
Preface

The field of dynamical systems originated in the difficult mathematical questions
related to movements of the planets and the moon, questions like: Are there periodic
orbits? Will the solar system keep its present beautiful form, also in the distant
future, or could it happen that one of the planets, Jupiter for instance, leaves the
system? Or could it come to a collision between planets, leading to a dramatic
change of the solar system?

The mathematical theory of dynamical systems provides concepts, ideas and
tools, in order to analyze and model dynamical processes in all fields of natural
sciences, making use of nearly all branches of mathematics. On the other hand,
already in the past, questions of dynamical systems in the real world have triggered
new mathematical developments and led to whole new branches of mathematics.
Here, typical questions would be: Knowing its present state, how will a dynamical
system develop in the long run? Will it, for example, tend to an equilibrium state
or will it come back to itself? What will happen to the long-time behavior if we
change the initial conditions a little bit? And what will happen to the whole orbit
structure of a system if we perturb the system itself?

The book addresses readers familiar with standard undergraduate mathematics.
It is not a systematic monograph, but rather the lecture notes of an introductory
course in the field of dynamical systems given in the academic year 2004/2005 at
the ETH in Zürich for third year students in mathematics and physics. I selected
relatively few topics, tried to keep the requirements of mathematical techniques
minimal and provided detailed (sometimes excruciatingly detailed) proofs.

The introductory chapter discusses simple models of discrete dynamical sys-
tems, in which the dynamics is determined by the iteration of a map. There are
examples for minimal, transitive, structurally stable and ergodic systems. Map-
pings that preserve the measure of a finite measure space have strong recurrence
properties in view of a classical result due to H. Poincaré. In order to describe the
statistical distribution of their orbits, the ergodic theorem of G. Birkhoff is proved.

Chapters II and III are devoted to unstable phenomena caused by a hyperbolic
fixed point of a diffeomorphism. Such a point gives rise to two global invariant
sets, the so-called stable, respectively unstable, invariant manifolds issuing from
fixed point. These consist of points which tend to the fixed point under the iteration
of the map and under the iteration of the inverse map, respectively. The transver-
sal intersection of the stable and unstable manifolds in the so-called homoclinic
points is one of the roads to chaos. The existence of homoclinic points, discovered
by H. Poincaré in the 3-body problem of celestial mechanics, complicates the orbit
structure considerably and gives rise to invariant hyperbolic sets. The chaotic struc-
ture of the orbits near such sets is analyzed by means of the Shadowing Lemma,
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which is also used to demonstrate S. Smale’s theorem about the embeddings of
Bernoulli systems near homoclinic orbits. The interpretation of unpredictable or-
bits, which are determined by random sequences, will be demonstrated in the simple
system of a periodically perturbed mathematical pendulum.

In Chapter IV we deal with smooth flows generated by vector fields and with
continuous flows on metric spaces. The concepts of limit set, attractor and Lyapunov
function are introduced. The bounded solutions of a gradient-like flow tend to rest
points in forward and in backward time. The rest points are found by mini-max
principles. The intimate and fruitful relation between the dynamics of gradient
flows and the topology of the underlying compact manifold is described by the
Morse inequalities. The Morse theory is sketched at the end of the chapter.

ChapterV introduces the special class of Hamiltonian vector fields that are deter-
mined by a single function and defined on symplectic manifolds. These manifolds
are even-dimensional and carry a symplectic structure. A symplectic structure is
a 2-form that is closed and nondegenerate. In contrast to Riemannian structures
which do exist on every manifold, not every even-dimensional manifold admits
a symplectic structure. Symplectic manifolds of the same dimension are locally
indistinguishable (Darboux). There are no local symplectic invariants. The Hamil-
tonian formalism is developed in the convenient language of the exterior calculus
which will be briefly introduced. The very special integrable Hamiltonian systems
are characterized by the property that they possess sufficiently many integrals of
motion, so that the task of solving the Hamiltonian equations for all time becomes
almost trivial. This will follow from the existence of action- and angle-variables
established by V. Arnold and R. Jost.

Chapter VI motivates the study of global symplectic invariants different from
the volume which will be introduced in Chapter VII. They are called symplectic
capacities and go back to I. Ekeland and H. Hofer. In view of their monotonicity
properties they represent, in particular, obstructions to symplectic embeddings. The
Gromov non-squeezing phenomenon is an immediate consequence. A symplectic
capacity of dynamical nature (Hofer–Zehnder capacity) measures the minimal oscil-
lations of Hamiltonian functions needed to conclude the existence of a fast periodic
solution of the associated Hamiltonian vector field. Its construction is based on
a variational principle for the action functional of classical mechanics. The tools
from the calculus of variations are developed from scratch.

ChapterVIII deals with applications of dynamical symplectic capacity to Hamil-
tonian systems. It turns out that a compact and regular energy surface gives rise to
an abundance of periodic orbits nearby, if a neighborhood of the surface possesses
a finite Hofer–Zehnder capacity. The existence of a periodic solution on the given
energy surface (and not only nearby) necessarily requires additional properties of
the surface. The contact type property, for example, immediately leads to the solu-
tion of the Weinstein conjecture due to C. Viterbo which generalizes the pioneering
results of P. Rabinowitz and A. Weinstein. Finally, a classical result of H. Poincaré
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shows that a periodic solution of a Hamiltonian system is, in general, not isolated
but belongs to a smooth family of periodic solutions parametrized by the energy
and having similar periods.

The chapters devoted to Hamiltonian systems and their global periodic orbits
related to the symplectic capacities rely heavily on the book Symplectic Invariants
and Hamiltonian Dynamics [52] by H. Hofer and E. Zehnder and on the Notes in
Dynamical Systems [74] by J. Moser and E. Zehnder.

Each chapter begins with a short survey of its contents and ends with a brief
selection of references to literature giving an alternative view on the subjects or
describing related and more advanced topics.
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