
Chapter I

Introduction

The first chapter is devoted to simple and explicit examples of dynamical systems
that illustrate some concepts and help to ask the appropriate questions. For sim-
plicity, the systems under consideration are discrete and hence given by mappings
acting on sets. The aim is to study the behavior of points under all iterates of a map
(orbits of the points) and also to see what happens under perturbation of a map.
A dynamical system consisting of a continuous map acting on a topological space
is called transitive, if it possesses a dense orbit. The transitivity of a system will
be guaranteed by the criterion of G. Birkhoff. An example of such a system is the
rigid irrational rotation of the unit circle where every orbit of the system is dense
on the circle. This example will lead us to the equidistribution (mod 1) theorem of
H. Weyl. In sharp contrast to the stable systems of rigid rotations, a simple expan-
sive map on the circle shows already a quite chaotic behavior described by the shift
map in a sequence space. In this example, orbits of completely different behavior
over a long-time interval (many iterates) coexist side by side. In the language of
physics, the system shows a sensitive dependence on the initial conditions. It is a
typical phenomenon that such an unstable behavior survives under a perturbation of
the system, as will be demonstrated by a special case of the so-called structural sta-
bility theorem. Measure preserving mappings acting on a measure space will show
strong recurrence properties and the question arises, how an orbit of such a system
is distributed statistically in the space. As an answer we shall prove the individual
ergodic theorem of G. Birkhoff following the strategy designed by A. M. Garsia.

The origin of the field of dynamical systems lies in the deep mathematical
problems of celestial mechanics. That is why we shall first recall the N -body
system whose dynamics is determined by the Newton equations.

I.1 N -body problem of celestial mechanics

In theN -body problem of celestial mechanics one studiesN points xk 2 R3 in the
3-dimensional Euclidean space having masses mk > 0. The evolution in time of
these mass points,

xk.t/; 1 � k � N;

is determined by the Newton equations

mk Rxk D
X
j¤k

mkmj
xj � xk

jxj � xkj3 ; 1 � k � N;
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according to which every mass pointxk is attracted by every other mass point, which
gives rise to an extremely complicated dynamics. The equation is not defined at the
collisions xj D xk for j ¤ k. Introducing the collision sets �ij D fx 2 R3N j
xi D xj g and

� D S
i<j

�ij ;

the Newton equations are defined on the configuration space

R3N n� � R3N

which is the set of points x D .x1; : : : ; xN / without collisions. We reformulate the
Newton equations as a system of first-order differential equations in the form of a
vector field as

Pxk D yk 2 R3;

Pyk D
X
j¤k

mj
xj � xk

jxj � xkj3 2 R3:

The phase space of the N -body system is the set

� D .R3N n�/ � R3N � R6N :

Denoting the points in the phase space by z D .x; y/ D .x1; : : : ; xN ; y1; : : : ; yN /,
we write the equations in short form as

Pz D V.z/; z 2 � � R6N :

The vector field V W � � R6N ! R6N is continuously differentiable and conse-
quently, in particular, locally Lipschitz-continuous. The development of the system
in time is described by a solution, which is a continuously differentiable curve

t 7! z.t/ 2 �;
solving the equation

Pz.t/ D V.z.t//

for the time t in an open interval. Prescribing the point

z.0/ D .x.0/; y.0// 2 �;
we are confronted with the Cauchy initial value problem. In view of the classical
Cauchy–Lipschitz–Picard theorem in ordinary differential equations, there exists
for every initial condition z.0/ exactly one solution z.t/ satisfying z.t/ D z.0/ at
the time t D 0 and this solution exists on an open interval

t 2 I D I.z.0/; V /:
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Locally the Cauchy initial value problem is not of great interest for us. We are
interested in a long-term prediction of the future of the system as well as in a recon-
struction of its past. Over long-time intervals solutions can behave very differently,
even if their initial conditions are very close. Concerning the long-time behavior
of the N -body-problem the following natural questions arise.

1. Are there solutions without collisions, which do exist for all times t 2 R,
hence satisfying the estimate

0 < jxj .t/ � xk.t/j < 1; j ¤ k; t 2 R‹

2. Are there singularities that are not collisions? Are there solutions that explode
in finite time t� 2 R without collisions, so that

diamfx1.t/; : : : ; xN .t/g ! 1; t ! t� 2 R‹

This question of P. Painlevé was answered only in 1988 by J. Xia who suc-
ceeded in finding such solutions in the N D 5-body-problem. His construc-
tion relies on the analysis of the 3-body-collision by R. McGehee. The history
of the problem is described in [95] by D. Saari and J. Xia.

3. Does our solar system (in which one of the masses is much bigger than the
others) keep its present nice shape for all future times or does, in the distant
future, one of the planets, e.g. Jupiter, escape, or will a collision provoke a
dramatic change of the situation?

The planetary system is an example of a classical dynamical system, defined by an
ordinary differential equation on a manifold.

We now turn to discrete dynamical systems which are defined by a mapping
acting on a set. The number of iterations of the map plays the role of the time.

I.2 Mappings as dynamical systems

Let X be a set, x 2 X a point in the set and let ' W X ! X be a mapping of the set
into itself. Iterating the map ' we obtain the following sequence of points:

x0 D x D '0.x/;

x1 D '.x/;

x2 D '.x1/ D ' B '.x/ D '2.x/;

:::

xj D ' B � � � B '.x/ D 'j .x/; j � 1:
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Definition. Given x 2 X , the sequence .'j .x//j�0 is called the parameterized
orbit of ' through the point x. The set

OC.x/ ´ S
j�0

f'j .x/g � X

is called the unparametrized orbit (or simply orbit) of x under the mapping '.
A point x 2 X is called a periodic point of ', if there exists an integer N � 1

satisfying
'N .x/ D x:

The corresponding (unparametrized) orbit consists of the finitely many points

x; '.x/; '2.x/; : : : ; 'N .x/ D x

and satisfies

'NC1.x/ D '.'N .x// D '.x/; 'NC2.x/ D '2.x/; : : : :

The sequence .'j .x//j�0 through a periodic point is periodic and the orbit is the
finite set

OC.x/ D S
0�j�N�1

f'j .x/g and jOC.x/j � N:

The cardinality of the set is equal to jOC.x/j D N if the period is minimal, i.e., if
'j .x/ ¤ x for 1 � j � N � 1 and 'N .x/ D x.

We are interested in the asymptotic behavior of the orbits. How do the sequences
.'j .x//j�0 behave in the limit as j ! 1?

Example (Contraction principle of Banach). We require additional conditions on
the set and the mapping under consideration and assume .X; d/ to be a complete
metric space and the mapping ' W X ! X to be a contraction. Hence, there exists
a constant 0 � � < 1, satisfying

d.'.x/; '.y// � �d.x; y/ for all x; y 2 X:
It is well known that under these assumptions, there exists precisely one fixed point
x� 2 X satisfying '.x�/ D x�. In addition, for every point x 2 X the orbit
.'j .x//j�0 converges to the fixed point,

lim
j!1'j .x/ D x�:

In this example the asymptotic behavior is easy to describe. Every orbit eventually
comes to a standstill at the fixed point x�. The set fx�g is a global attractor of the
mapping '. In addition, the system is stable under perturbation !
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If the mapping ' W X ! X is bijective, we can iterate also the inverse mapping
'�1 W X ! X and study the (two-sided) sequences

.'j .x//j2Z:

Accordingly, we distinguish between the positive orbit of a point, the negative orbit
and the (full) orbit for which we introduce the following notation:

OC.x/ D S
j�0

'j .x/; O�.x/ D S
j�0

'�j .x/; O.x/ D S
j2Z

'j .x/:

For a given point x 2 X we now try to determine the future as well as to reconstruct
the past!

Example (Rigid rotations). We look at the unit circle S1 � C, defined by

S1 D fz 2 C j jzj D 1g D fz D e2�ix j x 2 Rg
and study the rotation ' of the circle around the angle 2�˛ for a real number ˛ 2 R,
in complex notation given by the map

' W S1 ! S1; z 7! �z; where � D e2�i˛;

so that
'.e2�ix/ D e2�i˛e2�ix D e2�i.xC˛/:

In the covering space R of S1 the map is the translation ˆ W R ! R, x 7! x C ˛.

z

S1

2�˛

'.z/

Figure I.1. Rigid rotation.

The relation between the mappings ' and ˆ is described by the covering map

p W R ! S1; x 7! p.x/ ´ e2�ix 2 S1

and one reads off that

p.x C j / D p.x/; j 2 Z;

ˆ.x C j / D ˆ.x/C j; j 2 Z
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and
'.p.x// D p.ˆ.x//:

The last equation expresses the commutativity of the diagram

S1
' �� S1

R
ˆ ��

p

��

R.

p

��

On the quotient space R=Z the mapˆ induces the map ŷ on the equivalence classes
defined by

ŷ W R=Z ! R=Z Š S1; Œx� 7! Œx C ˛�;

or, in short notation, by x 7! x C ˛ mod 1. Rigid rotations are isometric, if we
choose as metric the smallest arc length between two points (or the smallest angle),

d.e2�ix; e2�iy/ D min
j2Z

jx � y � j j; x; y 2 R:

Then 0 � d � 1=2. The metric on R=Z is defined by the same formula,

d.Œx�; Œy�/ D min
j2Z

jx � y � j j:

Proposition I.1. If ' W S1 ! S1 is the rigid rotation '.z/ D e2�i˛z, the following
holds true.

(i) If ˛ D p=q is rational and the integers p; q 2 Z relatively prime, then every
orbit is periodic with the same minimal period q,

'q.z/ D z for all z 2 S1:

(ii) If ˛ 2 R n Q is irrational, then every orbit is dense in S1, i.e., the closure of
an orbit is the circle,

OC.z/ D
[
j�0

'j .z/ D S1:

For a fixed real number ˛ all solutions behave in the same way, independent
of their initial condition z. We have stability under the perturbation of the initial
conditions, because ' is isometric.

In case (i) all solutions are periodic of the same period so that the orbits are
finite sets. In case (ii) every orbit is dense and consists of infinitely many points.

Proof. (i) If z 2 S1 and ˛ D p=q is a rational number, then 'j .z/ D e2�i
p
q j z D z

for j D q. The integer q is a minimal period, since p; q are relatively prime and
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z

Ik

Figure I.2. Dirichlet’s pigeon hole principle.

the orbit is the finite set OC.z/ D fz; '.z/; : : : ; 'q�1.z/g. In the covering space R
we have ˆj .x/ D x C j˛.

(ii) If˛ 2 RnQ is an irrational number and z 2 S1, then'j .z/ ¤ 'k.z/ for j ¤
k. Indeed, if 'j .z/ D 'k.z/ and hence e2�i.xCj˛/ D e2�i.xCk˛/, then it follows
that x C j˛ D x C k˛ C l for an integer l 2 Z, so that ˛ D l=.j � k/ 2 Q is a
rational number, contradicting the assumption on the number.

Next, we apply the so-called pigeon hole principle of Dirichlet. We fix z and
divide S1 into N disjoint intervals Ik D fe2�iˇ j k�1

N
< ˇ � k

N
g of length

1=N for 1 � k � N . The N C 1 points z D '0.z/; : : : ; 'N .z/ are different
from each other on S1. Therefore, there exists an interval that contains at least
two of the points, let us say 'j .z/ and 'k.z/, where 0 � j < k � N . By
construction, d.'j .z/; 'k.z// < 1=N and since ' is isometric, it follows that
d.'k�j .z/; z/ < 1=N; and

d.'.k�j /.nC1/.z/; '.k�j /n.z// D d.'k�j .z/; z/ < 1=N; n � 0;

so that the points '.k�j /n.z/ for n � 0 traverse the circle in equidistant steps
of length < 1=N . For every w 2 S1 there exists an integer n � 0 satisfying
d.'.k�j /n.z/; w/ < 1=N . This is true for every integer N > 0, so that the set
OC.z/ is dense in S1: �

How is the orbit statistically distributed on the circleS1? If I � S1 is an interval
we can ask, how often the orbit .'j .z//j�0 visits the interval I on the average. To
be precise, we introduce the function

H.z; n; I / D 1

n
#f0 � j � n � 1 j 'j .z/ 2 I g

and investigate the convergence as n ! 1. We shall see for ˛ irrational that

H.z; n; I / ! 1

2�
jI j D jI j

jS1j
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as n ! 1, where the measure is defined by the arc length. In order to reformulate
the problem, we introduce the characteristic function �I of the interval I ,

�I .z/ D
´
1; z 2 I;
0; z … I:

Then

H.z; n; I / D 1

n

n�1X
jD0

�I .'
j .z//:

More generally, instead of �I we can take any Riemann integrable (short: R-in-
tegrable) function f W S1 ! C and prove the following classical result.

Theorem I.2 (Equidistribution (mod 1) by H. Weyl). Let ' W S1 ! S1 be the rigid
rotation '.e2�ix/ D e2�i.xC˛/ where ˛ 2 R n Q is an irrational number. Then,
for every Riemann integrable function f W S1 ! C,

lim
n!1

1

n

n�1X
jD0

f .'j .z// D 1

2�

Z
S1

f ´ 1

2�

Z 2�

0

f .eit / dt

for every point z 2 S1.
Remark. (i) We point out that the limit exists for every z 2 S1, if f is Riemann
integrable. Later on, we shall show that the limit exists for almost every z 2 S1, if
f is merely Lebesgue integrable.

(ii) If for any function f W S1 ! C the limit on the left-hand side exists,

lim
n!1

1

n

n�1X
jD0

f .'j .z// μ f �.z/ 2 C;

then the limit is called the mean value of the function f over the orbit OC.z/, or
mean value in time. The number f �.z/ can depend on the orbit.

(iii) If f W S1 ! C is a (Lebesgue) integrable function, the number

Nf ´ 1

2�

Z
S1

f D 1

2�

Z 2�

0

f .eit / dt D
Z 1

0

f .e2�it / dt

is called the mean value of f over the space S1.
Considering the function f W S1 ! C on the covering space R of S1 we define

the 1-periodic functionF W R ! C byF.x/ D f .e2�ix/ and Theorem I.2 becomes

lim
n!1

1

n

n�1X
jD0

F.x C j̨ / D
Z 1

0

F.y/ dy

for everyx2R and every1-periodic, locally Riemann integrable functionF W R!C.
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Corollary I.3. If I � S1 is an interval, then

1

n

n�1X
jD0

�I .'
j .z// �! 1

2�

Z 2�

0

�I .e
it / dt D 1

2�
jI j D jI j

jS1j

for every z 2 S1.
We see that statistically the points of an orbit OC.z/ are equidistributed on S1.

The mechanism to generate the orbit is deterministic and not stochastic!
Theorem I.2 implies Proposition I.1.

Corollary I.4. If ˛ is irrational, then OC.z/ D S1 for every z 2 S1.
Proof. If I is an interval, then

lim
n!1

1

n

n�1X
jD0

�I .'
j .z// D jI j

jS1j ¤ 0:

Hence, the interval I is visited infinitely often. This holds true for every interval,
so that OC.z/ is indeed dense in S1. �

Proof of Theorem I.2 [Definition of R-integrable, Weierstrass]. The proof is carried
out in four steps.

(1) We first take the trigonometric monomial f .z/ D zp where p 2 Z and
z D e2�ix for x 2 R. Abbreviating � D e2�i˛ , we have f .'j .z// D .�p/j zp and
therefore,

1

n

n�1X
jD0

f .'j .z// D 1

n
zp

n�1X
jD0

.�p/j D
´
1; p D 0;
1
n
zp �

np�1
�p�1 ; p ¤ 0:

Because of j�np � 1j � 2 and �p ¤ 1 for p ¤ 0 (since ˛ is irrational), it follows
that

lim
n!1

1

n

n�1X
jD0

f .'j .z// D
´
1; p D 0

0; p ¤ 0

D
Z 1

0

f .e2�it / dt:

(2) Now, we take linear combinations and consider the trigonometric polynomial

P.z/ D
NX

kD�N
akz

k; z 2 S1; ak 2 C:
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It follows from step (1) that P �.z/ D a0 D NP .

(3) Next we approximate the R-integrable function f W S1 ! R (in case of C
we split the function into its real and its imaginary part). We claim that for " > 0

there exist two trigonometric polynomials P�
" ; P

C
" , satisfying

.�/
8<
:P

�
" .z/ � f .z/ � PC

" .z/; z 2 S1;R
S1 P

C
" � R

S1 P
�
" < ":

This can be seen as follows. Since the function f is R-integrable, there exist
according to a classical theorem by Darboux two-step functions (belonging to lower
and upper sums of f ), for which .�/ holds true with "=4. Moving these step
functions down, respectively up, we approximate them by continuous functions,
satisfying .�/with "=2. Since every continuous, periodic function can be uniformly
approximated by trigonometric polynomials (K. Weierstrass), the claim follows
with ".

(4) Finally, integrating .�/, we obtain the estimates

�"C
Z
f �

Z
P�
" �

Z
f �

Z
PC
" �

Z
f C ":

For a function g W S1 ! R we abbreviate

Sn.g; z/ D 1

n

n�1X
jD0

g.'j .z//:

With this abbreviation we can estimate

�"C
Z
f �

Z
P�
"

.2/D lim
n!1Sn.P

�
" ; z/ D lim Sn.P

�
" ; z/

.�/� lim Sn.f; z/

and

lim Sn.f; z/
.�/� lim Sn.P

C
" ; z/

.2/D lim
n!1Sn.P

C
" ; z/

.2/D
Z
PC
" �

Z
f C ";

so that altogether

�"C
Z
f � lim Sn.f; z/ � lim Sn.f; z/ �

Z
f C ":

This holds true for every " > 0 and therefore,

lim Sn.f; z/ D lim Sn.f; z/ D lim
n!1Sn.f; z/ D

Z
f:

This is true for every z 2 S1 and the equidistribution theorem is proved. �
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The equidistribution theorem is not only valid for S1, but also for the n-torus

T n ´ S1 � S1 � � � � � S1 � Cn

where z 2 T n () z D .z1; : : : ; zn/; jzj j D 1; and we can write zj as zj D
e2�ixj with a real number xj 2 R. The covering map p is defined by

p W Rn ! T n; x D .x1; : : : ; xn/ 7! .e2�ix1 ; : : : ; e2�ixn/;

so thatp.xCj / D p.x/ for every integer vector j 2 Zn; introducing the frequency
vector! D .!1; : : : ; !n/ 2 Rn, we define the mapping' W T n ! T n of the torus by

.z1; : : : ; zn/ 7! .e2�i!1z1; : : : ; e
2�i!nzn/:

On the covering space Rn of the torus the translation ˆ W Rn ! Rn, defined by
ˆ.x/ D x C !, satisfies ˆ.x C j / D ˆ.x/C j for j 2 Zn. The induced map on
the quotient is denoted by

ŷ W Rn=Zn ! Rn=Zn Š T n; Œx� 7! ŷ .Œx�/ D Œx C !�:

With the projection Op W Rn=Zn ! T n, defined by Op.Œx�/ D p.x/, the diagram

T n
' �� T n

Rn=Zn
ŷ ��

Op
��

Rn=Zn

Op
��

is commutative, so that ' B Op.Œx�/ D Op B ŷ .Œx�/.
In order to visualize the mapping we choose the representative x of the equiva-

lence class Œx� in the fundamental domain Œ0; 1�n D Œ0; 1� � � � � � Œ0; 1� � Rn(with
identified sides), then, the map ŷ is a translation in Œ0; 1�n. If a point x is pushed
out on one side, it enters again as illustrated in Figure I.3.

x

x1

x2

0

0

1

1

2

2

ˆ.x/

ŷ .x/

Figure I.3. The mapping ŷ in the fundamental domain Œ0; 1� � Œ0; 1� of T 2.
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We can embed the torus T 2 into R3 by means of the mapping  W R2 ! R3,
 .x1; x2/ D .	1; 	2; 	3/, defined by

	1 D .aC b cos 2�x1/ cos 2�x2;

	2 D .aC b cos 2�x1/ sin 2�x2;

	3 D b sin 2�x1;

where a > b > 0, see Figure I.4. The image  .R2/ is an embedded torus and the
induced mapping O W R2=Z2 ! R3 is bijective onto the torus  .R2/. Introducing
the frequencies ! D .!1; !2/ we define the translation ' on the embedded torus
by

'. .x// D  .x C !/ D  .ˆ.x//:

	1

	2

	3

a

b

 .fx1 D 0g/  .fx2 D 0g/

Figure I.4. The embedded torus.

The image of the line x C t! on R2 is the curve t 7!  .x C t!/ on the embedded
torus. Requiring

h!; j i ´
2X
kD1

!kjk … Z for all j D .j1; j2/ 2 Z2 n f0g;

the curve spirals around on the torus without self intersections. Indeed, arguing by
contradiction and assuming that  .xC t1!/ D  .xC t2!/ for t1 ¤ t2, we obtain
x C t1! D x C t2! mod Z2, and hence

x C t1! D x C t2! C r
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for an integer vector 0 ¤ r D .r1; r2/ 2 Z2. Consequently, ! D 
�1r , where

 ´ t1 � t2, so that h!; j i D 0 for the integer vector j ´ .r2;�r1/ which
contradicts our assumption on the frequencies. The next theorem shows that not
only the curve  .x C t!/, but already the set of points

's. .x// D  .x C s!/; for all integers s 2 N0

are dense on the torus  .R2/.

Theorem I.5 (Equidistribution mod Zn). If ' W T n ! T n is the translation
'.z1; : : : ; zn/ D .e2�i!1z1; : : : ; e

2�i!nzn/ and if

h!; j i D
nX
kD1

!kjk … Z for all j D .j1; : : : ; jn/ 2 Zn n f0g;

then for every R-integrable function f W T n ! C the equality

lim
n!1

1

n

n�1X
sD0

f .'s.z// D 1

m.T n/

Z
T n

f

holds for every point z 2 T n, where

1

m.T n/

Z
T n

f D
Z 1

0

: : :

Z 1

0

f .e2�ix1 ; : : : ; e2�ixn/ dx1 : : : dxn

D 1

.2�/n

Z 2�

0

: : :

Z 2�

0

f .eix1 ; : : : ; eixn/ dx1 : : : dxn:

Proof. Exercise. Hint: the proof is analogous to the proof of Theorem I.2. As
for step (1) one takes f .z1; : : : ; zn/ D z

p1

1 : : : z
pn
n with the integer vector p D

.p1; : : : ; pn/ 2 Zn, so that f .'s.z// D .e2�ih!;pi/sf .z/. By assumption,
e2�ih!;pi ¤ 1 if p ¤ 0, while je2�ih!;pij D 1. The steps (2), (3) and (4) are
as before. �

Corollary I.6 (Equidistribution). If h!; j i … Z for all j 2 Zn n f0g and if I � T n

is an interval satisfying m.I/ > 0, then

lim
n!1

1

n

n�1X
jD0

�I .'
j .z// D m.I/

m.T n/

for every z 2 T n.
Corollary I.7 (Kronecker, density). If h!; j i … Z for all j 2 Zn n f0g, then every
orbit ' is dense on the torus:[

j�0
'j .z/ D OC.z/ D T n

for every point z 2 T n.
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Proof. If I � T n is an interval satisfying m.I/ > 0 we consider the step function
f D �I and conclude from Corollary I.6 that every orbit visits the interval I
infinitely often. This holds true for every open interval and the proof is complete.

�

Corollary I.8 (Kronecker, rational approximation). Assume that h!; j i … Z for
all j 2 Zn n f0g and let " > 0 and N � 1 be given. Then there exist an integer
s � N and an integer vector j 2 Zn satisfying

js! � j j < "
or equivalently

j! � j=sj < "=s:
Proof. Exercise. Hint: consider orbits of the translation map ŷ on the quotient
Rn=Zn and use the metric d.Œx�; Œy�/ D minj2Zn jx � y � j j: Then,

ŷ s.Œx�/ D Œˆs.x/� D Œx C s!�:

The orbit through the point p.0/ 2 T n is dense. If " > 0, there exists an integer
s � N satisfying d. ŷ s.Œ0�/; Œ0�/ D minj2Zn js! � j j < ". �

I.3 Transitive dynamical systems

In the following .X; d/ is a metric space and ' W X ! X a continuous map.

Definition. The dynamical system .X; '/ is called transitive, if ' possesses a
dense orbit i.e., if there exists a point x 2 X whose orbit is dense, so that its closure
satisfies

OC.x/ D
[
j�0

'j .x/ D X:

The system .X; '/ is called minimal, if every orbit of ' is dense.

Example. The irrational rotations of S1 are transitive and minimal.

If the system .X; '/ is transitive, then there exists for every two non-empty open
sets ; ¤ U; V � X an integer n � 0 satisfying

'n.U / \ V ¤ ;;
as illustrated in Figure I.5. Indeed, according to the assumption, there exists a dense
orbit .'j .x//j�0 and therefore there are two integers j , k satisfying 'j .x/ 2 U

and 'k.x/ 2 V . Assuming k � j , we define y D 'j .x/ 2 U and set n D k � j ,
then 'n.y/ D 'n.'j .x// D 'k.x/ 2 V , proving the claim.

Under additional assumptions the converse also holds true, as the next result
will show.
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U

'.U /
'n.U /

V

Figure I.5. Necessary condition for transitivity.

Theorem I.9 (Transitivity theorem by G. Birkhoff). We assume that the metric
space .X; d/ is complete and that X possesses a countable basis of open sets. Let
' W X ! X be a continuous map.

If for every pair ; ¤ U; V � X of open sets there exists an integer n D
n.U; V / � 0 satisfying

'n.U / \ V ¤ ;;
then there exists a dense set RC � X , so that for every point p 2 RC,

OC.p/ D X:

In addition, RC is of second Baire category.

Remark. The assumptions on the metric space .X; d/ are fulfilled, in particular in
the following cases.

• .X; d/ is a complete, separable, metric space. Indeed, in a metric space,
separability (i.e., the existence of a countable, dense subset) is equivalent to
the existence of a countable basis of open sets. To see this, it is sufficient to
find a countable system of open sets .Bi /i�1, so that for every x 2 X and
every neighborhood Ux of x there exists an index i satisfying Bi � Ux .
This is easy to accomplish. Indeed, if .yn/n�1 is a dense sequence in X ,
then there exists, for every x 2 X and every " > 0, a point yn satisfying
d.x; yn/ < ". Therefore, the system of open balls fB.yn; 1=m/ j m; n � 1g
has the desired properties.

• .X; d/ is a compact metric space. Due to the compactness every sequence
has a convergent subsequence. This applies, in particular, to every Cauchy se-
quence. A Cauchy sequence, however, possessing a convergent subsequence
is convergent. This proves the completeness of the metric space.
It remains to show thatX is separable. The open balls fB.xn; 1=n/ j xn 2 Xg
are an open covering ofX for every n 2 N. If we choose the finite subcovers
B.xn1 ; 1=n/; : : : ; B.x

n
mn
; 1=n/, the set of points fxni j n � 1; 1 � i � mng is

countable and dense in X .
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• The space X is a closed subset of Rn.

Proof of Theorem I.9 [Completeness, Baire category theorem]. For two open sets
; ¤ U; V � X there exists by assumption an integern � 0 satisfying'n.U /\V ¤
;. Hence U \ '�n.V / ¤ ;, where '�n.V / ´ fx 2 X j 'n.x/ 2 V g is the
preimage of V under the iterated map 'n. Consequently,

U \
[
j�0

'�j .V / ¤ ;;

and in view of the assumption this holds true for every open set U ¤ ;. Therefore,
the open set

O�.V / D
[
j�0

'�j .V /

is dense in X . This holds true for every open set V ¤ ;. If .Vj /j�1 is a countable
basis of open sets in X , then the sets O�.Vj / are open and dense. The countable
intersection

RC ´
\
j�1

O�.Vj /

is still a dense subset of X in view of the following result.

Lemma I.10 (Baire category theorem). If .X; d/ is a complete metric space and if
.Vj /j�1 is a countable family of open and dense subsets of X , then the countable
intersection

T
j�1 Vj is dense in X .

Postponing the proof of the Baire category theorem, we first complete the proof
of Theorem I.9 and choose a point p 2 RC. Then

p 2 O�.Vj / D
[
s�0

'�s.Vj /

for every j � 0. Hence for every integer j there exists an integer s � 0 satisfying
's.p/ 2 Vj , so that

OC.p/ \ Vj ¤ ;
for every j . Because the family .Vj /j�1 is a basis of open sets, every open subset
U ¤ ; of X contains some subset Vj � U , so that

OC.p/ \ U ¤ ;:
Consequently, the orbit OC.p/ is dense in X . This holds true for every point
p 2 RC and completes the proof of Theorem I.9. �

It remains to prove the lemma.
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Proof of Lemma I.10 [Completeness]. We have to show that for a given pointx 2 X
and a given real number " > 0 there exists a point x� satisfying

x� 2 B.x; "/ \
\
j�1

Vj

where B.x; "/ is an open ball of radius " centered at x. Since B.x; "/ is open and
V1 open and dense, the intersection B.x; "/\V1 is open and not empty. Therefore,
there exists a point x1 2 B.x; "/ satisfying

K1 ´ B.x1; r1/ � B.x; "/ \ V1
for a radius 0 < r1 < 1=2. SinceB.x1; r1/ is an open ball and since V2 is open and
dense, we find a point x2 2 B.x1; r1/ satisfying

K2 ´ B.x2; r2/ � B.x1; r1/ \ V2
for a radius 0 < r2 < 1=22. Proceeding inductively, we find for every j � 2 a
point xj satisfying

Kj ´ B.xj ; rj / � B.xj�1; rj�1/ \ Vj
for a radius 0 < rj < 1=2j : Then

B.x; "/ 	 K1 	 K2 	 � � �
and diam.Kj / ! 0. Since Kj is a nested sequence of closed sets, it follows from
the completeness of the metric space X that the countable intersection\

j�1
Kj D fx�g

consists of a single point x� 2 X . In view of our construction, x� 2 Kj �
B.x; "/ \ Vj for every j � 1 and therefore,

x� 2 B.x; "/ \
\
j�1

Vj :

This completes the proof of the lemma. �

Definition. A set A � X is called invariant under the map ' W X ! X if

'�1.A/ ´ fx 2 X j '.x/ 2 Ag D A:

We note that the set A is invariant precisely if

'.A/ � A and '.Ac/ � Ac

where Ac denotes the complement of the set A in X .
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Proposition I.11. If the dynamical system .X; '/ is minimal, then every closed
invariant set A ¤ ; is already the whole space, A D X .

Proof [Definitions]. SinceA is invariant under ', '.A/ � A. Hence if x 2 A,then
the positive orbit OC.x/ is contained in A. Since .X; '/ is minimal, it is dense in
X and taking its closure, we conclude

X D OC.x/ � xA D A � X;

so that A D X , as claimed in the proposition. �

I.4 Structural stability

In order to illustrate the concept of structural stability, we study the special example
of an expanding map on the circle defined by

' W S1 ! S1; z 7! z2; z D e2�ix; x 2 R;

or '.e2�ix/ D e2�i.2x/ for x 2 R. This map is not bijective, but two-to-one. The
covering map on R is the function

ˆ W R ! R; ˆ.x/ D 2x

satisfying ˆ.x C j / D ˆ.x/ C 2j for j 2 Z. The projection map p W R ! S1,
defined by p.x/ D e2�ix; satisfies '.p.x// D p.ˆ.x//, so that the diagram

S1
' �� S1

R
ˆ ��

p

��

R

p

��

is commutative. The map ˆ induces the map ŷ W R=Z ! R=Z, ŷ .Œx�/ D Œˆ.x/�;

on the quotient space, in short notation, ŷ .x/ D 2x mod Z. With the home-
omorphism Op W R=Z ! S1, defined by Op.Œx�/ ´ p.x/ D e2�ix , we obtain
' B Op.Œx�/ D Op B ŷ .Œx�/, so that the diagram

S1
' �� S1

R=Z
ŷ ��

Op
��

R=Z

Op
��

commutes. The (restricted) projection p W .0; 1� ! S1 is bijective and, identifying
x 2 .0; 1� with its equivalence class Œx�, the map ŷ can be represented in the
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fundamental domain .0; 1�, by means of the formula

ŷ W .0; 1� ! .0; 1�; ŷ .x/ D
´
2x; 0 < x � 1=2;

2x � 1; 1=2 < x � 1;

illustrated in Figure I.6. We recall that every real number in 0 < x � 1 can be
represented by a unique dyadic expansion containing infinitely many nonzero digits,

x D x1

2
C x2

22
C � � � D

X
j�1

xj

2j

where xj 2 f0; 1g. The standard notation for the dyadic expansion is the following

x D 0:x1x2x3 : : : :

xx
x1 x2

0

0

0

0

1

1

1

1

2

1
2

1
2

ˆ.x/

ŷ .x/

Figure I.6. The maps ˆ and ŷ in the fundamental domain .0; 1�.

In this notation, the multiplication of x by 2 corresponds to the shift of the point,
namely

ˆ.x/ D 2x

D x1 C x2

2
C x3

22
C � � �

D x1:x2x3 : : :

D 0:x2x3x4 : : : mod 1:

Consequently,
ŷ .x/ D ŷ .0:x1x2x3 : : : / D 0:x2x3x4 : : : ;

and we see that the mapping ŷ is a shift map. This shift map simply forgets the
first entry in a sequence and shifts all other entries one place to the left. Of course,
ŷ is not bijective, since every image point y D ŷ .x/ has two preimages, namely
0:1y1y2 : : : and 0:0y1y2 : : : .
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We now introduce the space

F D f.xj /j�1 j xj 2 f0; 1gg
of one-sided sequences of the two symbols 0 and 1, and consider the subset

F0 D f.xj /j�1 j xj ¤ 0 for infinitely many j g:
There is a bijective mapping

 W .0; 1� ! F0;

defined by the dyadic expansion containing infinitely many nonzero digits as fol-
lows:

 .x/ D .xj /j�1 if x D 0:x1x2 � � � 2 .0; 1�:
Denoting by � W F ! F the shift .x1; x2; x3; : : : / 7! .x2; x3; x4; : : : /, in formulas
defined as �..xj /j�1/ D .xjC1/j�1, we obtain the commutative diagram

.0; 1�
ŷ ��

 

��

.0; 1�

 

��
F0

� �� F0

illustrating the equation
 B ŷ .x/ D � B  .x/:

This way, we have represented the analytical mapping ' W z 7! z2 on the circle S1

by the shift map � in the sequence space F0. We will show that there coexist orbits
of completely different long-time behavior.

Proposition I.12. If ' W S1 ! S1 is the mapping z 7! z2 and m the Lebesgue
measure on S1, the following holds true.

(i) The set of periodic points of ' is countable and dense.

(ii) The set RC ´ fz 2 S1 j OC.z/ D S1g of initial points whose orbits are
dense, is a dense set in S1.

(iii) m.RC/ D m.S1/ and RC is of second Baire category.

In particular, the mapping ' is transitive, but not minimal.

In contrast to the rigid rotations of S1 this dynamical system possesses, in every
open set, points whose orbits behave asymptotically completely differently. The
distant future is no longer predictable, if not every digit in the dyadic expansion
of the initial condition z for the orbit OC.z/ is known. For example, if x D
0:x1x2 : : : xN � � � : : : , then ŷN .x/ D 0: � � � : : : , where the stars stand for the
unknown digits.
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In physics one talks about the sensitive dependence of the orbits on the initial
conditions. It is hopeless to gain an insight into the orbit structure of all solutions
over infinitely long times by solving the Cauchy initial value problem!

Proof of Proposition I.12. In order to prove the statement (i), we assume n � 1.
From 'n.z/ D z () z2

n D z () z2
n�1 D 1 it follows that every complex root

of unity of order 2n � 1 is a periodic point of the period n, and vice versa. There
exist exactly 2n � 1 such roots of unity, and they are equidistantly distributed on
S1, so that the periodic points are countable and dense.

(ii) It is sufficient to verify the assumptions of the transitivity theorem (Theo-
rem I.9). Since S1 is compact, we have to show that, for every pair ; ¤ U; V � S1

of open sets, there exists an integer n satisfying 'n.U / \ V ¤ ;. An open set
U � S1 contains the image of a binary interval I kn under the projection map
pj.0;1�, where

I kn ´
�
k

2n
;
k C 1

2n

�
� .0; 1�; k D 0; 1; 2; : : : ; 2n � 1;

the integer n being sufficiently large. Applying the map ˆ.x/ D 2x we obtain

ˆn.I kn / D 2n
�
k

2n
;
k C 1

2n

�
D .k; k C 1�

D .0; 1� mod 1:

In order to see this in terms of dyadic expansions, we take the real number x 2 I kn ,
represented as

x D 0:x1x2x3 : : : xnxnC1 : : :

D x1

2
C x2

22
C � � � C xn

2n
C xnC1
2nC1 C � � �

D k

2n
C xnC1
2nC1 C � � � :

Then

ˆn.x/ D 2nx

D k C xnC1
2

C xnC2
22

C � � �
D k:xnC1xnC2 : : :
D 0:xnC1xnC2 : : : mod 1

and therefore ŷn.I kn / D .0; 1�: In view of p.I kn / � U , we find

S1 D p..k; k C 1�/ D p Bˆn.I kn / D 'n B p.I kn / � 'n.U /:
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Having verified that the assumptions of Theorem I.9 are met, the statement (ii)
follows.

(iii) The statement (iii) will be proved later in Section I.5. �

Considering the mapping '0 W S1 ! S1 defined by '0.z/ D z2, we shall study
what happens to its complex orbit structure under a perturbation. It turns out that the
complex structure is stable under perturbations, as will be proved in the following
statement.

• For every continuously differentiable mapping ' W S1 ! S1 in a sufficiently
smallC 1-neighborhoodof'0, there exists a uniquehomeomorphismh W S1 !
S1, so that the diagram

S1
'0 ��

h

��

S1

h

��
S1

' �� S1

commutes, i.e.,
' B h D h B '0:

For the iterates, we then have 'j .z/ D h B'j0 Bh�1.z/. The mappings ' and '0 are
called topologically conjugated, and the mapping '0 is called structurally stable.

Definition. A C 1-mapping '0 is called (C 1-)structurally stable, if every C 1-
mapping ' in a sufficiently small C 1-neighborhood of '0 is topologically con-
jugated to '0.

It is useful to describe the mappings in the covering space R of S1. The un-
perturbed mapping is equal to '0.e2�ix/ D e2�iˆ.x/ where ˆ.x/ D 2x, and the
perturbed mapping is represented by

'.e2�ix/ D e2�i .x/

where the mapping  W R ! R satisfies

 .x/ D ˆ.x/C O .x/ and O .x C 1/ D O .x/; x 2 R:

The homeomorphism h W S1 ! S1 we are looking for is represented as

h.e2�ix/ D e2�iu.x/;

with a homeomorphism u W R ! R. In particular, u is a continuous, strictly in-
creasing function satisfying u.x C 1/ D u.x/C 1 and so is of the form

u.x/ D x C Ou.x/; where Ou.x C 1/ D Ou.x/; x 2 R:
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The inverse mapping u�1 W R ! R is also continuous, strictly increasing and satis-
fies u�1.x C 1/ D u�1.x/C 1; so that

h�1.e2�ix/ D e2�iu
�1.x/; x 2 R:

Indeed,

h�1.h.e2�ix// D h�1.e2�iu.x//

D e2�iu
�1.u.x//

D e2�ix

for all x 2 R. The functional equation to be solved becomes ' B h.z/ D h B '0.z/,
for all z 2 S1; or equivalently,

e2�i .u.x// D e2�iu.ˆ.x//

and we shall solve the nonlinear equation

 .u.x// D u.ˆ.x//

for the unknown mapping u. The following theorem is a special case of a gen-
eral phenomenon encountered in expanding mappings for which we refer to the
monograph [113], Chapter 4.11] by W. Szlenk.

Theorem I.13 (Structural stability of the map '.z/ D z2). We consider on R the
mapping  .x/ D 2x C O .x/ satisfying O .x C 1/ D O .x/ and assume O to be
Lipschitz small in the sense that j O .x/ � O .y/j � Ljx � yj for all x; y 2 R with
a Lipschitz constant satisfying 0 � L < 1. Then, there exists a unique, strictly
increasing homeomorphism u W R ! R satisfying u.x C 1/ D u.x/C 1 for every
x 2 R and solving the equation

 .u.x// D u.ˆ.x// D u.2x/

for all x 2 R. For the 1-periodic function Ou, defined by u.x/ D x C Ou.x/, the
estimate

j Ouj1 � j O j1
holds in the supremum norm.

Postponing the proof we observe that the homeomorphism u is unique, so that
one can ask whether u is a C 1-diffeomorphism if the map  is continuously dif-
ferentiable. In general, this is not the case, as we will convince ourselves next. We
assume that u W R ! R is a diffeomorphism and that the function O is of class C 1

and satisfies O .0/ D 0 and O 0.0/ ¤ 0. Using the equation  .u.x// D u.2x/ we
obtain

u.u�1.0// D 0 D O .0/ D  .0/ D  .u.u�1.0/// D u.2u�1.0//
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and conclude that 2u�1.0/ D u�1.0/. Therefore, u.0/ D 0 and differentiating the
equation  .u.x// D u.2x/ in x at x D 0, results in

 0.0/u0.0/ D 2u0.0/:

Since u is a diffeomorphism, u0.0/ ¤ 0 and therefore  0.0/ D 2 contradicting
 0.0/ D 2 C O 0.0/ ¤ 2. We see that the eigenvalue of  0 at the fixed point
 .0/ D 0 is an invariant under a differentiable conjugation.

Proof of Theorem I.13 [Expansion Contraction]. (1) In the first step we shall
show that the map  W R ! R is bijective and Lipschitz-continuous, and that its
inverse mapping  �1 is a contraction.

Due to  .x/ �  .y/ D 2.x � y/C O .x/ � O .y/ we obtain for all x � y the
estimate

.�/ .2 � L/„ ƒ‚ …
μr1

.x � y/ �  .x/ �  .y/ � .2C L/„ ƒ‚ …
μr2

.x � y/:

From 0 � L < 1 we deduce 1 < r1 < r2 < 3 and hence  is Lipschitz-continuous
and strictly increasing, and therefore bijective in view of the intermediate value
theorem. Consequently, there exists the inverse map  �1 W R ! R: By inserting
 �1.x0/ D x and  �1.y0/ D y into the estimate .�/, we find

r1
�
 �1.x0/ �  �1.y0/

� � x0 � y0 � r2
�
 �1.x0/ �  �1.y0/

�
for all x0 � y0, so that

1

r2
.x0 � y0/ �  �1.x0/ �  �1.y0/ � 1

r1
.x0 � y0/:

It follows that j �1.x0/� �1.y0/j � Kjx0 � y0j where the constantK is defined
as

K ´ maxfr�1
1 ; r�1

2 g D r�1
1 < 1:

We have proved that the mapping  �1 is a contraction. (The inverse  �1 is a map
in R, it is not the covering of a map of S1.)

(2) In order to solve the functional equation  .u.x// D u.2x/ for the mapping
u we shall solve the equivalent equation

u.x/ D  �1.u.2x//

by the contraction principle and introduce the metric space

X D fu 2 C 0.R;R/ j u.x C 1/ D u.x/C 1 and increasingg
equipped with the metric

dX .u; v/ D sup
x2R

ju.x/ � v.x/j D max
0�x�1 ju.x/ � v.x/j μ ju � vj1:



I.4. Structural stability 25

We have used that the difference u � v is 1-periodic. As one can easily verify, the
metric space.X; dX / is complete. We note that the elements of X are chosen to
be increasing functions (and not strictly increasing), since otherwise the space X
would not be complete. We claim that the mapping T , defined by the formula

T W X ! C 0.R;R/; .T u/.x/ D  �1.u.2x//; x 2 R;

maps the space X into itself and satisfies dX .T u; T v/ � KdX .u; v/, for all u and
v in X , so that it is a contraction with the contraction constant K < 1 introduced
above. Indeed, since u and  �1 are increasing, the function T u is also increasing.
From  .x C 1/ D 2.x C 1/C O .x/ D  .x/C 2 one concludes that the inverse
map satisfies  �1.y C 2/ D  �1.y/C 1: Using this, we compute,

.T u/.x C 1/ D  �1.u.2x C 2/

D  �1.u.2x/C 2/

D  �1.u.2x//C 1

D .T u/.x/C 1:

Consequently, T u 2 X and T maps our metric space into itself. It remains to show
that T is a contraction. This follows immediately from the contraction property of
 �1,

dX .T u; T v/ D max
0�x�1 j �1.u.2x// �  �1.v.2x//j

� K max
0�x�1 ju.2x/ � v.2x/j

D KdX .u; v/:

By the contraction principle of Banach there exists a unique fixed point u 2 X

satisfying T u D u, so that u.x/ D  �1.u.2x// for all x.
(3) In order to show that u is strictly increasing we argue by contradiction

and assume that there exist real numbers ˛ < ˇ in the interval Œ0; 1� satisfying
u.˛/ D u.ˇ/. Since u is increasing,

u.x/ D const.; ˛ � x � ˇ:

The interval contains a binary interval and so we find integers n � 1 and k 2
f0; 1; : : : ; 2n � 1g, for which

u.x/ D const.;
k

2n
� x � k C 1

2n
:

Using the equation  .u.x// D u.2x/ we deduce from u. k
2n / D u.kC1

2n /, that also
the equation

u

�
k

2n�1

�
D u

�
k C 1

2n�1

�
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holds true. Indeed, u. k
2n�1 / D u.2 k

2n / D  .u. k
2n // D  .u.kC1

2n // D u.2kC1
2n / D

u. kC1
2n�1 /. We repeat this procedure, until in the denominator 2n�n D 1 shows up.

At this point we have u.k/ D u.k C 1/ in contradiction to u.k C 1/ D u.k/C 1

and hence proving that u must be strictly increasing.
(4) From u.x C 1/ D u.x/C 1 it follows that u.x C n/ D u.x/C n for every

n 2 Z from which we conclude that limx!˙1 u.x/ D ˙1. Since u is continuous
by construction, the surjectivity of u follows from the intermediate value theorem.
The injectivity of u is a consequence of the strict monotonicity. Hence u is a strictly
increasing bijection of R onto itself and therefore a homeomorphism of R.

(5) In order to verify the announced estimate we deduce from the equation
 .u.x// D u.2x/ and the definition  .x/ D 2xC O .x/ that 2u.x/C O .u.x// D
u.2x/. Recalling u.x/ D x C Ou.x/ we obtain the equation

2x C 2 Ou.x/C O .u.x// D 2x C Ou.2x/
and estimate

j Ou.x/j D
ˇ̌̌
ˇ1
2

Ou.2x/ � 1

2
O .u.x//

ˇ̌̌
ˇ

� 1

2
j Ouj1 C 1

2
j O j1

for every x 2 R. Taking the supremum on the left-hand side, the desired estimate
j Ouj1 � j O j1 follows and Theorem I.13 is proved. �

I.5 Measure preserving maps and the ergodic theorem

The previous examples (with the exception of the contractions) are measure pre-
serving with respect to the Lebesgue measure. This section deals with the part
played by the measures in dynamics.

A measure space is a triple .X;A; m/, in which X is a set, A a � -algebra of
subsets of X (called measurable sets), and m W A ! Œ0;1� a measure. In the
following we assume the measure space to be finite, assuming that m.X/ < 1.
We denote by L D L.X;A; m/ the vector space of integrable functions f W X !
R [ f˙1g. These are the measurable functions, for which the (Lebesgue-)integral
is defined and finite. To facilitate the notation, we sometimes omit the measures in
the integrals and suppress the integration domain, if it is the whole space. We also
suppress the variable over which it is integrated and write

R
f ´ R

X
f .x/ dm.x/

for the integral. To avoid an accumulation of brackets, we simply write, e.g. T x
instead of T .x/ or T jx instead of T j .x/.

Definition. A mapping T W X ! X is called measurable, if T �1.A/ 2 A for every
A 2 A, where T �1.A/ D fx 2 X j T .x/ 2 Ag is the preimage ofA. A measurable
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mapping T W X ! X is called measure preserving, if

m.T �1.A// D m.A/

for every A 2 A. We note that T does not need to be bijective.

It is useful to observe that a mapping T is measure preserving precisely if

.�/
Z
f B T D

Z
f for all f 2 L.X;A; m/:

Indeed, if A 2 A, thenZ
�A.T x/ dm D

Z
�T�1.A/.x/ dm D m.T �1.A//;Z

�A.x/ dm D m.A/:

The equation .�/ holds true, in particular, for the characteristic function f D �A
of the set A and hence m.T �1.A// D m.A/. If, conversely, the map T is measure
preserving, then the equation .�/ follows for the characteristic functions f D �A
of measurable sets A 2 A. But then, it holds true for all step functions, and so for
every integrable function f 2 L.X;A; m/.
Example. We recall the expanding map ' W S1 ! S1 of the circle defined by
z 7! z2 and consider the restrictionT of its covering map to the fundamental domain
(0,1] which is equipped with the Lebesgue measure. The map T W .0; 1� ! .0; 1�

is defined by

T .x/ D
´
2x; 0 < x � 1=2;

2x � 1; 1=2 < x � 1:

For the open interval .a; b/ � .0; 1� we have T �1..a; b// D �
a
2
; b
2

� [ �
1
2
.a C 1/;

1
2
.b C 1/

�
, where the union of the sets is disjoint, so that

m.T �1.a; b// D 1

2
.b � a/C 1

2
.b � a/ D b � a D m..a; b//;

as illustrated in Figure I.7. This holds true for every interval in .0; 1� and hence
also for every open subset. It follows that m.T �1A/ D m.A/ for every Lebesgue
measurable set A � .0; 1�, because a measurable set is the countable intersection
of open sets up to a null set. Therefore, the map T is measure preserving. Alter-
natively we can also check the criterion .�/ above. If f W .0; 1� ! R if integrable,
then

R 1
0
f .T x/ dx D R 1=2

0
f .2x/ dx C R 1

1=2
f .2x � 1/ dx D 1

2

R 1
0
f .y/ dy C

1
2

R 1
0
f .y/ dy D R 1

0
f .y/ dy, where we have used the substitutions y D 2x re-

spectively y D 2x � 1, proving once more that T is measure preserving.
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x

a

b

0

0

1

11
2

T .x/

Figure I.7. Preimages of .a; b/ under the mapping T in the example.

If the measure is finite the measure preserving maps have strong recurrence
properties as was already known to H. Poincaré.

Theorem I.14 (Recurrence theorem of Poincaré). Let .X;A; m/ be a finitemeasure
space and T W X ! X a measure preserving map. For a measurable set A 2 A

we define the subset A0 � A by

A0 ´ fx 2 A j T jx 2 A for infinitely many integers j � 0g:
Then the set A0 is measurable and its measure is equal to m.A0/ D m.A/.

The theorem shows that almost every point in A returns to A infinitely often.
The theorem is only valid for finite measure spaces, as the translation x 7! x C 1

on R shows.

Proof. For the integers n � 1 we introduce the sets Cn ´ fx 2 A j T jx …
A for all j � ng; so that

A0 D A n
[
n�1

Cn:

In order to prove the theorem it suffices to show that Cn 2 A is measurable and
m.Cn/ D 0 for everyn � 1. Since the setA belongs to A and sinceT is measurable,
we conclude that Cn D A n Sj�n T �j .A/ 2 A is, indeed, a measurable set.

Moreover, using the notation T �0.A/ ´ A,

Cn �
[
j�0

T �j .A/ n
[
j�n

T �j .A/

from which we conclude, because the measure m.X/ is finite, that

m.Cn/ � m
�[
j�0

T �j .A/
�

�m
�[
j�n

T �j .A/
�
:
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Since T is measure preserving, both unions have the same measure, in view of[
j�n

T �j .A/ D T �n�[
j�0

T �j .A/
�
:

Thus m.Cn/ D 0 and the theorem is proved. �

We shall estimate when the orbit returns for the first time. The time of return is
determined by the measure of the set. We assume that .X;A; m/ is a finite measure
space and T W X ! X a measure preserving map and let A 2 A be a measurable
set satisfyingm.A/ > 0. We claim that ifN ´ Œm.X/=m.A/� then there exists an
integer j in 1 � j � N for which

m.T �j .A/ \ A/ > 0:
Arguing indirectly, we assume that m.T �j .A/ \ A/ D 0 for 1 � j � N . Then,
the sets T �n.A/ and T �m.A/ are almost disjoint for 0 � m < n � N , in view of

m
�
T �n.A/ \ T �m.A/

� D m
�
T �m.T �.n�m/.A/ \ A/�

D m
�
T �.n�m/.A/ \ A/�

D 0:

Since T is measure preserving, it follows that

m.X/ �
NX
jD0

m.T �j .A// D m.A/.1CN/ > m.A/.1C m.X/

m.A/
� 1/ D m.X/;

leading to the contradiction m.X/ > m.X/ and hence proving the claim.

Theorem I.15. Assume the triple .X;A; m/ to be a finite measure space and the
map T W X ! X to be measure preserving. Assume in addition that .X; d/ is a
metric space possessing a countable basis of open sets and assume that all open
sets are measurable and of positive measure. Then, there exists for almost every
point x 2 X a sequence jk ! 1 of integers so that

T jk .x/ ! x:

In this sense, almost every point is recurrent.

Proof. In view of the postulated countable basis of open sets we find a dense se-
quence .xk/k�1 in X . For every n � 1 the open balls B.xk; 1=n/ cover the set X .
By Theorem I.14 we find a null set N D N.k; n/ having the property that every
point x 2 B.xk; 1=n/nN returns infinitely often to the ballB.xk; 1=n/. We denote
the countable union of these null sets over all k and n by the same letter N . Thus
a point x 2 X n N returns infinitely often into every ball B.xk; 1=n/ to which it
belongs. Since every neighborhood of x contains such a ball, the theorem is proved.

�
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In the following, we investigate how the points of an orbit OC.x/ under a
measure preserving map T are statistically distributed in the spaceX . GivenA 2 A

andx 2 X , we ask, how often does the orbit .T jx/j�0 visit the setAon the average?
Note that

1

n
#f0 � j � n � 1 j T jx 2 Ag D 1

n

n�1X
jD0

�A.T
jx/:

We are interested in the convergence of the sum as n ! 1.
The theorem by G. Birkhoff (1932) provides an answer to the question. Accord-

ing to this theorem the pointwise limit exists (in R) for almost all x 2 X , and, in
addition, we also have L1-convergence towards the limit function. We recall that
in the equidistribution theorem of H. Weyl (Theorem I.2), we have convergence for
every point, assuming the functions to be Riemann integrable instead of Lebesgue
integrable.

Theorem I.16 (Ergodic theorem of G. Birkhoff). We consider the finite measure
space .X;A; m/ and assume the map T W X ! X to be measure preserving. For
every integrable function f 2 L.X;A; m/ there exist a function f � 2 L.X;A; m/
and a null set N � X (N depending on f ) satisfying T �1.N / D N and

(i) limn!1 1
n

Pn�1
jD0 f .T jx/ D f �.x/ for all x 2 X nN ,

(ii) f �.T x/ D f �.x/ for all x 2 X ,

(iii)
R
X
f � D R

X
f ,

(iv)
R
X

ˇ̌
1
n

Pn�1
jD0 f .T jx/ � f �.x/

ˇ̌
dm ! 0, n ! 1.

Postponing the proof to the end of this section, we first introduce the concept of
ergodicity and draw some consequences from the ergodic theorem. We recall that
the subset A � X is called T -invariant, if T �1.A/ D A.

Definition. Assume .X;A; m/ to be a finite measure space. A measure preserving
mapT W X ! X is called ergodic, if, for every T -invariant setA 2 A, the following
holds true:

m.A/ D m.X/ or m.A/ D 0:

In an ergodic system it is not possible to split X into two invariant subsets of
positive measure.

The following proposition characterizes the ergodicity in a different way; the
map T is ergodic, precisely if the T -invariant (measurable) functions are constant
almost everywhere.

Proposition I.17 (Criterion for ergodicity). We consider the finite measure space
.X;A; m/ and the measure preserving map T W X ! X . The following two state-
ments are equivalent.

(i) T is ergodic.
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(ii) For every f 2 L.X;A; m/we conclude from f .T .x// D f .x/ for all x 2 X
that f .x/ D constant almost everywhere.

Proof. (ii) H) (i): We assume that the set A 2 A satisfies T �1.A/ D A. Its
characteristic function satisfies �A.T x/ D �T�1.A/.x/ D �A.x/. In view of
the assumption, �A is constant almost everywhere and we conclude that either
m.A/ D 0 or m.A/ D m.X/.

(i) H) (ii): We assume that the map T is ergodic and that the function f 2
L.X;A; m/ satisfies f .T x/ D f .x/ for all x 2 X . If f is not constant almost
everywhere, there exists a real number c 2 R such that the set A ´ fx 2 X j
f .x/ � cg has the measure 0 < m.A/ < m.X/. Since f is invariant, also the set
A is invariant, in contradiction to the ergodicity of T . �

The proof shows that in the statement (ii) of Proposition I.17 in place of f 2
L.X;A; m/we can also take f 2 Lp.X;A; m/ for any 1 � p � 1 (remember that
m.X/ < 1) or the measurable functions f W X ! xR. Another characterization of
ergodicity follows from the ergodic theorem.

Theorem I.18 (Ergodicity criterion). Let .X;A; m/ be a finite measure space and
let the map T W X ! X be measure preserving. Then the following two statements
are equivalent.

(i) T is ergodic.

(ii) For every f 2 L.X;A; m/ there exists a null set N D N.f / such that

lim
n!1

1

n

n�1X
jD0

f .T jx/ D 1

m.X/

Z
X

f

for every x 2 X nN , i.e., for almost every orbit the mean value of the function
f 2 L over the orbit equals the mean value of f over the space X .

Proof [Theorem I.16, Proposition I.17]. (i) H) (ii): If the map T is ergodic and
f 2 L, then, also f � 2 L and f �.T .x// D f �.x/ for every x 2 X , in view of
Theorem I.16. Hence, it follows from Proposition I.17 that f �.x/ D c 2 R almost
everywhere and consequently,Z

X

f D
Z
X

f � D
Z
X

c D c m.X/;

hence c D 1
m.X/

R
f and the statement (ii) follows from Theorem I.16.

(ii) H) (i): Iff 2 L satisfiesf .T x/ D f .x/ for allx 2 X , we show thatf .x/ is
constant almost everywhere. Then, the statement (i) follows from Proposition I.17.
In view of Theorem I.16, there exists a null set N � X , such that for x 2 X n N
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we have

f .x/
Invar:D 1

n

n�1X
jD0

f .T j .x// for all n � 1

D lim
n!1

1

n

n�1X
jD0

f .T j .x//

Vor:D 1

m.X/

Z
f

showing that f .x/ is constant for almost all x. �

Corollary I.19 (Equidistribution). Let .X;A; m/ be a finite measure space and let
the map T W X ! X be ergodic. If A 2 A satisfies m.A/ > 0, then there exists a
null set N D N.A/ � X such that for x 2 X nN the following holds true:

1

n
#f0 � j � n � 1 j T jx 2 Ag ! m.A/

m.X/
:

In general, N ¤ ; and N depends on the set A.

Proof. We take the characteristic function f D �A. Then f 2 L and according to
Theorem I.18 there exists a null set N D N.A/ such that for x 2 X nN ,

1

n

n�1X
jD0

�A.T
jx/ ! 1

m.X/

Z
�A D m.A/

m.X/

as n ! 1. �

Concerning the next consequence from the ergodic theorem, we note that for
every finite measure space .X;A; m/ satisfying m.X/ > 0 a new standardized
measure � can be defined by �.A/ D m.A/=m.X/ for every set A 2 A. We then
have �.X/ D 1 so that .X;A; �/ is a probability space.

Corollary I.20. Let .X;A; m/ be a measure space satisfying m.X/ D 1 and let
T W X ! X be a measure preserving map. Then, the following two statements are
equivalent:

(i) T is ergodic.

(ii) For all A;B 2 A we have

1

n

n�1X
jD0

m.T �j .A/ \ B/ ! m.A/m.B/:
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Proof [Ergodic theorem, convergence theorem of Lebesgue]. (i) H) (ii): Taking
the characteristic function f D �A, we conclude from the ergodic theorem (Theo-
rem I.16) that

1

n

n�1X
jD0

�A.T
jx/ ! m.A/ for almost every x:

Therefore,

.�/ 1

n

n�1X
jD0

�A.T
jx/�B.x/ ! m.A/�B.x/ for almost every x.

In view of �A.T jx/�B.x/ D �T�j .A/.x/�B.x/ D �T�j .A/\B.x/ the left side
function in the formula .�/ is majorized by the characteristic function �X 
 1 of
the whole space. By integrating .�/ and using the convergence theorem of Lebesgue
we obtain

1

n

n�1X
jD0

m.T �j .A/ \ B/ ! m.A/m.B/:

(ii) H) (i): If E 2 A is a T -invariant set, we take A D B D E in the statement (ii)
and find

m.E/ D 1

n

n�1X
jD0

m.E/ ! m.E/2

from which we conclude that m.E/ D 0 or m.E/ D 1. Therefore, the map T is
ergodic. �

Ergodicity is a property of a measure preserving map on a measure space, while
transitivity is a property of a continuous map on a topological space. Next, we
equip a measure space with a topology and show that under additional assumptions
an ergodic system is also transitive.

Proposition I.21 (Transitivity of ergodic systems). Let .X;A; m/ be a finite mea-
sure space and let T W X ! X be an ergodic map. Moreover, assume that .X; d/ is
a metric space possessing a countable basis of open sets. Furthermore, assume that
every open set U ¤ ; is measurable and of positive measure m.U / > 0. Under
these assumptions, there exists a null set N � X such that

OC.x/ D X for x 2 X nN;
i.e., almost all orbits are dense.

If, in addition, the map T W X ! X is continuous and if the metric space .X; d/
is complete, the set

RC ´ fx 2 X j OC.x/ D Xg
is dense in X and of second Baire category.
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The set RC of initial points of dense orbits is large in the sense of the measure
(m.RC/ D m.X/) and, under the additional assumptions, it is also large in the
functional analytic sense of the Baire category.

Example. The assumptions on the space X are fulfilled for the circle S1 and the
torus T n equipped with the Lebesgue measure and we shall later on look at these
examples again.

Proof of Proposition I.21 [Ergodic theorem, category theorem of Baire]. (1) We
take the countable base .Vk/k�1 of open sets of X satisfying Vk ¤ ;. According
to Corollary I.19 (equidistribution) there exists for Vk a null set Nk � X such that
for all x 2 X n Nk we have T jx 2 Vk for infinitely many integers j , using that
m.Vk/ > 0. In particular, OC.x/ \ Vk ¤ ; for x 2 X n Nk . This holds true for
every k � 1. The countable union N ´ S

k�1Nk is a null set, so that m.N/ D 0

and, of course, OC.x/\Vk ¤ ; for x 2 X nN and for every k � 1. If ; ¤ V � X

is any open set, then, according to the definition of the base, there exists an index k
such that Vk � V and therefore,

OC.x/ \ V ¤ ;; x 2 X nN:
This holds true for every open set ; ¤ V so that

OC.x/ D X; x 2 X nN:
Moreover, m.RC/ D m.X/, since N is a null set.
(2) We assume now that the map T is in addition continuous. Then for every

k � 1 the set
O�.Vk/ ´

[
j�1

T �j .Vk/

is open. If ; ¤ U is open, thenm.U / > 0, and due tom.Vk/ > 0, we can argue as
above to find a point x 2 U satisfying T jx 2 Vk for infinitely many j , in particular,

U \ O�.Vk/ ¤ ;:
Therefore, the open set O�.Vk/ is dense, and this holds true for every k � 1. If
X is complete, then, according to the category theorem of Baire (Lemma I.10) the
countable intersection

R ´
\
j�1

O�.Vj /

of open and dense sets is dense in X and, by definition, of second Baire category.
As in the proof of Theorem I.9 one shows for p 2 R that

OC.p/ D X:

Therefore, R � RC and the theorem is proved. �
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Before we prove the ergodicity of our dynamical systems on the circle and on the
torus described above, it is useful to recall in a short interlude some results about
Fourier series. The proofs for most of the statements can be found in standard
textbooks on analysis as e.g. in the textbook of K. Stromberg [111], or in the classic
[31] by H. Dym and H. P. McKean. The theorem by L. Carleson, as well as the
example by A. N. Kolmogorov below, can be found in the book [46] by L. Grafakos.

Facts about Fourier series. In the following we consider integrable functions
f 2 L1.S1/ which are measurable functions x 7! f .e2�ix/, periodic of period 1
and, abbreviating f .e2�ix/ 
 f .x/, satisfyZ 1

0

jf .x/j dx < 1:

Fourier coefficients. Withf 2 L1.S1/one can associate the sequence . Of .n//n2Z

of numbers (called Fourier coefficients) defined by

Of .n/ ´
Z 1

0

f .x/e�2�inx dx; n 2 Z:

Two classical statements about Fourier coefficients are the following.

• Riemann–Lebesgue lemma: If f 2 L1.S1/, then

Of .n/ ! 0; jnj ! 1:

• If f; g 2 L1.S1/, the following statement holds true:

Of .n/ D Og.n/ for all n 2 Z H) f D g almost everywhere:

In other words an element of L1 is uniquely determined by its Fourier coef-
ficients so that the map f 7! Of is injective.

The Hilbert space L2.S 1/. The Hilbert spaceL2.S1/ is equipped with the scalar
product

.f; g/ D
Z 1

0

f .x/g.x/ dx

and possesses the orthonormal system .en/n2Z defined by

en ´ e2�inx; n 2 Z;

and satisfying .en; ek/ D ıij . Thus, for f 2 L2.S1/ the Fourier coefficients can
be written as

Of .n/ D .f; en/; n 2 Z:
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Fourier series. If f 2 L1.S1/, we abbreviate Sn.f / ´ P
jkj�n Of .k/ek . The

trigonometrical polynomial Sn.f / belongs to C1.S1/ and is equal to

Sn.f /.x/ D
X

jkj�n
Of .k/e2�ikx :

A classical result in Hilbert space is as follows.

• Theorem of Riesz–Fischer: If f 2 L2.S1/, then its Fourier series

f D
X
k2Z

Of .k/ek

converges in L2.S1/,

kf � Sn.f /kL2.S1/ ! 0 for n ! 1;

where kf kL2.S1/ ´ .f; f /1=2 is the norm in a Hilbert space.

In this sense the functions .en/n2Z constitute a Hilbert basis of L2.S1/, i.e.,
span..en/n2Z/ D L2.S1/. A Hilbert space is separable precisely if it possesses a
countable Hilbert base. Such a space is isometrically isomorphic to the sequence
space

`2 ´ fc D .cn/n2Z j
X
k2Z

jckj2 μ kck22 < 1g:

The isomorphism is the linear map f 7! Of D . Of .n//n2Z which satisfies

kf k2
L2.S1/

D
X
k2Z

j Of .k/j2 D k. Of .n//n2Zk22;

called Plancherel identity.

Pointwise convergence. The question of pointwise convergence is subtle, as the
following results show.

• Given a null set N � Œ0; 1�, there exists a continuous function f 2 C.S1/

such that Sn.f /.x/ diverges for all x 2 N .
• A.N. Kolmogorov (1926): There exists an element f 2 L1.S1/ such that
Sn.f /.x/ diverges for every x 2 S1!

• L. Carleson (1966): If f 2 L2.S1/, then

Sn.f /.x/ ! f .x/ almost everywhere:
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• R.A. Hunt (1968): If p > 1 and f 2 Lp.S1/, then

Sn.f /.x/ ! f .x/ almost everywhere.

• Assume that f 2 Cp.S1/ and p � 1. Then

sup
x2Œ0;1�

jf .x/ � Sn.f /.x/j � c.f /n�pC 1
2 ;

where c.f / is a constant. The convergence is uniform and the faster, the
smoother the function is.

After these recollections of Fourier series, we return to our simple examples of
dynamical systems and investigate their ergodicity.

Examples. (1) Rigid rotations. We return to the mapping

' W S1 ! S1; '.z/ D #z;

where # D e2�i˛ and z D e2�ix for a real number x 2 R.

Claim. We first claim that the rigid rotation ' is measure preserving with respect
to the Lebesgue measure.

Proof. We assume f W S1 ! C to be integrable and define

F.x/ ´ f .e2�ix/:

Then F.x C 1/ D F.x/ for x 2 R and F is locally integrable. Recalling the
translation ˆ.x/ D x C ˛ we calculateZ 1

0

F.ˆ.x// dx D
Z 1

0

F.x C ˛/ dx .y D x C ˛/

D
Z ˛C1

˛

F.y/ dy

D
Z 1

˛

F.y/ dy C
Z ˛C1

1

F.y � 1/ dy

D
Z 1

˛

F.y/ dy C
Z ˛

0

F.y/ dy

D
Z 1

0

F.y/ dy:

One concludes that
R
S1 f B ' D R

S1 f for every f 2 L.S1/, so that the map is
indeed measure preserving as claimed. �
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• The case ˛ D p=q 2 Q.
In this case there exist invariant functionsf W S1 ! C which are not constant,
as the example f .z/ D zq D e2�iqx shows. Indeed, due to #q D 1 we find

f .'.z// D .#z/q D zq D f .z/; z 2 S1:

Having found an invariant function which is not constant we conclude from
Proposition I.17 that the map ' is not ergodic.

• The case ˛ 2 R n Q.
In this case ' is ergodic. To prove this, it suffices to show that all invari-
ant functions f 2 L2.S1/ are constant almost everywhere, cf. the remark
following Proposition I.17. If f 2 L2.S1/ we look at its Fourier series

f .z/ D
X
k2Z

fkz
k; z D e2�ix

which converges in L2. Then,

f .'.z// D f .#z/ D
X
k2Z

.fk#
k/zk :

If f is invariant, f .'.z// D f .z/, we conclude from the uniqueness of the
Fourier coefficients that

fk D #kfk; k 2 Z:

Due to #k ¤ 1 if k ¤ 0 (since ˛ irrational) it follows that fk D 0 for all
k ¤ 0, so that f .z/ D f0 is constant almost everywhere. This proves that
the irrational rotation of the circle is ergodic.

Exercise. Consider the map ' W T n ! T n on the torus which in the covering space
Rn is the translation

ˆ.x/ D x C !; x 2 Rn;

and assume that
h!; j i … Z; j 2 Zn n f0g:

Prove that ' is ergodic with respect to the Lebesgue measure on T n.

(2) Expansion. Next, we return to our expanding map ' W S1 ! S1 defined by
'.z/ D z2. The map ' is measure preserving with respect to the Lebesgue measure,
as we have already seen, and we prove the ergodicity of the map ' by demonstrat-
ing that the integrable invariant functions are constant almost everywhere. Let
f 2 L.S1/ and introduce the function g.z/ ´ f .'.z// D f .z2/. If F.x/ ´
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f .e2�ix/, then F.x C 1/ D F.x/ for all x 2 R, and G.x/ ´ g.e2�ix/ D F.2x/.
Computing the Fourier coefficients g2k of order 2k of the function G, we obtain

g2k ´
Z 1

0

G.x/e�2�i2kx dx

D
Z 1

0

F.2x/e�2�i2kx dx

D
Z 1=2

0

F.2x/e�2�i2kx dx C
Z 1

1=2

F.2x � 1/e�2�i2kx dx

D 1

2

Z 1

0

F.y/e�2�iky dy C 1

2

Z 1

0

F.y/e�2�iky dy

D
Z 1

0

F.y/e�2�iky dy

μ fk :

If f is invariant, then G.x/ D F.2x/ D F.x/ and hence gk D fk . In view of the
above calculation, f2k D g2k D fk for all k 2 Z and we see that

fk D f2k D f22k D � � � D f2nk D � � � :
Since limjkj!1 fk D 0 in view of the Riemann–Lebesgue lemma, we conclude
that

fk D 0; for all k ¤ 0:

Therefore, F.x/ D f0 is constant almost everywhere and according to Proposi-
tion I.17, our map is ergodic.

Remark. We have verified that the map ' W z 7! z2 on the circle S1 satisfies all the
assumptions of Proposition I.21, from which the statement (iii) in Proposition I.12
now follows. Namely, the set RC ´ fz 2 S1 j OC.z/ D S1g of initial points of
dense orbits has full measure,

m.RC/ D m.S1/;

and, in addition, the set RC is dense in S1 and of second Baire category.

Exercise. Every real number 0 < x � 1 can be represented by a unique decimal
expansion

x D 0:x1x2x3 � � � D
X
j�1

xj

10j

containing infinitely many non zero digits xj 2 f0; 1; 2; : : : ; 9g. Demonstrate that
on the average, the number of zeros in the decimal expansion is equal to 1=10 for
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almost all 0 < x � 1. Hint: Consider the mapping ' W S1 ! S1 defined by '.z/ D
z10 in the fundamental domain of the covering space. It is the map T W .0; 1� !
.0; 1� defined by T .x/ D 10x mod 1. The map T is measure preserving and
ergodic. Consider now the real number x D 0:x1x2x3 : : : and the interval A ´
.0; 1=10/, then

T jx 2 A () xjC1 D 0:

Apply the equidistribution theorem.

Proof of the ergodic theorem. We conclude this chapter with the proof of the
ergodic theorem following the arguments of A. M. Garsia (1965) and using the
maximal ergodic lemma. We recall the statement of the theorem.

Theorem I.16. We assume that .X;A; m/ is a finite measure space andT W X ! X

a measure preserving map. For every integrable function f 2 L.X;A; m/ there
exist a function f � 2 L.X;A; m/ and a null set N � X (N depending on f )
satisfying T �1.N / D N and

(i) limn!1 1
n

Pn�1
jD0 f .T jx/ D f �.x/ for all x 2 X nN ,

(ii) f �.T x/ D f �.x/ for all x 2 X ,

(iii)
R
X
f � D R

X
f ,

(iv)
R
X

ˇ̌
1
n

Pn�1
jD0 f .T jx/ � f �.x/

ˇ̌
dm ! 0, n ! 1.

Proof [Convergence theorems from integration theory]. If f 2 L.X;A; m/ we
abbreviate in the following

Sn.x/ D Sn.f; x/ D
n�1X
jD0

f .T jx/; n � 1:

Our first aim is to prove that the limit limn!1 1
n
Sn.x/ does exist almost everywhere,

by showing that

m
�n
x 2 X j lim

1

n
Sn.x/ < lim

1

n
Sn.x/

o�
D 0:

(1) Maximal ergodic lemma. We introduce the sequence of integrable functions

S0.x/ 
 0;

SC
n .x/ D max

0�k�n
Sk.x/

and observe that SC
n .x/ � 0 for all x 2 X .

Lemma I.22. Let f 2 L.X;A; m/ and define the subsets

An D fx 2 X j SC
n .x/ > 0g:
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Then Z
An

f dm � 0; for all n � 1:

Proof. From the definition of SC
n it follows that

f .x/C SC
n .T x/ � f .x/C Sk.T x/ D SkC1.x/; 0 � k � n:

If x 2 An, then there exists an integer 1 � k � n for which Sk.x/ > 0. Conse-
quently,

f .x/C SC
n .T x/ � max

1�k�n
Sk.x/ D max

0�k�n
Sk.x/ D SC

n .x/

and hence f .x/ � SC
n .x/� SC

n .T x/. By using that SC
n is equal to zero outside of

An and SC
n .T x/ � 0 everywhere, we conclude from this inequality and from the

measure preservation of the map T thatZ
An

f �
Z
An

SC
n .x/ �

Z
An

SC
n .T x/

D
Z
X

SC
n .x/ �

Z
An

SC
n .T x/

�
Z
X

SC
n .x/ �

Z
X

SC
n .T x/

D
Z
X

SC
n .x/ �

Z
X

SC
n .x/

D 0

and the lemma is proved. �

(2) For a < b we define the subset Y of X by

Y D Y.a; b/ D
n
x 2 X j lim

1

n
Sn.x/ < a < b < lim

1

n
Sn.x/

o
:

Lemma I.23. The set Y is measurable and invariant under the map T , i.e.,
T �1.Y / D Y .

Proof. The statement Y 2 A follows from elementary measure theory, since the
functions Sn are all measurable. To prove the invariance, we have to show that
lim 1

n
Sn.x/ D lim 1

n
Sn.T x/ and lim 1

n
Sn.x/ D lim 1

n
Sn.T x/: However, this fol-

lows immediately from the identity

1

n
Sn.T x/ D 1

n
SnC1.x/ � 1

n
f .x/ D 1

nC 1
SnC1.x/

nC 1

n„ƒ‚…
!1

� 1

n
f .x/„ƒ‚…
!0

by taking the lim respectively lim, and the lemma is proved. �
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Lemma I.24. From m.X/ < 1 it follows that m.Y / D 0.

Proof. We apply Lemma I.22 to the T -invariant set Y (instead of X ) and to the
function g (instead of f ), defined by

g.x/ ´ f .x/ � b:
Since m.X/ < 1 the function g 2 L.X;A; m/ is integrable. Hence, setting

An D fx 2 Y j SC
n .g; x/ > 0g;

we have Z
An

.f � b/ D
Z
Y

�An
.f � b/ � 0:

According to the definition of Y there exists for every point x 2 Y an integer j for
which

1

j
Sj .g; x/ D 1

j
Sj .f; x/ � b > 0

and henceSC
j .g; x/ > 0. Consequently every x 2 Y is contained in some setAj , so

that Y D S
n�1An. The monotonicity of the sequence of sets An � AnC1 � � � �

implies lim �An
.x/ D �Y .x/. Using the convergence theorem of Lebesgue we

obtain in the limit as n ! 1, Z
Y

.f � b/ � 0:

In exactly the same way one proves
R
Y
.a � f / � 0. Addition of the inequalities

results in the inequality

.a � b/
Z
Y

dm D .a � b/m.Y / � 0:

Since a < b, one concludes m.Y / D 0 and the lemma is proved. �

(3) Pointwise convergence. In view of Lemma I.24 the set

N0 ´
n
x 2 X j lim

1

n
Sn.x/ < lim

1

n
Sn.x/

o
;

is the countable union of null sets

N0 D
[
a<b
a;b2Q

Y.a; b/;

and hence a null set, so that m.N0/ D 0: For x … N0, hence for almost all x 2 X ,
we abbreviate the limit

lim
1

n
Sn.x/ D lim

1

n
Sn.x/ D lim

n!1
1

n
Sn.x/ μ '.x/;
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where �1 � '.x/ � C1: Defining '.x/ D 0 on the null set N0 we show
next that '.x/ 2 R is a real number almost everywhere. This will follow once
we have proved that ' 2 L.X;A; m/. Since T is measure preserving, we haveR
X

jf .T jx/j dm D R
X

jf j dm for every j � 0 and therefore,Z
X

ˇ̌̌
ˇ1
n
Sn.x/

ˇ̌̌
ˇ dm �

Z
X

jf j dm:

Using the Lemma of Fatou we can estimateZ
X

j'j D
Z
X

lim

ˇ̌̌
ˇ1
n
Sn.x/

ˇ̌̌
ˇ � lim

Z
X

ˇ̌̌
ˇ1
n
Sn.x/

ˇ̌̌
ˇ �

Z
X

jf j < 1:

Hence ' 2 L.X;A; m/ and therefore, '.x/ 2 R almost everywhere. The set

N D N0 [ fx 2 X j j'.x/j D 1g;
on which limn!1 1

n
Sn.x/ does not exist in R, is therefore a null set. Since the limits

lim, lim are invariant under T (due to Lemma I.23), the setN is also invariant under
T . We now define the function f � W X ! R showing up in the statement of the
theorem as follows:

f �.x/ ´
´

limn!1 1
n
Sn.f; x/; x … N;

0; x 2 N:
Then f � 2 L.X;A; m/ and one sees, as in Lemma I.23, that f �.T x/ D f �.x/ for
all x 2 X . So far, we have proved the statements (i) and (ii) of the ergodic theorem.

(4) It remains to show that

(a) 1
n
Sn.f; x/ ! f � in L1,

(b)
R
X
f � D R

X
f .

We begin by proving a special case. We assume that f is a bounded function
assuming that jf j � K for a constant K > 0. Then,ˇ̌̌

ˇ1
n
Sn.x/

ˇ̌̌
ˇ � K;

and the statement (a) follows by means of the dominated convergence theorem of
Lebesgue. Since the map T is measure preserving,Z

X

1

n
Sn.x/ D

Z
X

f; n � 1;

and the statement (b) follows, again using the convergence theorem of Lebesgue,Z
X

f D lim
n!1

Z
X

1

n
Sn.x/ D

Z
X

lim
n!1

1

n
Sn.x/ D

Z
X

f �:
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(5)We next prove thegeneral case by approximation with the truncated functions
of f 2 L.X;A; m/, defined by

fN .x/ D
´
f .x/; jf .x/j � N;

0; jf .x/j > N:
Then, jfN j � N , and in view of the special case we have the pointwise convergence

1

n
Sn.fN ; x/ ! f �

N .x/; n ! 1

almost everywhere and also the convergence in L1. Let " > 0. By the triangle
inequality one estimatesZ ˇ̌̌

ˇ1
n
Sn.f / � f �

ˇ̌̌
ˇ dm �

Z ˇ̌̌
ˇ1
n
Sn.f / � 1

n
Sn.fN /

ˇ̌̌
ˇ dm

C
Z ˇ̌̌
ˇ1
n
Sn.fN / � f �

N

ˇ̌̌
ˇ dmC

Z
jf �
N � f �j dm;

and we are going to estimate each term on the right-hand side by "=3 if N and n
are sufficiently large.

Since f 2 L we have jf j < 1 almost everywhere, and since fN .x/ D
f .x/�jf j�N .x/ ! f .x/ we conclude by the convergence theorem of Lebesgue
that

fN ! f in L1:

Therefore, choosing N large enough,Z
jfN � f j � "=3:

Using that the map T is measure preserving we can now estimate the first term as
follows. Z ˇ̌̌

ˇ1
n
Sn.fN / � 1

n
Sn.f /

ˇ̌̌
ˇ dm D

Z
1

n

ˇ̌̌ n�1X
jD0

.fN � f /.T jx/
ˇ̌̌
dm

� 1

n

n�1X
jD0

Z
j.fN � f /.T jx/j dm

D 1

n

n�1X
jD0

Z
j.fN � f /.x/j dm

D
Z

jfN � f j dm
� "=3:
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This holds true for all n and the first term is taken care of. We now apply the Lemma
of Fatou to the first term to obtain as n ! 1,Z

jf �
N � f �j dm � "=3;

which is the desired estimate of the third term. For the second term we concludeZ ˇ̌̌
ˇ1
n
Sn.fN / � f �

N

ˇ̌̌
ˇ dm � "=3

for n large enough, from the convergence statement in the special case. Altogether,Z ˇ̌̌
ˇ1
n
Sn.f / � f �

ˇ̌̌
ˇ � "

for n large enough. This is true for every " > 0. Therefore,

1

n
Sn.f / ! f � in L1

and the proof of the statement (a) in the general case is completed. As for the
statement (b) we recall that, because of the measure preservation of the map T ,Z

1

n
Sn.f / dm D

Z
f

for all n � 1, and using the L1-convergence we finally obtainZ
f D lim

n!1

Z
1

n
Sn.f / D

Z
f �:

Herewith, the ergodic theorem of Birkhoff is proved. �
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M. Pollicott, [60] by U. Krengel, [37] H. Fuerstenberg and [115] by P. Walters. For
surveys about specific problems in dynamical systems including historical infor-
mation and many references we recommend the Handbooks of Dynamical Systems
[50] and [35].


