
Introduction

A one-dimensional quantum harmonic oscillator is a quantized version of the model of a
particle performing sinusoidal oscillations in a parabolic potential field, corresponding
to Hooke’s law. A �-dimensional harmonic oscillator, � 2 N, performs independent
simultaneous oscillations in all � dimensions; its momentum and displacement are
�-dimensional vectors. For anharmonic oscillators, the corresponding potential fields
are usually super-quadratic and may have multiple minima. The latter peculiarity
entails essential changes in the particle dynamics as compared with the case of convex
potentials. A typical example from physics is a hydrogen bound O � H � O, consisting
of two negative oxygen ions and a positive hydrogen ion (proton), which here stands
for a quantum particle. Such a bound is the key structure element of many inorganic
and organic compounds. The potential field created by the oxygen ions has two minima
(wells), close to each of the ions. Then such a bound with the proton localized in one of
the wells is an electric dipole. These dipoles interact with each other, which can force
the protons to stay in one of the corresponding two wells. At the same time, the protons
oscillate between the wells, even in low-energy states. This motion through a potential
barrier, forbidden for classical particles, is called quantum mechanical tunneling, see
Subsection 1.1.3 below. It produces a strong delocalizing effect, especially at low
temperature.

Along with modeling localized quantum particles, quantum anharmonic oscillators
are also involved in models describing the interaction of vibrating quantum particles
with a radiation (photon) field or strong electron-electron correlations caused by the in-
teraction of electrons with vibrating light ions. Infinite systems of interacting quantum
particles of this kind possess interesting physical properties connected with ordering
(phase transitions) and quantum effects. Most of them are related to solids, such as
ionic crystals containing localized light particles oscillating in the field created by heavy
ionic complexes, like the hydrogen bounds mentioned above, or quantum crystals con-
sisting entirely of such particles, e.g., crystalline helium. In the Born–Oppenheimer
(called also adiabatic) approximation, the motion of heavy ions is neglected and the
oscillators are attached to the sites of a regular crystal lattice – one oscillator per site.
Other important physical objects of this kind are systems of localized light particles
irregularly distributed (admixed) in a certain medium. In the corresponding model,
the sites the oscillators are attached to constitute an irregular set and the localization
potentials may vary from site to site. This can also include the case where L is a
lattice but V`, as well as J``0 , are random. Often, as in the case of hydrogen bounds,
the described particles carry electric charges and their displacements from equilib-
rium positions produce dipole moments. Then the interaction between the particles
is of dipole–dipole type and thereby has slow spatial decay. In what follows, infinite
systems of interacting quantum anharmonic oscillators with possibly irregular spatial
distribution of their equilibrium positions and with long-range interactions can be used
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in modeling a wide variety of physical objects. A rigorous mathematical description
of such systems is still a challenging task, and one of the aims of the present book is
to provide a framework for such a construct.

In the sequel, by C, R, Z, N, and N0 we denote the sets of complex, real, integer,
positive integer, and nonnegative integer numbers, respectively. The main object of
our study is a system of interacting quantum anharmonic oscillators attached to the
elements of a countable set L � Rd equipped with the Euclidean distance j � j inherited
from Rd . We suppose that

sup
`2L

X
`02L

1

.1C j` � `0j/dC� < 1; (1)

for every � > 0, which in particular means that L has no accumulation points. The
condition (1) implies that subsets of Rd of small volume cannot contain a large number
of elements of L. In general, this will be the only condition imposed on the set L.
However, some of our results have been obtained in the case where L is a crystal
lattice, which is clearly indicated in the text. For simplicity, in such cases we always
assume that L D Zd . With a slight abuse of terminology we call our model a quantum
anharmonic crystal, even if L is not a lattice. The heuristic Hamiltonian of our model is

H D �1
2

X
`;`0

J``0 � .q`; q`0/C
X
`

H`; (2)

where the interaction term is harmonic – the simplest possible choice, which, however,
has a physical motivation (it is of dipole–dipole type). The indices in the sums run
through the set L, the displacement q` of the oscillator attached to a given ` 2 L is a �-
dimensional vector, whose components q.j /

`
, j D 1; : : : ; �, are position operators. By

. � ; � / and j � j we denote the scalar product and norm in R� . The one-site Hamiltonian

H` D H har
` C V`.q`/

defD 1

2m
jp`j2 C a

2
jq`j2 C V`.q`/; a > 0; (3)

describes an isolated quantum anharmonic oscillator of mass m and momentum p` D
.p
.1/

`
; : : : ; p

.�/

`
/. It is also called the Schrödinger operator of the oscillator. H har

`
is the

Schrödinger operator of a �-dimensional harmonic oscillator of rigidity a. The com-
ponents of p` and q`, which are operators in L2.R�/, obey the canonical commutation
relation

p
.j /

`
q
.j 0/

`0 � q.j 0/

`0 p
.j /

`
D �iı``0ıjj 0 ; j; j 0 D 1; : : : ; �; i D p�1:

In our presentation of this relation, Planck’s constant ¯ is included into the mass pa-
rameter

m D mph=¯2; (4)

wheremph is the physical mass of the particle. The anharmonic potentialsV` W R� ! R,
which may vary from site to site, are continuous functions obeying

bV jxj2r � cV � V`.x/ � V.x/;
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with constants bV > 0, cV � 0, r 2 N n f1g, and a continuous function V W R� ! R.
These bounds are responsible for the system stability. As for the interaction intensities,
the only general restriction is

OJ0 defD sup
`

X
`0

jJ``0 j < 1;

which is a stability condition as well. By imposing this condition we shall avoid
problems with infinite forces acting on a given oscillator. In general, we do not assume
that the model has special properties like translation invariance or that the interaction
has finite range. Therefore, our model can describe also systems with long-range
interactions and with spatial irregularities like impurities or the ones with random
components.

The Hamiltonian (2) has no direct mathematical meaning and usually is ‘repre-
sented’ by local Hamiltonians Hƒ corresponding to finite ƒ � L. Here and in the
sequel, the adjective ‘local’ characterizes a property, related to a finiteƒ � L, whereas
‘global’will always refer to the whole ‘lattice’L. Cases of infiniteƒ ¨ L are indicated
explicitly. EachHƒ describes the subsystem of oscillators attached to the lattice points
` 2 ƒ, and hence is obtained from (2) by restricting the corresponding sums to ƒ. It
is a self-adjoint lower bounded operator in the physical Hilbert space L2.R�jƒj/, the
elements of which are called wave functions. The operator Hƒ has discrete spectrum
and is such that

traceŒexp.��Hƒ/� < 1; for all � > 0. (5)

The quantum-mechanical states of the subsystem inƒ are defined by the wave functions
 2 L2.R�jƒj/ of unit norm in the following sense. Let Cƒ be the algebra of all
bounded linear operators in L2.R�jƒj/. Its elements are called local observables. For
the mentioned  , the state ! is defined on Cƒ as the linear functional

Cƒ 3 A 7! ! .A/ D . ;A /L2.R�jƒj/;

where . � ; � /L2.R�jƒj/ is the scalar product in L2.R�jƒj/. Such a state can be extended
to unbounded operators, which contain  in their domains. The state ! is pure
(also called extreme), which means that it cannot be expressed as a nontrivial convex
combination of other states. If  is the eigenfunction of Hƒ corresponding to the
eigenvalue E, then the energy of the subsystem in the state ! is ! .Hƒ/ D E.
By (5) and the Hilbert–Schmidt theorem it follows that there exists an orthonormal
basis f ngn2N0

of L2.R�jƒj/, consisting of eigenvectors of Hƒ. Let fEngn2N0
be

the set of the corresponding eigenvalues of Hƒ. According to the fundamental law of
statistical mechanics, the equilibrium state %ˇ;ƒ at a given value of the parameter ˇ D
1=kBT , called inverse temperature, is a mixture of the pure states! n

with coefficients
proportional to exp.�ˇEn/. Here kB > 0 and T > 0 are Boltzmann’s constant and
absolute temperature, respectively. By these arguments we are immediately led to the
formula

%ˇ;ƒ.A/ D trace.Ae�ˇHƒ/

trace.e�ˇHƒ/
: (6)
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This is the Gibbs state corresponding to the canonical ensemble. In the grand canonical
ensemble, one includes also states with different numbers of particles. As in our case
this number is constant and equal to jƒj, we shall consider canonical ensembles only.
Along with the thermodynamics of the considered system of oscillators, the Hamilto-
nian Hƒ determines its dynamics as well. There exist two equivalent approaches to
the description of the dynamics of a quantum system. In the Schrödinger approach,
the states ! evolve according to the Schrödinger equation, whereas the observables
remain constant in time. In the Heisenberg picture, the states are constant but the
observables evolve according to the following rule1

Cƒ 3 A 7! aƒt .A/
defD eitHƒAe�itHƒ ; t 2 R: (7)

AsHƒ is self-adjoint, the operators eitHƒ are unitary; hence, the mappings aƒt , t 2 R,
constitute a one-parameter group of automorphisms of Cƒ. In our context, it is more
appropriate to adopt the Heisenberg approach, at least because in both cases (6) and (7),
one deals with mappings defined on one and the same set Cƒ. Note that the fact, that
they are defined by the same operator Hƒ, is crucial. One might observe, however,
that the picture just drawn has some deficiency since therein the subsystem in ƒ is
described separately from the rest of the system, the influence of which is thereby
ignored. In the path integral approach developed below, this problem is settled by
considering conditional Gibbs measures, in which the interaction of the subsystem in
ƒ with the remaining part of the system is taken into account.

We have come to the point where we can start to build up our Euclidean approach.
In its first stage, we realize the state%ˇ;ƒ with the help of a path measure. Here multipli-
cation operators play a significant role. For a bounded Borel function, F W R�jƒj ! C,
the corresponding multiplication operator F acts according to

.F /.x/ D F.x/ .x/;  2 L2.R�jƒj/:

In this case, we can write

%ˇ;ƒ.F / D
R

R�jƒj F.x/Kˇ .x; x/dxR
R�jƒj Kˇ .x; x/dx

; (8)

where K� .x; y/ is the integral kernel of exp.��Hƒ/. This defines the restriction of
the state (6) to the abelian subalgebra consisting of all multiplication operators by
bounded Borel functions. Of course, such a result is not sufficient. To extend this kind
of representation to the remaining elements of Cƒ we proceed as follows. First we
prove that the linear span of the products

aƒt1.F1/ : : : a
ƒ
tn
.Fn/

with all possible choices of n 2 N, t1; : : : ; tn 2 R, F1; : : : ; Fn 2 Cb.R�jƒj/, is dense in
Cƒ in a certain (� -weak) topology, in which the state (6) is continuous. HereCb.R�jƒj/

1For convenience, we set t D time=¯, where ¯ is Planck’s constant.
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is the set of all bounded continuous functions F W R�jƒj ! C. Thereby, this state is
fully determined by its values on such products, that is, by the Green functions

GƒF1;:::;Fn
.t1; : : : ; tn/

defD %ˇ;ƒŒa
ƒ
t1
.F1/ : : : a

ƒ
tn
.Fn/�; F1; : : : ; Fn 2 Cb.R

�jƒj/: (9)

Let us formally set here tk D i�k , �k 2 R, k D 1; : : : ; n, and consider

„.�1; : : : ; �n/
defD trace

˚
e��1HƒF1e

�.�2��1/Hƒ

� � � � � Fn�1e�.�n��n�1/HƒFne
�.ˇ��n/Hƒ

�
;

(10)

which can be written in the form (8) provided 0 � �1 � � � � � �n � ˇ. Now the
problem of relating (10) to (9) can be settled by means of an analytic continuation from
the real to imaginary values of time. This is done by proving that each Green function
is the restriction of a function GƒF1;:::;Fn

, which is analytic in the following complex
tubular domain2

Dn
ˇ D f.z1; : : : ; zn/ 2 Cn j 0 < =.z1/ < � � � < =.zn/ < ˇg; (11)

and continuous on its closure xDn
ˇ

� Cn. Thereby, one shows that for any n 2 N, the
‘imaginary time’ subset

f.z1; : : : ; zn/ 2 Dn
ˇ j <.z1/ D � � � D <.zn/ D 0g

is a set of uniqueness for functions analytic in Dn
ˇ

. This means that if two such
functions take equal values on this set, then they are equal everywhere and thus equal
as functions. Therefore, the Green functions (9), and hence the state (6), are determined
by the so-called Matsubara functions

�ƒF1;:::;Fn
.�1; : : : ; �n/

defD GƒF1;:::;Fn
.i�1; : : : ; i�n/

D „.�1; : : : ; �n/=traceŒe�ˇHƒ � (12)

D traceŒF1e
�.�2��1/HƒF2e

�.�3��2/Hƒ : : : Fne
�.�nC1��n/Hƒ �=traceŒe�ˇHƒ �;

taken at ordered arguments 0 � �1 � � � � � �n � �1 C ˇ
defD �nC1, with all possible

choices of n 2 N and F1; : : : ; Fn 2 Cb.R�jƒj/. Their extensions to Œ0; ˇ�n are defined
as

�ƒF1;:::;Fn
.�1; : : : ; �n/ D �ƒF�.1/;:::;F�.n/

.��.1/; : : : ; ��.n//;

where � is the permutation of f1; 2; : : : ; ng such that ��.1/ � ��.2/ � � � � � ��.n/. This
multiple-time analyticity can be thought of as a consequence of the above mentioned
fact that the dynamics and thermodynamics of the subsystem are determined by the same
local Hamiltonian and hence are in equilibrium. As follows from the representation
(12), the Matsubara function �ƒF1;:::;Fn

can be written in the form

�ƒF1;:::;Fn
.�1; : : : ; �n/ D

Z
�ˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//�ˇ;ƒ.dxˇ;ƒ/; (13)

2For a z D x C iy 2 C, x; y 2 R, we write x D <.z/, y D =.z/.
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where �ˇ;ƒ is a certain probability measure on the local path space �ˇ;ƒ. It is canon-
ically associated with a ˇ-periodic Markov process3, for which the transition proba-
bilities are defined by the kernels K� .x; y/ mentioned above. This is the main point
of the first stage of our approach. As was mentioned above, this approach is called
Euclidean in view of the passage from the real to imaginary values of time. Corre-
spondingly, the measure �ˇ;ƒ is called a local Euclidean Gibbs measure. By standard
arguments, it is uniquely determined by the integrals (13); hence, since the Matsubara
functions �ƒF1;:::;Fn

uniquely determine the state %ˇ;ƒ, the representation (13) estab-
lishes a one-to-one correspondence between the local Gibbs states and local Euclidean
Gibbs measures.

Now suppose that we are given an algebra of observables C and a one-parameter
group of time automorphisms ˛t W C ! C, t 2 R, which determines the dynamics of
the underlying system. How can one find a � -weakly continuous state ! on C such
that the continuation of the Green functions of this state to imaginary values of time
is possible and thereby a kind of equilibrium can be established? Here we note that
the family of such states need not be a singleton. The answer to the above question is
related to the Kubo–Martin–Schwinger (KMS) property of !. For A;B 2 C, let us set

F !A;B.t/ D !.B˛t .A//; G!A;B.t/ D !.˛t .A/B/; t 2 R: (14)

Then ! is called a ˇ-KMS state if there exists a function F , analytic in D1
ˇ

and

continuous on its closure xD1
ˇ

, such that

F !A;B.t/ D F.t/; G!A;B.t/ D F.t C iˇ/; for all t 2 R.

In [144], see also page 202 in [145], it was suggested to use the KMS property of ! as
the defining property of an equilibrium state at a given value of ˇ. It turns out that if
! is a KMS state, then each Green function

G!A1;:::;An
.t1; : : : ; tn/ D !.˛t1.A1/ : : : ˛tn.An//;

for any n 2 N and A1; : : : ; An 2 C, has a multiple-time analyticity property, the same
as the Green functions (9). This fact was proven in [176]. Thus, a � -weakly continuous
KMS state is uniquely determined by the Matsubara functions corresponding to the
operators from a maximal abelian subalgebra of C. Let us now analyze the possibility
of using the idea just outlined in constructing global equilibrium states. As we have
seen, the crucial elements of this construction are the algebra of observables and the
group of time automorphisms. A candidate for such an algebra could be the norm-
completion of the algebra of local observables

Cloc D
[
ƒ

Cƒ; (15)

where the union is taken over all finite ƒ. It is a C �-algebra, but need not be a
von Neumann algebra. The group of time automorphisms could be obtained in the

3The periodic Markov property was introduced and studied in [177].
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infinite-volume limit ƒ % L from the automorphisms (7). For some systems with
bounded local HamiltoniansHƒ, e.g., quantum spin models or the ideal Fermi gas, this
‘algebraic’ way of constructing equilibrium states can be realized, see [77]. However,
in the case of the model (2), (3), it does not work since the construction of corresponding
infinite-volume time automorphisms is beyond the technical possibilities existing at this
time. As a consequence, the global KMS condition for this model cannot be formulated
and hence the KMS states cannot even be defined4.

What we have also learned from the above consideration is that the Matsubara func-
tions can determine equilibrium states. For our model, this can be done for the local
states by (12) and (13), where these functions are obtained as integrals with respect to
local Euclidean Gibbs measures. On the global level, general abstract techniques of
constructing equilibrium states from given (complete) sets of Matsubara functions were
elaborated in [66], [131], [132], [133]. As follows from these works, the number of
equilibrium states existing for the same values of the model parameters and temperature
is in correspondence with the number of sets of Matsubara functions, which can be con-
structed for these values. Therefore, all the information about the thermodynamics of
the considered model is contained in these functions. Our approach gives a way how to
obtain them. Here we exploit the fact that the local states are represented by probability
measures and hence can be interpreted as local Gibbs measures of classical lattice sys-
tems of unbounded spins. For such systems, a complete description of the equilibrium
thermodynamic properties is achieved by constructing their Gibbs states as probability
measures on appropriate configuration spaces. Here the use of the distributions of
configurations in a finite ƒ � L conditioned by configurations outside ƒ is standard.
The corresponding techniques constitute the Dobrushin–Lanford–Ruelle (DLR) the-
ory, which now is well-elaborated and widely used. By virtue of the Feynman–Kac
formula employed in its construction, each of the local Euclidean Gibbs measures �ˇ;ƒ
has the same structure as the local Gibbs measure of a classical lattice model. The only,
but essential, difference is that here even the single-site spaces are infinite-dimensional
(spaces of continuous paths). Therefore, the reference measure employed in the con-
struction of �ˇ;ƒ cannot be Lebesgue measure, which does not exist for such spaces.
Instead, we use a Gaussian measure, which serves as a local Euclidean Gibbs measure
of a single harmonic oscillator. In spite of the mentioned difficulty, the local Euclidean
Gibbs measures, as well as the corresponding local conditional Gibbs measures, possess
properties which allow for employing most of the DLR techniques adapted, however,
to infinite-dimensional single-site spaces. This is realized in the first part of the book.

As was mentioned above, the model (2) has various physical applications and the
corresponding physical objects are well studied, both experimentally and theoretically,
e.g., by means of numerical methods and computer simulations. At the same time, the
rigorous mathematical description of its equilibrium thermodynamic properties based
on a widely recognized method has not been given yet. In the first part of the present
book we develop a version of such a description. Therefore, it would be quite natural to

4 A more detailed analysis of similar problems, which appear in the theory of interacting Bose gases, can
be found on page 349 of [77].
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obtain in its framework a qualitative explanation of the basic known facts concerning
the thermodynamic properties of these physical objects. This is done in the second part
of the book.

Thus, the main points of the Euclidean approach developed below are

(a) Constructing the local Euclidean Gibbs measures�ˇ;ƒ as measures on path spaces
(spaces of continuous paths).

(b) Constructing and studying the conditional local Euclidean Gibbs measures and
hence the local Gibbs specifications.

(c) Constructing the set G t
ˇ

of tempered Euclidean Gibbs measures, describing the
whole infinite model as the set of probability measures which solve the DLR
(equilibrium) equations defined by the local Gibbs specification.

(d) Studying the properties of G t
ˇ

and thereby describing phase transitions and quan-
tum effects in the model considered.

This program is realized in the book as follows. Part I, as said above, is dedicated
to the mathematical background. It consists of Chapters 1–3. In Chapter 1, we start
by introducing the model and making natural stability assumptions regarding J``0

and V`. Then we introduce the state (6) and provide the essential facts concerning
linear operators in Hilbert spaces, the Schrödinger operators of single harmonic and
anharmonic oscillators, normal states, and von Neumann algebras. Afterwards, we
prove the density theorem which allows for describing local Gibbs states by the Green
functions corresponding to multiplication operators. Next, we give a complete proof of
the multiple-time analyticity of the Green functions, which leads us to the Matsubara
functions and then to the representation (13). In passing from the states (6) to the
measures �ˇ;ƒ, as a reference system we use the subsystem of noninteracting harmonic
oscillators. Its Green and Matsubara functions are obtained explicitly. Thereby, we
present and interpret a collection of concepts and tools from stochastic analysis, which
will be used subsequently. This includes a number of facts from the theory of probability
measures on complete separable metric spaces (called Polish spaces), in particular
on separable Hilbert spaces. As we show, the Euclidean Gibbs measure of a single
harmonic oscillator is the measure corresponding to the periodic Ornstein–Uhlenbeck
velocity process (periodic oscillator process), which for the first time appeared in
R. Høegh-Krohn’s paper [156]. We call them Høegh-Krohn process and Høegh-Krohn
measure respectively. The properties of the Høegh-Krohn measure play a significant
role in our construction and are, therefore, analyzed in detail. We construct and study
the local Euclidean Gibbs measures �ˇ;ƒ by using a version of the Feynman–Kac
formula. Chapter 1, as all subsequent chapters, is concluded with comments and
bibliographic notes.

In Chapter 2, for the local Euclidean Gibbs measures, we prove a number of corre-
lation inequalities and similar useful facts. The proof is based on the ‘lattice approx-
imation’ of the measures �ˇ;ƒ, in which the approximating measures are local Gibbs
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measures of classical models with ‘unbounded spins’. The main point here is the ap-
proximation of the Høegh-Krohn process (which is a periodic Markov process) by a
Markov chain. A similar approach is known in Euclidean quantum field theory. By
means of this approximation we rederive the basic correlation inequalities known for
classical spin models. Among the new results obtained here we mention the Lee–Yang
property for a certain type of anharmonic potentials V`, scalar domination inequalities
which allow for comparing scalar and vector versions of our model, and some new
inequalities for Matsubara and Ursell functions.

Chapter 3 is dedicated to the construction and description of the Euclidean Gibbs
states of the model (2) in complete generality. We start by discussing the thermody-
namic limit and limiting Gibbs states. Then we introduce the spaces of all configurations
�ˇ and tempered configurations �t

ˇ
. The space �ˇ is constructed from the spaces

of local configurations in a natural way. We equip �ˇ with the product topology that
turns it into a Polish space. This fact is essential in view of the DLR techniques which
we are going to use. The reason to introduce the space of tempered configurations
�t
ˇ

is twofold. First, since the interaction intensities J``0 may have infinite range, we

must impose some a priori restrictions on the L2-norms k	`kL2
ˇ

of the components of

configurations 	 2 �ˇ . Otherwise, the local conditional Euclidean Gibbs measures
�ˇ;ƒ. � j	/ cannot be defined. Second, even if J``0 had finite range, restrictions should
be imposed to exclude measures which in a sense are ‘improper’. By definition, tem-
pered Euclidean Gibbs measures are to be supported by�t

ˇ
. This is a usual procedure

in the DLR theory of Gibbs measures of systems of ‘unbounded spins’. However,
as we show afterwards, the real support of the tempered Euclidean Gibbs measures
is much smaller than �t

ˇ
and is independent of the way the latter set has been intro-

duced. As to this way, the restrictions are imposed by means of weights, fw˛g˛2� ,
that among other properties have the one by which each function � logw˛ , ˛ 2 �,
is a metric on L. We equip �t

ˇ
with a projective limit topology, so that it becomes a

Polish space as well. In Section 3.2, we prove that the kernels 
ˇ;ƒ obtained from the
local conditional Gibbs measures obey certain exponential moment estimates, which
play a key role in constructing and studying the tempered Euclidean Gibbs measures.
In Section 3.3, we prove that the set of such measures G t

ˇ
is non-void and weakly com-

pact. We also prove a number of statements characterizing G t
ˇ

, among them the support
property mentioned above. Next we develop an alternative approach to the construc-
tion of Euclidean Gibbs measures based on the Radon–Nikodym characterization. In
this approach, G t

ˇ
is defined as the set of measures obeying an integration-by-parts for-

mula. Subsequently, we present a more detailed study of the case of local interactions,
where the intensities J``0 have finite range, and of the translation-invariant case, where
L D Zd , V` D V , and J``0 are invariant with respect to the translations of L. In the
latter case, the set G t

ˇ
among others contains the so-called periodic elements. Finally,

for J``0 � 0 and � D 1, we introduce a stochastic order on G t
ˇ

, with respect to which it
has a minimal element, ��, and a maximal element, �C. This fact is then employed in
further studying G t

ˇ
. In particular, by means of these elements a uniqueness criterion

is obtained.
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Part II, comprising Chapters 4–7, is dedicated to the description of some physical
properties of the model defined by (2) and (3). Here we concentrate on those related to
phase transitions and critical points, as well as on quantum effects. In Chapter 4, we
discuss in more detail which physical systems can be modeled by the Hamiltonians (2)
and (3). Then we study the classical limit m ! C1, cf. (4), of the local Euclidean
Gibbs measures and show that they coincide with those of the corresponding system
of classical anharmonic oscillators. Next, we prove that G t

ˇ
is a singleton at high

temperatures and/or weak interactions. Chapter 5 is dedicated to the study of the
thermodynamic pressure, which up to a factor coincides with the free energy density.
Here we suppose that L is a lattice and the model is translation-invariant. We begin
by proving that the pressure exists and is the same for each state � 2 G t

ˇ
. Then we

describe its dependence on the external field and formulate a uniqueness criterion in
terms of differentiability of the pressure. Next, in Chapter 6, we study phase transitions.
According to our definition, a phase transition occurs if the set of tempered Euclidean
Gibbs measures contains more than one element that corresponds to the non-uniqueness
of equilibrium phases. We also analyze the connection of this definition with the one
based on an order parameter and with the definition of L. Landau. Then we prove
that a number of versions of our model, including those with irregular L, have a phase
transition under certain conditions. The proof is based on the reflection positivity
method, adapted here to the Euclidean approach, on correlation inequalities, and on
appropriate analytic methods developed in the first part of the book. Next, we consider
a hierarchical model of quantum anharmonic oscillators, which is a special case of the
model (2), (3). For this model, we prove a statement describing its critical point.

The final Chapter 7 is dedicated to the theory of quantum effects in our model.
Since the 1970s, understanding the influence of quantum effects on phase transitions is
one of the main tasks in the theory of systems of this kind. As is commonly accepted, a
ferroelectric phase transition in the KDP-type compounds is triggered by the ordering
of protons on the hydrogen bounds and, therefore, the model (2) is quite appropriate
to describe this class of physical objects. These ferroelectrics become less stable with
respect to a structural phase transition if one replaces protons by deuterons5. On
the other hand, high hydrostatic pressure, which increases tunneling of the particles by
bringing minima of the wells closer to one another, decreases the transition temperature.
We propose a theory, which qualitatively explains all these facts. It naturally comes
from the results obtained above and is based on the following arguments. The key
parameter here ism�2, wherem is the mass parameter (4) and� is the least difference
between the eigenvalues of the single-particle Hamiltonian H` (which depends on
m). In the harmonic case, m�2 is merely the oscillator rigidity and the stability of the
crystal corresponds to large values of this parameter. That is why we callm�2 quantum
rigidity. If the tunneling between the wells gets more intensive (closer minima), or
if the mass diminishes, m�2 gets bigger and the particle ‘forgets’ the details of the
potential energy in the vicinity of the origin (including instability) and oscillates as if
its equilibrium at zero were stable, as in the harmonic case. We provide a complete

5This amounts to altering the particle mass in (3) without changing any other parameters.
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mathematical background for these arguments. First, we prove that the quantum rigidity
is a continuous function of m and that m�2 ! C1 as m ! 0. Then we prove that
the model has no phase transitions, at any temperature, if m�2 < OJ0, where OJ0 is
the total energy of the interaction of the particle with the rest of the system. This can
be considered as a further confirmation that our Euclidean approach is adequate to
describe a large class of phenomena arising in solid state physics.


