Preface

It would not be an exaggeration to say that since the 1940s Feynman’s path integrals
substantially changed quantum physics. This concept led to the implementation of
many path integration methods of different levels of mathematical sophistication, see
[6], [84] and the numerous references therein. Spectacular progress in rigorous quan-
tum field theory (at least for low-dimensional space-time models) was achieved through
the Euclidean strategy in which the Minkowski space was converted into a Euclidean
space by passing to imaginary values of time. The corresponding quantum field was
constructed and studied in this Euclidean domain and then transferred to real time by a
certain procedure. Due to this development, Feynman—Wiener path integrals and hence
the theory of Markov processes as well as methods of classical statistical mechanics
were widely applied. The state of the art in this domain up to the time of their respec-
tive publication was presented in the monographs by B. Simon [273] and J. Glimm and
A. Jaffe [135]. The introduction to the former book gives a profound survey of ideas
and historical facts behind the Euclidean strategy.

Quantum statistical mechanics is close, both conceptually and technically, to quan-
tum field theory. Its rigorous version has been developed on the basis of the theory of
operator algebras, whose fundamentals can be found in the monographs by O. Bratteli
and D. W. Robinson [76], [77], G. G. Emch [114], and by M. Takesaki [300], [301],
[302]. However, for a big class of important quantum models, especially those de-
scribed by unbounded operators, these methods encountered considerable difficulties;
see the discussion on page 241 of [77] and also in [160], [161].

The present book is dedicated to the rigorous statistical mechanics of infinite sys-
tems of interacting quantum anharmonic oscillators. It can be considered as a natural
continuation of B. Simon’s book “The Statistical Mechanics of Lattice Gases: I”’, where
both classical and quantum models of this kind are on the list of ‘models not to be dis-
cussed’, see pp. 19-26 in [277]. In addition, our book is connected with quantum field
theory by the fact that the free quantum field can be interpreted as an infinite system
of interacting quantum harmonic oscillators.

There is, however, one more important reason to develop the theory presented in
this book. Since the 1960s, systems of quantum oscillators have been widely used in
models of quantum solid state physics where they describe vibrations of light particles
localized near sites of crystal lattices and their interaction with other particles and fields.
In this context, we mention the book by A. A. Maradudin et al. [212], see also [154],
[155], and the series of articles by A. Verbeure and his collaborators [310], [316]. The
theory of quantum harmonic oscillators is relatively simple and therefore is quite well
elaborated. The case of anharmonic oscillators is more complex. However, systems
of anharmonic oscillators possess much richer properties and hence have much wider
applications, which strongly stimulates the development of their theory, including its
mathematically rigorous versions. Clearly, the properties of such systems depend
on the geometry of interactions and hence on the configuration of the equilibrium
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positions of the oscillators. In the model studied in this book, they constitute a countable
set L C R?, equipped with the Euclidean distance and obeying a certain regularity
condition. A particular case is the model where L is a crystal lattice. More general
cases of L correspond to quantum particles irregularly distributed in R?. Most of
our results apply to this general case, however, a number of them are valid for crystal
lattices only.

In classical (i.e., non-quantum) statistical mechanics, a complete description of the
equilibrium thermodynamic properties of an infinite-particle system can be given by
constructing its Gibbs states. For some quantum models with bounded Hamiltonians,
equilibrium thermodynamic states are defined as functionals on algebras of observ-
ables satisfying the Kubo—Martin—Schwinger (KMS) condition, see [145] and [77],
which is an equilibrium condition reflecting a consistency between the dynamics and
thermodynamics of the model. However, for an infinite system of interacting quantum
anharmonic oscillators, the KMS condition cannot be formulated and hence the KMS
states cannot even be defined. In this situation, a natural alternative is given by a ver-
sion of the Euclidean strategy based on path integral techniques, which was successful
in low dimensional quantum field theory. Because of their intuitive appeal, methods
employing integration in function spaces on the ‘physical’ level of strictness enjoy great
popularity among theoretical physicists working in quantum physics. This is assured
by numerous monographs and textbooks in this field having appeared or having been
reprinted recently, see e.g., [165], [178], [213], [220], [322]. Thus, the second goal of
this book is to provide a firm mathematical background of path integral methods used
in quantum statistical mechanics, based on the latest achievements in stochastic and
functional analysis. We also believe that the mathematical problems arising here will
stimulate development of the corresponding fields of mathematics.

In accordance with these goals, we address the book to both communities — physi-
cists and mathematicians. Theoretical physicists, especially those who are concerned
with the rigorous mathematical background of their results, can find here a concise
collection of facts, concepts, and tools relevant for the application of path integrals
and other methods based on measure and integration theory to problems of quantum
physics. They can also find the latest results in the mathematical theory of quantum
anharmonic crystals, which can be used as a basis for the study of equilibrium and
non-equilibrium statistical mechanical properties of models employing quantum an-
harmonic oscillators. Mathematicians are given an opportunity to learn what kind
of problems arise in quantum statistical mechanics and how to attack them. We be-
lieve that our methods are also applicable to other problems involving infinitely many
variables, for example, in biology and economics.

In view of its interdisciplinary nature, this book consists of ‘mathematical’ and
‘physical’ parts, preceded by an introduction, where we outline the ideas on which our
approach rests, formulate its main aspects, and briefly describe physical consequences
of the theory developed on the basis of this approach.

The first part, comprising three chapters, starts with a description of the model
considered throughout the book. For this model, we define local Gibbs states as func-
tionals on the corresponding algebras of local observables and give the mathematical
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background of the theory of such states, which includes elements of the theory of linear
operators in Hilbert spaces. Then we present a detailed description of the properties of
Schrodinger operators of single quantum oscillators, both harmonic and anharmonic.
Afterwards, we prepare the description of the local Gibbs states of our model in terms of
stochastic processes and associated path measures. Here we present a number of facts
from the theory of probability measures on topological spaces coming from various
sources. Most of the statements are proven here, addressing those readers who would
like to get into the details without using additional sources. Thereby, we develop a
description of local Gibbs states in terms of path space measures, which in this book
are called local Euclidean Gibbs measures. They have the same structure as the lo-
cal Gibbs measures of the corresponding classical models of unbounded spins. Here,
however, the ‘spins’ are not only unbounded, but also belong to an infinite-dimensional
Banach space. In the next chapter, we develop tools for studying local Euclidean Gibbs
measures, based on their approximation by the Gibbs measures of classical models with
unbounded finite-dimensional spins. With the help of this approximation, we derive a
number of correlation inequalities, which are then crucially used throughout the book.
In Chapter 3, which is the main point of the first part and perhaps of the whole book,
we introduce and study the (global) Euclidean Gibbs measures of our model. These
measures contain all information about equilibrium thermodynamic properties of the
model and play the same role as the KMS states do in the algebraic formulation of
quantum statistical mechanics.

The second part of the book is dedicated to a description of some physical proper-
ties of our model which is based on the Euclidean Gibbs measures constructed in the
first part. Here we present a complete theory of phase transitions and quantum effects.
This theory is mainly based on various correlation inequalities, on regularity proper-
ties of the paths of the underlying stochastic processes, and on the spectral properties
of the corresponding Schrodinger operators. It explains a large number of relevant
experimental data, confirming our approach. In this context, one has to mention pow-
erful methods of studying Gibbs states and phase transitions in classical lattice systems
based on cluster, polymer, and other expansions and estimates. Some of them, like
cluster expansions, have also found applications to quantum anharmonic crystals, see
the works by R. A. Minlos, e.g. [217], and the bibliographic notes below. We expect
that the general framework developed in this book will lead to a more effective use of
these methods in the future. At the same time, a number of such methods, for instance,
the Pirogov—Sinai theory of phase transitions [245], [321], are applicable to classical
models only. In our approach, quantum anharmonic crystals are described as systems
of classical albeit infinite-dimensional ‘spins’. Thus, we hope that by means of our
techniques the development of a version of the Pirogov—Sinai theory, applicable to our
and similar models, will be possible. A relevant problem which we also leave for the
future is the interpretation of our results in terms of states on von Neumann algebras
in the spirit of works by the groups of J. Frohlich [66], R. Gielerak [131], [132], and
A. Verbeure [79], [313].

Although we did our best to make the book self-contained, the reader is supposed
to have certain preliminary knowledge at a graduate level, both in mathematics and
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physics. As a book of great impact on this area we strongly recommend B. Simon’s
monograph [274], and also the monographs [76], [77], [114], [145], [300], [301],
[302] as sources on the algebraic methods of quantum statistical mechanics. Since the
construction of our Euclidean Gibbs measures is carried out in the framework of the
Dobrushin-Lanford—Ruelle approach, we recommend learning its fundamentals from
the books [129], [249], [281].

The line of research described in this book has its roots in original work by the late
Raphael Hgegh-Krohn, who discovered a fundamental duality in relativistic quantum
statistical mechanics by representing the basic correlation functions in terms of a certain
stochastic process, see [1]. For this, it seems more than appropriate to call this stochastic
process the Hgegh-Krohn process, as we do in this book. This should be understood
as an expression of our admiration for a great mathematician, who departed much too
early. Our work on the book was completed on the eve of the 20-th anniversary of
Raphael’s death to confirm that his spirit is still among us.

This book has mostly been written at BiBoS (Bielefeld-Bonn Stochastics) Research
Centre at Bielefeld University. Some of its parts have been presented in lecture series at
the International Graduate College (IGK) ‘Stochastics and Real World Models’, Biele-
feld University. The underlying research, as well as the actual work on the book, were
financially supported by the Deutsche Forschungsgemeinschaft through the projects
No 436 POL 113/98/0-1 ‘Methods of stochastic analysis in the theory of collective
phenomena: Gibbs states and statistical hydrodynamics’ and No 436 POL 113/115/0-1
‘Quantum infinite particle systems in a functional integral approach’, as well as through
the SFB 701 ‘Spektrale Strukturen und topologische Methoden in der Mathematik’.
Yuri Kozitsky was also supported by the Komitet Badan Naukowych through the Grant
2P03A 02025. We sincerely appreciate this support for which we express our deep
gratitude to the corresponding institutions. Our research on the subject of the book was
strongly influenced by the works of our colleagues Ph. Blanchard, R. A. Minlos, and
L. Streit. A substantial part of our results was obtained in collaboration with T. Pasurek
(Tsikalenko). We want to express our deep respect for their role in the development
of this field, as well as our acknowledgment of their collaboration. We also thank our
colleagues A. Daletskii, K. Goebel, Y. Holovatch, T. Kuczumow, T. Kuna, O. Kutovyy,
E. Lytvynov, R. Olkiewicz, R. P. Streater, Z. Rychlik, and E. Zhizhina for interesting
discussions and continuous encouragement. Finally, we are grateful to two anonymous
referees for their constructive criticism which helped to improve the quality of the book.



