Figure 4. Points on the line R1.

Hence we must have

f(R1, x) = f(P+, x) + f(P−, x) − x0 =
1

1 − x
+

1

1 − x−1
− 1

=
1

1 − x
− x

1 − x
− 1 = 0.

Now, let us do some counting. For some integers k < n let us
consider the interval P = [k, n], P ⊂ R1, which is a bona fide one-
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dimensional polytope. We do some cutting and pasting to represent
the interval as a combination of unbounded polyhedra, see Figure 5.
In terms of formal power series we have

n∑
m=k

xm =
+∞∑
m=k

xk +
n∑

m=−∞

xm −
+∞∑

m=−∞

xm.
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Figure 5. Representing the interval as a sum of two
rays minus a line.

The valuation property tells us that we must have

f(P, x) = f(k + P+, x) + f(n+ P−, x) − f(R1, x),

where k+P+ and n+P− are the respective translations of the positive
ray P+ by k and of the negative ray P− by n. It is not hard to convince
ourselves that we must have

f(k + P+, x) = xkf(P+, x) =
xk

1 − x
and f(n+ P−, x)

= xnf(P−, x) =
xn

1 − x−1
.

Together with the identity f(R1, x) = 0 this gives us the familiar for-
mula for the sum of a finite geometric series:

(1.2)
n∑

m=k

xm = f(P, x) =
xk

1 − x
+

xn

1 − x−1
− 0 =

xk − xn+1

1 − x
.

Finally, to compute the number |P∩Z| of integer points on the interval,
we substitute x = 1 in the expression for f(P, x). After a moment of
hesitation, we apply l’Hospital’s rule and conclude that |P ∩ Z| =
n− k + 1, which we knew all along.
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This one-dimensional exercise shows in a nutshell some important
features of the general theory. First, higher-dimensional analogues of
the strange identity

(1.3) f(R1, x) =
+∞∑

m=−∞

xm = 0

turn out to be indispensable in dealing with unbounded polyhedra in
Rd. Second, the representation of Figure 5 turns out to be one degen-
erate case of a rich family of identities for higher-dimensional polyhe-
dra. Finally, substituting x = (1, . . . , 1) in f(P,x) in higher dimen-
sions also requires an appropriate version of l’Hospital’s rule, though
the answer, in general, is far from obvious. There are, of course, im-
portant phenomena in higher dimensions that cannot be observed in
dimension 1.

Formula (1.2) writes a potentially long (for n−k large) polynomial
in x as a short rational function in x. We will see that for a general
polyhedron P the sum (1.1) can be written as a short rational func-
tion, with the term “short” defined appropriately. Let us consider a
2-dimensional example: a triangle Δ in the plane with the vertices at
A = (0, 0), B = (0, 100) and C = (100, 0). One can show that∑

m∈Δ∩Z2

xm =
1

(1 − x1)(1 − x2)
+

x100
2

(1 − x−1
2 )(1 − x1x

−1
2 )

+
x100

1

(1 − x−1
1 )(1 − x−1

1 x2)

and this formula will be seen as belonging to the same family of for-
mulas as formula (1.2). Incidentally, the three terms of the right-hand
side are the sums over the angles of the triangle, see Figure 6.
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Figure 6. A triangle and its angles.
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Exercises below describe some interesting examples of short rational
functions encoding long series.

Problems

1. Let a and b be coprime positive integers and let

S =
{
m1a+m2b : m1,m2 ∈ Z+

}
be the set (semigroup) of all linear combinations of a and b with non-
negative integer coefficients m1 and m2. Prove that∑

m∈S

xm =
1 − xab

(1 − xa) (1 − xb)
for |x| < 1.

2∗. Let a, b, and c be coprime positive integers and let

S =
{
m1a+m2b+m3c : m1,m2,m3 ∈ Z+

}
be the set of all linear combinations of a, b, and c with non-negative
integer coefficients m1, m2, and m3. Prove that there exist integers
p1, p2, p3, p4 and p5, not necessarily distinct, such that∑

m∈S

xm =
1 − xp1 − xp2 − xp3 + xp4 + xp5

(1 − xa) (1 − xb) (1 − xc)
for |x| < 1.

Hint: See [De03].

3. Let a, b, c, and d be coprime positive integers and let

S =
{
m1a+m2b+m3c+m4d : m1,m2,m3,m4 ∈ Z+

}
be the set of all linear combinations of a, b, c, and d with non-negative
integer coefficients m1, m2, m3, and m4.

a) Prove that∑
m∈S

xm =
p(x)

(1 − xa) (1 − xb) (1 − xc) (1 − xd)

for some polynomial p and all |x| < 1.

b∗) Prove that the number of monomials in the polynomial p above
can be arbitrarily large, depending on a, b, c, and d.

Hint: See [SW86].
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Problem 3 shows that the pattern of Problems 1 and 2 breaks down
for semigroups with four or more generators. Nevertheless, the more
general phenomenon that the series has a “short rational generating
function representation” still holds, see [BW03].


