Chapter 1
Introduction

In the late 1940s Weil posed the challenge to create a cohomology theory for algebraic
varieties X over an arbitrary field k with coefficients in Z. Weil had a deep arithmetic
application in mind, namely to prove a conjecture of his concerning the ¢-function
attached to a variety over a finite field: Its first part asserts the rationality of this -
function, the second claims the existence of a functional equation, and the third predicts
the locations of its zeros and poles. Assuming a well-developed cohomology theory
with coefficients in Z, possessing in particular a Lefschetz trace formula, he indicated
a proof of these conjectures, cf. [48].

As we now know, for fields k of positive characteristic one cannot hope to con-
struct meaningful cohomology groups H' (X, Z). Nevertheless Weil’s quest provided
an important stimulus. Starting with Serre and then with the main driving force of
Grothendieck, several good substitutes for such a theory have been constructed. Many
later developments in arithmetic algebraic geometry hinge crucially on these theories.

Among the most important cohomology theories for algebraic varieties over a field k
are the following: If k is of characteristic zero, one may pass from k to the field of
complex numbers C and consider the singular cohomology of the associated complex
analytic space X(C). Other invariants in the same situation are given by the algebraic de
Rham cohomology of X. For general k and a prime £ different from the characteristic
of k, there is the cohomology theory of étale £-adic sheaves due to Grothendieck et al.
All these are examples of good cohomology theories in the sense of Grothendieck, in
that they possess a full set of functors f*, ®, fi, fx, Hom, f' and a duality with certain
properties. Moreover, there are important comparison isomorphisms between them.

If k is of positive characteristic p and £ is equal to p, one also has cohomolog-
ical theories of p-adic and mod p étale sheaves. But these are not good theories in
Grothendieck’s sense, as they do not possess a duality and not all of the six functors
above have a reasonable definition. For proper varieties over fields of characteristic p,
a good theory for £ = p is crystalline cohomology.

The first significant progress towards the Weil conjecture came, however, from an-
other approach by Dwork, who resolved the first part and some cases of the second part
of the Weil conjecture by p-adic analytic methods, cf. [16]. Only later Grothendieck
et al. gave a cohomological proof of this along the lines proposed by Weil. Key ingre-
dients in this proof are the cohomological theory of £-adic étale sheaves together with
the Lefschetz trace formula. The latter yields an explicit formula for the L-function
of an £-adic étale sheaf as the L-function of a complex representing the cohomology
with compact support of this sheaf. It thereby provides finer information about the
L-function than Dwork’s analytic proof. In 1974, Deligne gave an ingenious proof of
the remaining parts of the Weil conjecture, again using extensively the cohomological
method, cf. [13].
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Around the same time, Drinfeld initiated an arithmetic theory for objects over global
fields of positive characteristic p, cf. [14]. For this one fixes a Dedekind domain A that
is finitely generated over the field with p elements [, and whose group of units is finite.
The simplest example is the polynomial ring A = [, [¢] over a finite extension with g
elements ;. The ring A plays a role analogous to that of Z in classical arithmetic
geometry.

The first examples of these new objects were what are now called Drinfeld A-
modules. Related but more algebro-geometric objects, also due to Drinfeld, are elliptic
sheaves and more generally shtukas. Inspired by this, in the mid 1980s Anderson
introduced the notion of ¢-motives for A = [F,4[t], which has a natural generalization
to arbitrary A under the name of A-motives. The category of A-motives contains (via
a contravariant embedding) that of Drinfeld A-modules, but is more flexible than the
latter: While the only operation on Drinfeld A-modules is pullback along morphisms,
on A-motives, in addition, one has all the standard operations from linear algebra such
as direct sum and tensor product.

These A-motives bear many analogies to abelian varieties. For any prime £ of Z
one associates the £-adic Tate module to an abelian variety, and for any place v of A one
associates the v-adic Tate module to an A-motive. The former is isomorphic to Z?g if
the abelian variety has dimension g, and the latter is isomorphic to A7 if the A-motive
has rank r. In either case the Tate module carries a continuous action of the absolute
Galois group of the base field. If the base field is finite, the Galois representation is
completely described by the action of the Frobenius automorphism. Its main invariant
is therefore the dual characteristic polynomial of Frobenius, which is an element of
14+ 1tZ4[t] or 1 +¢Ay[t]. One proves that this polynomial is independent of the choice
of £ or v and liesin 1 + tZ][t] or 1 + t A[t], respectively.

More generally consider a family of abelian varieties or A-motives over a base
scheme X of finite type over [,. Following Weil, it is customary to attach an L-
function to such a family by taking the product over all closed points x € X of the
inverses of the above dual characteristic polynomials, stretched by the substitutions
t > 192 This L-function is a priori a power series in 1 + tZ[[t]] or 1 + tA[[t]],
respectively. The first part of the Weil conjecture asserts that the L-function of a family
of abelian varieties is, in fact, a rational function of ¢.

Inspired by the analogy with abelian varieties, Goss [22] conjectured that the L-
function of a family of A-motives should be rational as well. This was proved in 1996
by Taguchi and Wan [44] for ¢-sheaves, which include A-motives as a special case.
Their method was inspired by Dwork’s, with the field of p-adic numbers replaced by
the field of Laurent series over [,. Taguchi and Wan also proved a large portion of
a conjecture by Goss on a certain analytic L-function similar to the ¢-function of a
scheme of finite type over Spec Z. We shall return to this point at the end of this
introduction.

With the paradigm of the development around the Weil conjecture, our main motiva-
tion for the present work was to develop a set of algebro-geometric and cohomological
tools to give a purely algebraic proof of Goss’s rationality conjecture. With further
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applications in mind that are described at the end of this introduction, we develop our
theory in great generality and much detail. For the same reasons as with p-adic étale
cohomology in characteristic p, we do not obtain a good cohomology theory in the
sense of Grothendieck. In particular we do not obtain an R f* or an internal Hom, and
certainly there is no duality theory. But with the functors f*, ®, Ry for proper f,
and R f; for compactifiable f, as well as the trace formula we achieve a good half,
enough for the application to L-functions.

A trace formula for L-functions. One of our central results is a trace formula. Since
it motivates much of the theory, we explain a basic version of it before giving more
details on the individual sections of the book.

From now on we abbreviate k := [,, where ¢ is a power of a prime p. Let A be
a Dedekind domain that is finitely generated over k and whose group of units is finite,
such as A = k[t]. Let X be a scheme of finite type over k and set C := Spec A. The
Frobenius endomorphism of X relative to k, which on sections takes the form f +— f9,
is denoted ox or simply o. In what follows, schemes X, Y, etc., are thought of as
base schemes for families of objects with coefficient ring A. We define these objects
in terms of sheaves on X x C, so that C plays the role of a Coefficient scheme. As a
general convention, whenever tensor or fiber products are formed over k, the subscript
k will be omitted.

The basic objects of our theory are pairs ¥ = (¥, t), where ¥ is a coherent sheaf
on X x C and t an Oxxc-linear homomorphism (¢ X id)*¥ — . Such pairs are
called coherent t-sheaves on X. For simplicity of exposition we assume that ¥ is the
pullback of a coherent sheaf ¥y on X. To any such £ we wish to assign an L-function
as a product of pointwise L-factors.

Let | X| denote the set of closed points of X. For any x € |X| let k, denote its
residue field and d its degree over k. Then the pullback ¥y of ¥ to x x C inherits a
homomorphism z, : (o Xid)* ¥, — F; hence it corresponds to a free k, ® A-module
of finite rank M, together with a o, ® id4-linear endomorphism 7, : M, — M. The
iterate t,‘ci * of the latter is k, ® A-linear, and one knows that

dety @4 (id — 1%t | M) = deta(id — 17, |M,).

This is therefore a polynomial in 1 + #9x A[¢t%x]. Since there are at most finitely many
x € | X| with fixed dy, the following product makes sense:

Definition 1.1. The naive L-function of ¥ is

LnaiVC(X’ F.0) = ] detA(id—lTx|Mx)_l e 1+ tA[[t]].
xe|X|

For the trace formula suppose first that X is proper over k. Then for every integer i
the coherent cohomology group H' (X, %) is a finite dimensional vector space over k.
Moreover, the equality ¥ = pr} o yields a natural isomorphism H' (X x C,¥) =
H(X,%y) ® A. This is therefore a free A-module of finite rank. It also carries a
natural endomorphism induced by t; hence we can consider it as a coherent t-sheaf on
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Spec k, denoted by H' (X, ). The first instance of the trace formula for L-functions
then reads as follows:

Theorem 1.2. L™"(X, #.1) = [];ez L™*(Speck, H'(X. ).0)"".

A standard procedure to extend this formula to non-proper X is via cohomology
with compact support. For this we fix a dense open embedding j: X < X into a
proper scheme of finite type over k. We want to extend the given ¥ on X to a coherent
7-sheaf ?_: on X without changing the L-function. Any extension whose 7, on . 7 18
zero for all z € |X \ X| has that property, and it is not hard to construct one. In fact,
any coherent sheaf on X extending ¥, multiplied by a sufficiently high power of the
ideal sheaf of X \ X, does the job. However, there are many choices for this ¥, and
none is functorial. Thus there is none that we can consider a natural extension by zero
“/1F” in the sense of r-sheaves. Ignoring this for the moment, let us nevertheless
provisionally regard H' (X, f ) as the cohomology with compact support H: (X, ).
Then from Theorem 1.2 we obtain the following more general trace formula:

Theorem 1.3. L™"(X, #.1) = [,z L™"*(Speck, H/(X. £).)'.

Since the factors on the right hand side are polynomials in 1 + ¢ A[¢] or inverses of
such polynomials, the rationality of L"V¢(X, ¥ ,t) is an immediate consequence.

We hasten to add that the order of presentation of the above theorems is for expos-
itory purposes only. We actually first prove Theorem 1.3 when X is regular and affine
over k and then generalize it to arbitrary X by devissage. The proof in the affine case
is based on a trace formula by Anderson from [2]. While Anderson formulated it only
for A = k, Taguchi and Wan [45] already noted that it holds whenever A is a field,
and we extend it further. Also, the formula in [2] is really the Serre dual of the one in
Theorem 1.3 and therefore avoids any mention of cohomology.

The program in this book is to develop a full cohomological theory for t-sheaves and
to prove a relative trace formula for arbitrary compactifiable morphisms f: Y — X.
The formalism includes the inverse image functor f*, the tensor product ®, and the
direct image under a proper morphism f,. To define an extension by zero functor j;, we
formally invert any morphism of coherent t-sheaves on whose kernel and cokernel ©
is nilpotent. The result is called a localization of the category of coherent 7-sheaves
on X, with the same objects but other morphisms and more isomorphisms, which
we call the category of crystals on X. In this category all the above F become
naturally isomorphic, and any one of them represents the extension by zero ji ¥ in the
sense of crystals.

This somewhat artificial construction is more than a cheap trick. It has several
beneficial side effects; for example, it turns the pullback functor f*, which is only
right exact on coherent sheaves, into an exact functor on crystals. Thus crystals behave
more like constructible sheaves than like coherent sheaves. The passage to crystals is
perhaps the key innovation of this book compared to [2] or [45].

We construct a derived category of crystals and the corresponding derived func-
tors /*, ®L and R f; for compactifiable f, and we calculate them in terms of the un-
derlying t-sheaves. We discuss flat crystals and more generally complexes of crystals
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of finite Tor-dimension, to which we can associate what we call crystalline L-functions.
One of the main results is then the following relative trace formula generalizing Theo-
rem 1.3.

Theorem 1.4. Let f: Y — X be amorphism of schemes of finite type over k. Suppose
that A is an integral domain that is finitely generated over k. Then for any complex
F° of finite Tor-dimension of crystals on Y, one has

LCWS(Y, 3’:.,[) — l[cl’yS(}(7 Rﬁ}:"[)

We now discuss in detail the individual chapters of the book. With the exception
of Chapter 2 we follow their order of appearance. From now on X, Y, ... will denote
arbitrary noetherian schemes over k, and A will denote an arbitrary localization of a
finitely generated k-algebra. In the examples A will typically be a finitely generated
field, a Dedekind domain, or finite.

Basic objects (Chapter 3). The starting point is the notion of a coherent t-sheaf,
which, due to its importance, we state again:

Definition 1.5. A coherent t-sheaf over A on X is a pair ¥ := (¥, t#) consisting of
a coherent sheaf ¥ on X x C and an Oy xc-linear homomorphism

(o xid)*7 L 7.

A homomorphism of coherent t-sheaves ¥ — § on X is a homomorphism of the
underlying sheaves ¢ : ¥ — § which is compatible with the action of <.

The category of coherent 7-sheaves over A on X is denoted by Coh, (X, A). Itis an
abelian A-linear category, and all constructions like kernel, cokernel, etc. are the usual
ones on the underlying coherent sheaves, with the respective t added by functoriality.

Any ¢-sheaf on X in the sense of Taguchi and Wan is a coherent 7-sheaf whose
underlying coherent sheaf is locally free, where A is a suitable Dedekind domain such
as k[t]. In particular any Drinfeld A-module and any A-motive can be regarded as a
coherent t-sheaf.

The next definition is a preparation for the concept of crystals:

Definition 1.6. (a) A coherent t-sheaf ¥ is called nilpotent if the iterated homomor-
phism 7% : (0" x id)*¥ — ¥ vanishes for some n > 0.

(b) A homomorphism of coherent t-sheaves is called a nil-isomorphism if both its
kernel and cokernel are nilpotent.

Nil-isomorphisms satisfy certain formal properties that make them a multiplicative
system in the category Coh;(X, A). To any multiplicative system one associates a
certain localized category in which all members of the multiplicative system become
isomorphisms and which has a universal property, like the localization of a ring.

Definition 1.7. The category Crys(X, A) of A-crystals on X is the localization of
Coh. (X, A) at the multiplicative system of nil-isomorphisms.
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The objects of Crys(X, A) are those of Coh;(X, A), but the homomorphisms are
different. Homomorphisms & — ¢ in Crys(X, A) are diagrams ¥ <« ¥’ — § in
Coh, (X, A) where the homomorphism ' — ¥ is a nil-isomorphism, up to a certain
equivalence relation. The result is again an A-linear abelian category, and a coherent
t-sheaf represents the zero crystal if and only if it is nilpotent.

Functors (Chapter 4). Consider a morphism f: Y — X and a k-algebra homomor-
phism A — A’. Then we have the following A-linear, resp. A-bilinear, functors:

(i) inverse image: f*: Coh,(X, A) — Coh,(Y, A),

(ii) tensor product: _ ® _: Coh;(X, A) x Coh. (X, A) — Coh.(X, A),
(iii) change of coefficients: = ®4 A": Coh,(X, A) — Coh, (X, 4'),
(iv) direct image: fi: Coh (Y, A) — Coh.(X, A) if f is proper.

All these functors are defined by the corresponding operations on the underlying coher-
ent sheaves, with ( f xid)* and ( f xid) in place of f* and f, and with the associated
T added by functoriality. All of them preserve nil-isomorphisms and therefore pass to
functors between the corresponding categories of crystals.

Next we consider an open embedding j: U < X with a closed complement
i:Y — X. Then we can extend any coherent t-sheaf ¥ on U to a coherent t-sheaf
f on X such that i *.f is nilpotent (compare the discussion preceding Theorem 1.3).
Any homomorphism between two such extensions, which is the identity on U, is a
nil-isomorphism. Thus on crystals we obtain:

Theorem 1.8. There is an exact A-linear functor
(v) extension by zero: ji: Crys(U, A) — Crys(X, A),
uniquely characterized by the properties j* ji = id and i* j) = 0.
Sheaf-theoretic properties (Chapter 4). Surprisingly, crystals behave more like con-
structible sheaves than like coherent sheaves. For instance:

Theorem 1.9. For any morphism f: Y — X the inverse image functor f* on crystals
is exact.

In particular, let i, : x < X denote the natural embedding of a point of X. Then
the stalk at x of a crystal ¥ on X is defined as the crystal ¥ | := i} ¥ . The following
result justifies this definition:

Theorem 1.10. (a) A sequence of crystals is exact if and only if it is exact in all stalks.
(b) The support of a crystal ¥, i.e., the set of points x € X for which i} ¥ is
non-zero (as a crystal!), is a constructible subset of X.

Moreover crystals enjoy a rigidity property that is not shared by t-sheaves, but well
known for étale sheaves. We state it here in its simplest form:
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Theorem 1.11. Let f: Xeq <> X denote the canonical closed immersion of the
induced reduced subscheme. Then the functors f* and f« are mutually quasi-inverse
equivalences between Crys(X, A) and Crys(Xeq, A).

Thus crystals extend in a unique way under infinitesimal extensions. In other words
they grow in a prescribed way, as the name suggests.

Derived categories and functors (Chapters 5 and 6). A major part of this book deals
with the extension of the functors (i)—(v) to derived functors between derived categories
of crystals. As usual, the construction of derived functors requires resolutions by
acyclic objects, but these cannot be found within the categories of coherent r-sheaves
or crystals. We therefore consider the much larger categories of quasi-coherent t-
sheaves and quasi-crystals, which are defined in an analogous way except that the
underlying sheaves are only quasi-coherent. In these we dispose of Cech resolutions
and resolutions by injectives. These categories and the functors between them are
already studied in Chapters 3 and 4.

For technical reasons we also need to consider the category of all filtered direct
limits of coherent 7-sheaves, which we call ind-coherent t-sheaves. This category is
properly sandwiched between that of coherent t-sheaves and quasi-coherent T-sheaves,
An analogous situation occurs for crystals and quasi-crystals. A large part of Chapter 5
is devoted to clarifying the relations between the derived categories of quasi-coherent,
ind-coherent and coherent t-sheaves and of the corresponding quasi-crystals and crys-
tals.

Once the comparison of derived categories is complete, it is relatively straight-
forward to construct the derived functors arising from (i)—(iv), namely derived pull-
back Lf*, which equals f* on the derived category of crystals, derived tensor prod-
uct ®%, and derived direct image under a proper morphism R f *. The derived direct
image with compact support R f for a compactifiable morphism f = f o j is then
defined as the composite of the exact functor ji from (v) with the derived direct image
under a proper morphism R fi. We establish all compatibilities between these functors
that could reasonably be expected, including the proper base change theorem and the
projection formula. The proofs of these formulas make essential use of the universal
properties of derived functors.

We also show that the individual derived functors L; £* and H ~* (_®%~_) and R’ f,
for proper f can be computed in the ‘naive’ way by taking the corresponding derived
functors of (quasi-) coherent sheaves with the respective t added by functoriality. This
is important for calculations, but would not serve as a very good definition of these
functors, because one would still not know the true derived functors of crystals.

Categorical preparations (Chapter 2). We also have to deal with a number of cate-
gorical issues in relation to derived categories. Let us give three examples:

(1) There are at least two natural ways to go from the category of quasi-coherent
7-sheaves to the derived category of quasi-crystals. One can first localize at nil-iso-
morphisms and then derive the abelian category of quasi-crystals or, alternatively, one
may first pass to the derived category of quasi-coherent t-sheaves and then localize at
nil-quasi-isomorphisms. We show that the two procedures agree.
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(i1) In our constructions of derived functors, we want to stay within the setting of
quasi-coherent 7-sheaves and quasi-crystals. The reader familiar with the approach in
Hartshorne [25] may remember that the construction of the derived inverse image and
the derived tensor product uses categories of non-quasi-coherent sheaves of modules.
We bypass this by giving another criterion for the existence of derived functors.

(iii) The construction in [25] of a derived functor R fi of coherent sheaves for proper
f depends on a comparison theorem between the derived category of coherent sheaves
and the full triangulated subcategory of the derived category of quasi-coherent sheaves
with coherent cohomology. The proof of this comparison theorem uses the fact that
every quasi-coherent sheaf is a filtered direct limit of coherent sheaves. As mentioned
above, this is not so for t-sheaves and (quasi-) crystals. Nevertheless we prove the
corresponding comparison theorem, although its proof is surprisingly intricate.

Chapter?2 also contains a brief review of categorical foundations and further prepa-
rations.

Flatness (Chapter 7). Traces and characteristic polynomials and therefore L-functions
can be defined only for locally free modules. The corresponding notion for crystals is
flatness.

Definition 1.12. A crystal ¥ is flat if the functor ¥ ® _ on crystals is exact.

Clearly any crystal whose underlying coherent sheaf is locally free is flat. More
importantly, any crystal on X whose underlying sheaf is a pullback of a coherent sheaf
under the projection pr;: X x C — X is flat. Some basic properties on functorialities
and on stalks are:

Theorem 1.13. (a) Flatness of crystals is preserved under inverse image, tensor prod-
uct, change of coefficients and extension by zero.

(b) A crystal is flat if and only if all its stalks are flat.

(c) If f is compactifiable and ¥ " is a bounded complex of flat crystals on Y, then
RAF " is represented by a bounded complex of flat crystals.

Note that by (a) the analog of assertion (c) for inverse image, tensor product and
change of coefficients also holds.

We have observed that any crystal represented by a coherent t-sheaf whose under-
lying sheaf is locally free is flat. For the definition of an L-function we would wish
to go the other way and represent every flat crystal by such a t-sheaf. It is a highly
non-trivial matter to decide when, precisely, that is possible. As the L-function is a
product of Euler factors attached to points x € X with finite residue field, it suffices
to address this question over a single such point. But even then the question does not
always have a positive answer. We have, however, the following important special
case:

Theorem 1.14. Suppose that x = Spec ky for a finite field extension k. of k and that
A is artinian. Then for any A-crystal ¥ on x we have:
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(a) Thecrystal ¥ can be represented by a coherent T-sheaf ¥’ whose homomorphism
t: (0 xid)*F'— F’ is an isomorphism.

(b) The representative in (a) is unique up to unique isomorphism. We denote it by
F . and call it the semisimple representative of .

(c) The assignment ¥ +— ¥ is functorial.

(d) The crystal ¥ is flat if and only if the coherent sheaf underlying ¥ . is locally
free.

(Crystalline) L-functions (Chapters 8 and 9). In view of Theorem 1.14 (d) — and its
failure for general A — we first assume that A is artinian.

Consider a flat crystal & over a scheme X of finite type over k. As before let | X |
denote the set of closed points of X. For any x € |X| let dy denote its degree over k
and i : x — X its natural embedding. Then the stalk ¥ := iy ¥ is again flat by
Theorem 1.13, and so the coherent sheaf ¥ ¢ underlying its semisimple representative
F s 1slocally free. Choose alocally free coherent sheaf § on x x C such that ¥ s 9
is free, and turn it into a t-sheaf § by setting g := 0. Then the local factor at x of the
crystalline L-function of ¥ is defined as

L(x, zx’t) — Lnaive(x’ zx’ss ®E.1)el+ thA[[tdx]]

with L3¢ from Definition 1.1. One easily shows that this is independent of the choice
of §. As there are at most finitely many x € | X| with fixed dy, the following product
makes sense:

LYX, F.1) = [] L(x.F,.1) € 1 +tA[[r]].
x€|X|

This definition is extended to any bounded complex & of flat A-crystals on X by
defining its crystalline L-function as

LY(X, F°.1) = [] L, F'.0)D e 1+ 1A[[t]].
ieZ
This definition is invariant under quasi-isomorphisms and thus naturally extends to any
complex of crystals of bounded Tor-dimension.

Since the L-function of a crystal must be independent of the representing t-sheaf,
there is essentially no other sensible definition. In particular, before taking the charac-
teristic polynomial one must purge any t-subsheaf or quotient on which t is nilpotent,
because any such t-sheaf represents the zero crystal. This has the somewhat unfor-
tunate consequence that the naive L-function of a coherent 7-sheaf whose underlying
coherent sheaf is free may differ from the crystalline L-function of the associated crys-
tal. For example, if r on ¥ is nilpotent, the naive L-function can be any polynomial
with constant term 1 and nilpotent higher coefficients, while the crystalline L-function
is necessarily 1. The problem disappears only when A is reduced. It was also the
reason for the name ‘naive L-function’.
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When A4 is reduced, the crystalline L-function satisfies all the usual cohomological
formulas (except duality). For arbitrary artinian A, finite or not, these formulas hold
only up to ‘unipotent factors’. In some sense these factors correspond to missing nilpo-
tent t-sheaves; hence this defect is an unavoidable consequence of the very definition
of crystals.

For arbitrary artinian A let ng denote its nilradical, i.e., the ideal consisting of
all nilpotent elements of A. Any polynomial in 1 + f1n4[¢] will be called unipotent.
We regard two power series P, QO € 1+ tA[[t]] as equivalent and write P ~ Q if
the quotient P/Q is a unipotent polynomial. One easily checks that this defines an
equivalence relation on 1 + rA[[¢]].

Based on Theorem 1.13 (c), we can now state a main result of Chapter 9:

Theorem 1.15. Let f: Y — X be a morphism of schemes of finite type over k. Then
for any complex ¥ ° of crystals on Y of bounded Tor-dimension, we have

LY, F°,t) ~ L“(X,RAF ", 1).
If A is reduced, then equality holds.

If we apply this to the structure morphism X — Spec k, the right hand side becomes
a finite alternating product of polynomials. We therefore deduce:

Corollary 1.16. The crystalline L-function of a complex of crystals of bounded Tor-
dimension on a scheme of finite type over k is a rational function of t.

We now revoke the assumption that A4 is artinian. Let Q4 denote the direct sum
of the localizations of A at all minimal prime ideals. Since A is noetherian, this Q4
is artinian. Thus for any complex ¥  of A-crystals of bounded Tor-dimension on
a scheme X of finite type over k, we can consider the L-function of the associated
complex of Q 4-crystals

L™ (X, F° ®% Q4,1) € 1 +1Q4[[t]].

On the other hand, any good theory of L-functions should be invariant under change
of coefficients. We therefore attempt to extract a crystalline L-function of #° from
that of & ° ®ﬁ Q4. An obvious necessary condition for this is that the canonical ho-
momorphism A — Q4 is injective. But additional conditions are needed to guarantee
that the coefficients actually lie in A. For this we introduce a notion of good coefficient
rings. Particular examples of these are normal integral domains and artinian rings. For
any good coefficient ring A we show that L¥S(X, F* ®j Q4,t) liesin 1 + tA[[t]],
and so we take it as the definition of LY$(X, F°,1).

All formulas for crystalline L-functions, such as the trace formula in Theorem 1.15,
extend directly from artinian rings to good coefficient rings. Moreover, for any ring
homomorphism A: A — A’ denote the induced group homomorphism 1 + tA[[t]] —
1 + tA’[[t]] again by A. Then the change of coefficients formula for crystalline L-
functions states:
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Theorem 1.17. For any homomorphism between good coefficient rings . A — A’
and any complex F° of A-crystals of bounded Tor-dimension on a scheme X of finite
type over k, we have

ML(X, F°1) ~ L™ (X, F° % A, 1).

The case of finite A. Our original motivation to study t-sheaves and crystals stemmed
from the theory of Drinfeld modules and A-motives. However, in relation with Artin—
Schreier theory, the case of finite A was discussed in the literature already quite some
time ago, cf. [29, § 4] or [SGA41, § 3].

Let A be finite, and let F be a coherent t-sheaf over 4 on X. To its underlying
coherent sheaf one can canonically assign a sheaf z on the small étale site over X.
By functoriality, it inherits an endomorphism t from 7. The subsheaf (¥ ) of #,
of t-invariant sections is an étale sheaf of A-modules, and the assignment ¥ +— &(¥)
is functorial. Since ¢ preserves the property of being noetherian, it takes its image in
the category Et. (X, A) of constructible étale sheaves of A-modules on X. Moreover
¢ is left exact and zero on nilpotent t-sheaves. Therefore it maps nil-isomorphisms to
isomorphisms, and so passes to a functor

g: Crys(X, A) — Et (X, A), F +— &(¥F).

The following is the main result of Chapter 10. In an important special case its first
part is due to Katz, cf. [29, Theorem 4.1].

Theorem 1.18. Suppose that A is finite. Then the functor € is an equivalence of
categories. It commutes with all functors and derived functors mentioned above, and
it preserves flatness. Finally, the crystalline L-function of a flat crystal agrees with the
L-function of the associated étale sheaf.

Theorem 1.18 indicates that our theory for general A may be regarded as a global
counterpart to the theory of étale p-torsion sheaves. To be more specific, let A be a
Dedekind domain that is finitely generated over k and whose group of units is finite.
Then for any maximal ideal p of A, the change of coefficients functor for A — A/p
composed with the functor & above induces a functor

Crys(X, A) —> Crys(X, A/p) => Et.(X, A/p).

Combining all of the above results, it follows that this functor has all compatibilities
that one could hope for.

Relations to other work. For smooth schemes X, a theory similar to ours was de-
veloped independently by Emerton and Kisin in part I of [18]. The relation between
the two theories is basically given by duality in the derived category of bounded com-
plexes of coherent sheaves as described in [25]. This duality transforms o X id-linear
homomorphisms into 6~! x id-linear homomorphisms and vice versa. The precise
correspondence is presently worked out in detail by Blickle and the first-named author.
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Emerton and Kisin go beyond our setting when, in part II of their work, they extend
their theory to p-adic coefficients and prove a trace formula in that context.

The present theory is a natural extension of the theory of A-motives. Our main
motivation was to prove a trace formula for L-functions of families of A-motives. The
motivation of Emerton and Kisin was to prove a Riemann-Hilbert correspondence,
which bears much resemblance to our last Chapter 10, and a trace formula in the p-
adic context, cf. [17]. Their theory has applications to p-adic unit root crystals and
local cohomology in characteristic p. Motivated by our theory, they also developed a
full-fledged formalism of coefficients similar to ours and a trace formula in that context.

Further applications. The L-functions in the present book are analogues of the L-
functions of p-adic and £-adic sheaves on varieties in characteristic p. In [22] Goss
also defined analytic L-functions of families of A-motives which are analogues of the
L-functions of £-adic sheaves on schemes of finite type over Spec Z. He conjectured
that these L-functions extend to entire resp. meromorphic functions on a domain in
characteristic p which replaces the usual complex plane, and gave first evidence for
this in [22]. In the case A = [,[¢] this conjecture was proved by Taguchi and Wan in
[44] and [45]. The special values at negative integers of Goss’s analytic L-functions
are rational functions and turn out to have an interpretation in terms of the cohomology
theory developed here. In [4] explicit cohomological expressions are used to prove that
the degrees of these special values at negative integers —n grow at most logarithmically
in n. From this, in [4] and, independently, in [23], the remaining conjectures of Goss
on meromorphy and entireness were deduced. In an interesting recent preprint [31], V.
Lafforgue uses and extends parts of the present theory to study special values of Goss’s
L-functions at critical values.

In [5] the theory of the present book was applied to Drinfeld modular forms. The
moduli scheme of Drinfeld A-modules of rank 2 with a full level n-structure carries a
canonical locally free t-sheaf ¥ | of rank 2, which corresponds to the universal Drinfeld
module. Following the classical case of elliptic modular forms, one is naturally led to
studying the cohomology of the k-th symmetric power Symk F o forany k > 0. In [5]
the ‘analytic realization’ of this cohomology is shown to be dual to the space of cuspidal
Drinfeld modular forms of weight k + 2 and level n. This isomorphism is equivariant
for naturally defined Hecke operators. On the other hand, the ‘étale realization’ of
this cohomology yields abelian A,-adic Galois representation for any place v of A.
Combining both realizations, any cuspidal Drinfeld Hecke eigenform yields a one-
dimensional v-adic Galois representation for any v, where the correspondence is given
by an Eichler—Shimura type relation. This is analogous to constructions by Eichler—
Shimura and Deligne attaching £-adic Galois representation to cuspidal elliptic modular
forms. For a survey on both developments we refer to [6].



