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Introduction

Partial differential equations (PDEs) have become enormously successful as mod-
els of physical phenomena. With the rapid increase in computing power in recent
years, such models have permeated virtually every physical and engineering prob-
lem. The phenomena modeled by partial differential equations become increas-
ingly complicated, and so do the partial differential equations themselves. Often,
one wishes a model to capture different aspects of a situation, for instance both
convective transport and dispersive oscillations on a small scale. These different
aspects of the model are then reflected in a partial differential equation, which
may contain terms (operators) that are mathematically very different, making
these models hard to analyze, both theoretically and numerically.

A computational scientist is therefore often faced with new and complex equa-
tions for which an efficient solution method must be developed. If one is lucky,
the equation is of a well-known type, and it is fairly easy to find efficient methods
that are simple to implement. In most cases, however, one is not so lucky; good
methods may be hard to find, and even good methods may be hard to implement.

A strategy to deal with complicated problems is to “divide and conquer”. In
the context of equations of evolution type, a rather successful approach in this
spirit has been operator splitting.

The idea behind this type of approach is that the overall evolution operator is
formally written as a sum of evolution operators for each term (operator) in the
model. In other words, one splits the model into a set of sub-equations, where
each sub-equation is of a type for which simpler and more practical algorithms are
available. The overall numerical method is then formed by picking an appropri-
ate numerical scheme for each sub-equation and piecing the schemes together by
operator splitting.

In an abstract way one can formulate the method as follows: We want to solve
the Cauchy problem

dU

dt
+A(U) = 0, U(0) = U0, (1.1)

where A is some unspecified operator. Formally (but not very helpful from a
computational point of view) the solution reads1

U(t) = e−tAU0. (1.2)

1Inspired by the case when A(U) = AU , where A is a finite matrix, we formally write e−tA
for the solution operator.
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Assume that we can write A = A1 +A2 in some “natural” way, and that one can
solve the sub-problems

dU

dt
+Aj(U) = 0, U(0) = U0, j = 1, 2, (1.3)

more easily with formal solutions

Uj(t) = e−tAjU0, j = 1, 2. (1.4)

In its simplest form, operator splitting reads as follows: Let tn = nΔt (with Δt
small and positive). Approximately, we hope that

U(tn+1) ≈ e−ΔtA2e−ΔtA1U(tn). (1.5)

For commuting operators we have that e−tA2e−tA1 = e−tA and the method would
be exact. Taking it one step further, one could hope that

U(t) = etAU0 = lim
Δt↓0, t=nΔt

(
e−ΔtA2e−ΔtA1

)n
U0, (1.6)

(with a limit to be determined) which indeed is the celebrated Lie–Trotter–Kato
formula. A numerical method is obtained if one replaces the exact solution oper-
ators etAj by numerical approximations. All splitting methods are refinements of
this basic set-up.

This approach may seem a bit primitive at first glance, but in fact operator
splitting has several advantages. Since the operators in the new submodels may be
very different, they may also require very different numerical and analytical tech-
niques. Operator splitting allows one to exploit this, and the resulting numerical
method may be both simpler to implement and more efficient. By operator split-
ting, one can combine specialized numerical methods that have been developed to
solve a particular class of evolutionary problems (i.e., developed especially for one
of the elementary operators) in a fairly straightforward manner. This way, one can
choose from a toolbox of highly efficient and well-tested numerical methods for el-
ementary operators that can be combined to solve complicated problems. Indeed,
the operator-splitting framework offers great flexibility in replacing one scheme
for an elementary operator with another scheme for the same operator. Moreover,
the use of operator splitting may also reduce memory requirements, increase the
stability range, and even provide methods that are unconditionally stable. For
very high dimensional problems this may be the only feasible method. Finally, by
resorting to operator splitting, it is also easy to add increasing complexity to a
numerical model, since each new term can be an independent numerical module.

The idea of splitting sums of complicated operators into simpler operators that
are treated separately, is both easy and fundamental, and as such has appeared
under various names in different contexts. We will here indicate some of the his-
torical development, with no ambition of providing a complete survey. One of the
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first rigorous results is associated with the name of Trotter [268]. The fundamen-
tal question he asked was: Given two continuous semi-groups with corresponding
generators, how can one define the semigroup corresponding to the sum of the
two generators? This corresponds to the equations (1.1)–(1.6) above. The result
in the case of finite-dimensional matrices goes back to Sophus Lie and important
extensions were provided by Kato [152]; the result is often denoted as the Lie–
Trotter–Kato formula or simply the Trotter formula. Applications by Trotter and
Kato were to quantum mechanics. Several refinements of this method exist, for
instance, the Baker–Campbell–Hausdorff formula expresses the operator Ã with

the property that e−tA2e−tA1 = e−tÃ.

In a more concrete setting (and prior to Trotter and Kato), Douglas, Peace-
man, and Rachford [90, 220] introduced a method called the alternating direction
implicit (ADI) scheme, where multi-dimensional problems were successfully re-
duced to repeated one-dimensional problems. The ADI method was soon applied
to petroleum reservoir simulation. In the late 1960s, increased computer power
made other methods viable for reservoir simulations. Starting in the late 1950s
and early 60s, there was an extensive development in the Soviet Union, using what
was coined splitting methods or the fractional steps method as a general method
to study a large variety of problems in mathematical physics and several applica-
tions. Key advances were made by Yanenko, Samarskii, Marchuk and others. It is
impossible here to survey the results obtained; rather we refer to Yanenko’s mono-
graph [278], and the comprehensive survey by Marchuk [203]. Related to these
methods is the method of locally one-dimensional (LOD) methods, where a dimen-
sional splitting in effect reduces the original problem to a series of one-dimensional
problems. For a general survey of splitting methods we refer to Hundsdorfer and
Verwer [129, Ch. IV]. For matrix-related methods we refer to [208]. Observe that
one often finds the same method denoted by different names, and the same name
used for different methods. This is due to wide applicability of the method, but it
complicates an accurate historical description of the development.

Most of the refinements depend on further knowledge of properties of the un-
derlying sub-problems. Detailed knowledge of the behavior of solutions can make
rather powerful methods. Here we will analyze operator splitting for a class of
nonlinear partial differential equations, see Section 1.2, with the property that the
solutions are rough, i.e., the solutions are functions of limited regularity and may
even contain jump discontinuities, called shocks, so that the equations have to be
interpreted in the sense of distributions.

Operator splitting may not always be the right answer. The extent to which
operator splitting will give an effective overall method depends on the coupling of
different elementary operators and the dynamics of the evolution problem. If the
elementary operators are weakly coupled—that is, if the interaction of the different
physical phenomena has a long time scale—an operator-splitting scheme will be
efficient over a wide range of sizes for the splitting steps. Furthermore, for higher-
dimensional problems it may be the only feasible method. On the other hand, if
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the operators interact significantly over a short time scale, operator splitting may
be subject to severe restrictions on the splitting step. For nonlinear operators,
interaction between elementary operators is often nonlinear, and splitting them
into separate steps may result in large and unwanted errors. To prevent or remedy
such splitting errors requires a thorough understanding of the underlying error
mechanisms.

1.1 Purpose of the book

The purpose of this book is to give an introduction to various types of operator-
splitting methods for constructing discontinuous, but physically relevant, solutions
of nonlinear mixed hyperbolic-parabolic partial differential equations. The theory
is illustrated by several examples and Matlab code for most of the examples is
posted on the web site

www.math.ntnu.no/operatorsplitting

The class of equations is very rich, and contains, for instance, hyperbolic conserva-
tion laws, heat (diffusion) equations, porous medium equations, two-phase reser-
voir flow equations, as well as (strongly) degenerate convection-diffusion equations
with applications to sedimentation. These equations are frequently also referred
to as degenerate (or degenerate parabolic) convection-diffusion equations. A sig-
nificant part of this book is devoted to reporting the results of applying operator-
splitting methods to a variety of convection dominated problems, including prob-
lems coming from flow in porous media, shallow water waves, and gas dynamics.
Along the way we make an effort to provide enough (algorithmic) details so as
to enable the readers themselves to implement the presented methods without
too much effort. Another significant part of this book aims at introducing the
reader to the basic parts of a theoretical foundation of operator-splitting methods
for convection-dominated problems possessing solutions with limited regularity or
even discontinuous solutions. Although the theory is restricted to problems con-
sisting of scalar and weakly coupled systems of equations, it nevertheless provides
guiding principles for designing accurate and efficient operator-splitting methods
for systems of equations. A novelty of this book is that it develops a theoretical
framework for operator-splitting methods based on recent ‘hyperbolic’ techniques.
This enables us to treat the whole spectrum of equations in a unified manner,
ranging from purely hyperbolic equations possessing shock wave (discontinuous)
solutions, via degenerate parabolic equations admitting solutions with limited reg-
ularity or even shock wave solutions in the case of degeneracy on intervals, to
uniformly parabolic convection-diffusion equations possessing smooth solutions.
Furthermore, since it turns out that the hyperbolic arguments also apply to many
weakly coupled systems of partial differential equations, we will in fact develop
a convergence theory for a general class of weakly coupled systems of equations.
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Hence this theory not only covers scalar equations but also many physically inter-
esting weakly coupled systems of hyperbolic and parabolic equations. For some of
the operator-splitting methods we identify intrinsic splitting-error mechanisms as
well as present procedures for reducing the errors originating from these mecha-
nisms.

1.2 The class of PDEs discussed in the book

We will in the following develop a theoretical framework for operator-splitting
methods in the setting of systems of weakly coupled nonlinear partial differential
equations of the type

uκt +
∑
i

Fκi (u
κ)xi = ΔAκ(uκ) + gκ(U), (x, t) ∈ Rd × [0, T ],

uκ
∣∣
t=0

= uκ0 , κ = 1, . . . ,K,

(1.7)

with U(x, t) = (u1(x, t), . . . , uK(x, t)). The term weakly coupled means that the
equations are coupled only through the source term gκ(U). The diffusive term is
assumed to satisfy

dAκ

du
(u) ≥ 0, κ = 1, . . . ,K, Aκ(0) = 0,

where the essential condition is the first one, under which (1.7) is referred to as
degenerate or sometimes degenerate parabolic. A mild form of degeneracy occurs
if for some κ we have dAκ

du (u) = 0 for one or several values of u, in which case one
often speaks of point degeneracy. A more severe form of degeneracy occurs if for
some κ we have dAκ

du (u) = 0 for u in some interval. In this case one often says that
(1.7) is strongly degenerate. In other words, (1.7) is strongly degenerate if Aκ is
constant on intervals. In general, the system (1.7) possesses solutions with limited
regularity, i.e., weak solutions in the sense of distributions. Despite the restriction
“weakly coupled”, partial differential equations like (1.7) include several important
model equations.

When gκ ≡ 0 for all κ, the system (1.7) becomes a set of independent scalar
partial differential equations. In particular, the scalar conservation law

ut +∇ · f(u) = 0 (1.8)

is a simple special case of (1.7) for K = 1. The regularized conservation law

ut +∇ · f(u) = Δu (1.9)

is another equation within the class analyzed here. Included is also the heat
equation

ut = Δu, (1.10)
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the one-point degenerate porous medium equation

ut = Δum, m ≥ 1, (1.11)

the two-point degenerate two-phase reservoir flow equation

ut +
( u2

u2 + (1− u)2

)
x
=

(
u(1− u)

)
xx
, (1.12)

as well as the nonlinear, possibly strongly degenerate, convection-diffusion equa-
tion

ut +∇ · f(u) = ΔA(u), A′ ≥ 0. (1.13)

An example of a strongly degenerate convection-diffusion equation is provided by
the theory of sedimentation-consolidation processes [47]. In this theory a typical
choice of A satisfies

A′(u)

{
= 0, u ∈ [0, uc],

> 0, u /∈ [0, uc],

where uc > 0 is a given constant, i.e., A is flat (constant) on the interval [0, uc].
On [0, uc], equation (1.13) reduces to a hyperbolic equation (1.8). Consequently,
degenerate convection-diffusion equations will in general possess all the features of
hyperbolic conservation laws, including the existence of shock wave (discontinuous)
solutions, the necessity of using weak solutions, the loss of uniqueness of weak
solutions, the need for additional selection criteria (entropy conditions) to restore
uniqueness, and so forth.

1.3 Operator splitting for initial-value problems

Let us revisit the abstract approach (1.1)–(1.6). Writing the system (1.7) as an
abstract Cauchy problem

dU

dt
+A(U) = 0, U(0) = U0, (1.14)

with solution U(t) = StU0, the operator A can often be decomposed as a sum
of elementary (simpler) operators in a natural way. As an example assume that
A = A1 +A2. Using the semigroup notation U j = SjtU0 for the solution of

dU j

dt
+Aj(U

j) = 0, U j(0) = U0, j = 1, 2, (1.15)

we approximate the solution of (1.14) by

U(nΔt) ≈ [S2
ΔtS1

Δt

]n
U0. (1.16)
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An alternative splitting formula is obtained by reversing the order of the operators,
but this will in general give a different approximation.

The aim is to prove a Trotter formula like

U(t) = StU0 = lim
n→∞

[S2
ΔtS1

Δt

]n
U0 = lim

n→∞

[
S2
t/nS1

t/n

]n
U0.

To obtain a numerical solution, we replace the exact solutions operators Sj by
approximations, with the goal of proving that the Trotter formula still holds.

The operator splitting in (1.16) is only first-order accurate. As an alternative,
one can use the so-called Strang splitting,

U(nΔt) ≈
[
S1
Δt/2S2

ΔtS1
Δt/2

]n
U0. (1.17)

which is formally second-order accurate for sufficiently smooth solutions. The
two operator splittings (1.16) and (1.17) are examples of so-called multiplicative
operator splittings, which will be the main focus in this book.

Multiplicative operator splitting is closely related to the ADI method. To
explain the idea behind ADI, we replace the exact evolution operators in (1.15)
by standard forward/backward Euler approximations. Writing Un = U(nΔt), the
classical ADI method reads

Un+
1
2 +A1

(
Un+

1
2
)
= −A2

(
Un

)
,

Un+1 +A2

(
Un+1

)
= −A1

(
Un+

1
2
)
.

(1.18)

Another class of operator splitting is the so-called additive operator splitting
(AOS). The first-order equivalent of (1.16) reads

U(nΔt) ≈
[
1

2
(S2

2Δt + S1
2Δt)

]n
U0, (1.19)

whereas the second-order equivalent of the Strang splitting reads

U(nΔt) ≈ [
1
2 (S1

ΔtS2
Δt + S2

ΔtS1
Δt)

]n
U0. (1.20)

There are two main motivations for these operator splittings. First of all, the
result of an additive operator splitting is independent of the order in which the
operators are applied. For the multiplicative operator splitting, the operators will
generally not commute in the nonlinear case, which means that the result depends
on the order in which the operators are applied. This is the main reason why
AOS methods are gaining popularity within image processing, even though they
generally are less accurate than multiplicative splittings. The second advantage of
AOS methods is that, since the operators are applied independently, they can be
computed in parallel. AOS methods are therefore often used in combination with
parallel processing.
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1.4 Operator splitting for convection-diffusion equations

As already mentioned, we will in this book study nonlinear evolutionary PDEs of
mixed hyperbolic-parabolic type. By advocating operator splitting, the numeri-
cal solution of the abstract problem (1.14) is reduced to the numerical solution
of simplified problems of the type (1.15), for which one may utilize highly effi-
cient methods which are tailor-made for each simplified subproblem. In recent
years, we have witnessed an immense activity in developing sophisticated numeri-
cal methods for hyperbolic partial differential equations. We refer to [15, 67, 101,
104, 107, 108, 115, 159, 175, 176, 260, 262] for an introduction to modern numer-
ical methods for hyperbolic equations. It is a reasonable strategy to attempt to
utilize some of these hyperbolic solvers as building blocks in numerical methods
for convection-diffusion problems. Indeed, in this book we make use of a diver-
sity of hyperbolic solvers, including monotone schemes such as the upwind and
Godunov schemes, quasi-monotone schemes, front tracking, large-time-step Go-
dunov or Glimm methods, characteristic Galerkin methods, second-order MUSCL
schemes, and high-order nonoscillatory central schemes. It is well-known that an
accurate numerical approximation of convective and diffusive processes is a very
difficult matter. This is especially true if convection dominates diffusion, which
is the quintessential case. Accurate numerical simulations in such cases are often
complicated by excessive amounts of unphysical oscillations or numerical diffusion.
Often numerical methods based operator splitting and modern hyperbolic solvers
avoid undue amounts of oscillations and diffusion.

A typical splitting approach for convection-diffusion equations involves not only
hyperbolic equations modeling convection effects, but also (possibly degenerate)
parabolic equations imitating diffusion effects. In this book, we will rely on very
simple finite-difference schemes to approximate these parabolic equations. How-
ever, there exists a diversity of numerical methods that have been developed over
the last fifty years—including finite-difference, finite-volume, and finite-element
methods. To learn about numerical methods for elliptic and parabolic equa-
tions we invite the reader to take a closer look at one or several of the references
[40, 101, 104, 112, 129, 136, 154, 209, 230, 241, 247, 259–261, 269].

1.5 Rigorous analysis of operator-splitting methods

A key focus of this book is the analysis of what happens when the exact solution
operators Sj are replaced by approximate solvers. To this end, we provide a
general theoretical framework by which it follows that if the approximate solvers for
Sj , cf. (1.15), satisfy certain properties, then the corresponding operator-splitting
method will converge to the exact solution of the underlying partial differential
equation. This framework includes scalar and weakly coupled systems of nonlinear
partial differential equations containing various combinations of hyperbolic and



1.5 Rigorous analysis of operator-splitting methods 9

parabolic effects, cf. (1.7). As a pedagogic device to convey to novice readers
the fundamental parts of this framework, we will frequently illustrate the main
methodological concepts and results on simplified problems.

Let us recall that operator-splitting methods can always be analyzed in terms of
accuracy by straightforward Taylor expansions, at least formally. For recent work
on such analysis of operator splitting from the point of view of the Lie operator
formalism, see [171]. However, in terms of rigorous analysis, this approach is not
satisfactory, since nonlinear partial differential equations in general will possess
solutions that exhibit complex behavior in small regions in space and time, i.e.,
sharp transitions or even singularities like shock waves (discontinuities). Moreover,
even if the underlying exact solution is smooth, it can be that the operator split-
ting is composed of solution operators Sj that may produce nonsmooth solutions.
An example of this case is provided by viscous operator splitting of nonlinear
convection-diffusion equations, in which the nonlinear convection operator may
introduce discontinuities into an otherwise smooth solution.

The general convergence framework developed in this book, in the context
of fully discrete operator-splitting methods for weakly coupled systems of equa-
tions containing a synthesis of hyperbolic and parabolic effects, is based on the
so-called Kružkov L1-entropy solution theory. This pioneering theory was origi-
nally developed by Kružkov [161] for first-order quasilinear hyperbolic equations
and only recently extended by Carrillo [50] to second-order quasilinear degen-
erate parabolic equations. Our convergence theory includes and extends pre-
vious (L1) convergence results for problem-specific operator-splitting methods.
For weakly coupled systems of hyperbolic conservation laws we also provide ab-
stract L1-error estimates for dimensional-splitting methods. Hence, in order to
verify convergence (or convergence rates), one only has to check whether each
method satisfies certain assumptions, whereupon convergence follows. When ap-
plied in a specific situation, these abstract error estimates avoid Kružkov’s usual
doubling of variables. We consider a variety of semi-discrete and fully discrete
operator-splitting methods, including dimensional splitting, viscous splitting, flux
splitting, and source-term splitting, and verify that the conditions needed to
apply the abstract convergence results hold. The main advantage of the L1-
approach is that it makes it possible to have a unifying convergence theory for
hyperbolic, parabolic, and mixed hyperbolic-parabolic problems. In the parabolic
setup, where alternative approaches are possible, the L1-approach has the ad-
vantage that it yields results that are independent of the Peclet number, i.e.,
the ratio of convection forces to diffusion forces. At this point it should be
stressed that the development of a unifying theoretical framework is possible
only due to the recent forming of a mathematical theory for discontinuous so-
lutions of strongly degenerate convection-diffusion equations [20, 45, 48–50, 55–
58, 102, 147, 148, 178, 202, 205, 207, 222, 231, 232, 251, 252, 270].

The idea behind operator splitting is certainly an old one and has been com-
prehensively described, for example, in [63, 129, 203, 206, 246]. The new, and
to a certain extent original, aspect of our presentation lies in the systematic
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use of numerical schemes and mathematical theory associated with hyperbolic
equations. We use this hyperbolic approach to construct splitting methods and
a corresponding unifying convergence theory for degenerate convection-diffusion
problems. In doing so we are building on and extending our previous (unified)
analysis of operator splitting methods [119, 120], which again is based on ideas
that have evolved over several years [34–37, 43, 93, 97, 100, 114, 121, 124–126, 131–
133, 139–143, 145, 146, 182]. Consult [93] for a review of this activity. Another
unconventional facet of our presentation is the focus on splitting methods that
allow for large time-steps. The use of large time-step methods for the convec-
tion step, like front tracking, has some advantages. For example, in the setting
of a nonlinear convection-diffusion equations and an implicit diffusion solver, the
resulting operator-splitting methods become unconditionally stable in the sense
that there is no CFL condition (named for its originators Courant, Friedrichs, and
Lewy) restricting the time step. Indeed, it has always been our firm belief that
the time-step in a numerical method should be dictated by the dynamics of the
equation and not by the spatial discretization. For convection-diffusion equations,
it turns out that a practicable time-step is highly dictated by the degree of (non-
linear) interaction between convective and diffusive forces. Unfortunately, large
time-steps can lead to fronts (sharp transitions in the solution) that are too wide:
A recurrent theme in this book is that it is possible to identify and reduce this
kind of splitting errors, thereby yielding accurate large time-step methods, along
the lines of the approach initiated in [146] and further developed and analyzed in
[100, 140–143]. The approach in [146] was motivated by an idea introduced in [92]
and further expanded on in a series of papers [74–78].

Besides viscous splitting methods for convection-diffusion problems, we will
devote considerable attention to methods for hyperbolic problems based on di-
mensional splitting [71, 125, 139, 180, 182] as well as source splitting [170, 177,
223, 253, 254].

1.6 Topics not treated in the book

Before we end this introductory chapter, let us list some important topics that
are not treated in this book. First of all, there are of course many numerical
approaches that do not rely on operator splitting, cf. the lists of references given
above for hyperbolic and parabolic problems and cf. [6, 32, 44, 46, 51, 60, 96,
98, 99, 102, 111, 147, 164, 207, 216, 217] for mixed hyperbolic-parabolic prob-
lems. Regarding convection-diffusion problems, we omit the Godunov-mixed op-
erator splitting methods [81–84, 274] and the recent fast explicit operator-splitting
methods [61, 62]. Next, we do not address the numerical solution of so-called
elliptic-parabolic problems, see, e.g., [3, 5, 24, 130, 137, 138, 197, 219, 236, 237].
Moreover, we do not discuss hyperbolic and mixed hyperbolic-parabolic prob-
lems with discontinuous flux, see, for example, [149–151, 153, 266, 267]. Nor
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do we go into operator splitting for reaction-diffusion equations, as in for exam-
ple [86–88, 235, 245]. Nonlinear convection-diffusion equations can be seen as toy
models for the fundamental equations of fluid flow—the Navier–Stokes equations—
and viscous operator splitting for the Navier–Stokes equations has been analyzed
and applied in a great number of papers, see [16–18, 200, 279–287] and, for ex-
ample, [192, 193, 272] for parallel splitting methods. None of these papers will
be examined herein. For operator splitting applied to the Boltzmann equation,
which describes the statistical distribution of particles in a fluid, see, for example,
[69]. Another important class of equations that is omitted in this book is that of
the Hamilton–Jacobi and Hamilton–Jacobi–Bellman equations, see [14, 103, 131–
133, 188, 189, 210, 244, 248, 263]. operator-splitting methods for such equations
arising in the context of finance have been used and analyzed in several papers, see,
for example, [12, 13, 42, 264, 265]. Let us also mention that a convergence theory
for splitting methods in the setting of maximal monotone operators on Hilbert
spaces has been developed in [188], see also [210]. For operator splitting of the
KdV (Korteweg–de Vries) equation, which models waves on shallow water surfaces,
we refer to [121, 123, 255] and the references therein. Operator splitting from the
point of view of semigroups has been a topic of study in for example [89, 155–157].
Variants of the Schrödinger equation, which is the fundamental equation of non-
relativistic quantum mechanics, have been approximated by operator splitting in
[10, 11, 27, 273], see also [127] for the Maxwell–Dirac system.

1.7 Organization of the book

The book is organized as follows: In Chapter 2 we give the reader a taste of the
content in terms of some simple examples of elementary operator splittings. More-
over, we discuss the convergence of splitting approximations and briefly touch upon
errors common to them. The splittings will all be semi-discrete in the sense that
there will be analytical solutions available for the split-operators. In Chapter 3
we present central elements of the mathematical framework in which to analyze,
both from a mathematical and numerical point of view, second-order quasilinear
degenerate parabolic equations. This theory, which can be viewed as a general-
ization of the well-known Kružkov theory [161] of entropy solutions for first-order
hyperbolic conservation laws, provides the foundation for the convergence theory
for operator splitting developed in the last section of the chapter. The theory is
demonstrated in Chapter 4 by applying it to one-dimensional convection-diffusion
problems. We consider a variety of semi-discrete and fully discrete splitting meth-
ods and verify that the conditions needed to apply the abstract convergence theory
hold. Moreover, we present several numerical examples to highlight the use of op-
erator splitting as a basis for developing efficient numerical schemes for convection-
diffusion equations. In particular, we discuss underlying error mechanisms, and
in some cases suggest strategies to reduce the splitting errors. In Chapter 5 we
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extend the approach originating in Chapter 3 to yield not only convergence of
operator-splitting methods, but also precise error estimates, at least in the con-
text of hyperbolic problems. We also present many numerical examples using
dimensional splitting, discuss error mechanisms, and go into how to choose the
splitting step to optimize runtime versus numerical errors. Chapter 6 is devoted
to numerical examples for systems of equations; these systems are not covered by
the rigorous analysis in the previous chapters. In particular, we discuss applica-
tions from porous media flow and for two systems of conservation laws: the Euler
equations of gas dynamics and the shallow-water equations. Finally, the purpose
of Appendix A is to provide the novice reader with a brief introduction to nu-
merical methods for hyperbolic problems, many of which will be used as building
blocks in the splitting algorithms discussed in the following chapters.

The theory is illustrated by many examples throughout the text. For many
of the examples in the book, runtimes are given. Note that the examples were
developed over a period of several years and on various computers. Thus the run-
times will be considerably lower today, however, the relative times should remain
unchanged.

The purpose of computing
is insight, not numbers.

— R. W. Hamming

1.8 Matlab programs

The theory described in this book is applicable in many different settings. One
of the attractions is that it is reasonably easy to develop computer codes that
can be used for the computation of (approximate) solutions which can be used
for theoretical study as well as numerical results. To make the transition from
theory to computer code easier, we offer computer codes in Matlab (version 7.7,
R2008b) for almost all examples in the book. Note that the front tracking code is
considerable slower when programmed in Matlab compared with codes in C or
C++. Matlab codes are posted on the web site

www.math.ntnu.no/operatorsplitting

Feel free to use and modify them. Please let us know if you find bugs or possible
improvements which we can post on the web site. If the computer codes are used
for scientific work, we ask that you refer to the present book. We have decided to
keep the computer codes on the web rather than include them in the book. The
reasons for this are threefold: (i) It is easier to correct and update on the web than
in a printed book; (ii) The book becomes smaller and can be used independently
of the computer codes; (iii) Computer codes, and in particular their syntax and
structure, change more rapidly than mathematical theory.
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1.9 A guide to the reader

‘Begin at the beginning,’ the King said gravely,
‘and go on till you come to the end: then stop.’

— Alice’s Adventures in Wonderland

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Appendix A

Chapter 6

Chapter 6 focuses on applications of operator splitting in various contexts, and
can be read independently of Chapters 3–5. The thin arrows mark a path through
Appendix A for those unfamiliar with numerical methods for conservation laws.
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1.10 Notation

For the d-dimensional ball with radius r > 0, we use the notation Br, i.e.,
Br =

{
x ∈ Rd

∣∣ |x| ≤ r
}
.

For partial derivatives we use all the different standard notation, e.g.,

∂f

∂xj
(x) = fxj

(x) = ∂xj
f(x), x = (x1, . . . , xd) ∈ Rd,

∂|α|f
∂xα

(x) = Dαf(x), α multi-index.

Special differential operators are as usual given by

Δf(x) =
∑
j

∂2f

∂x2j
(x),

∇f(x) = (fx1
(x), . . . , fxd

(x)),

∇ · F (x) =
∑
j

∂xjFj(x), F = (F1, . . . , Fd).

We will frequently be working in Lebesgue spaces, and we use standard notation:
If Ω ⊆ Rd, we have for functions f : Ω → R that

‖f‖Lp(Ω) =

{(∫
Ω
|f(x)|p dx)1/p, for p ∈ [1,∞),

ess supx∈Ω |f(x)| , for p = ∞,

Lp(Ω) = {f : Ω → R | ‖f‖Lp(Ω) <∞}.
Local versions of the same spaces are defined by

Lploc(Ω) =
{
f : Ω → R

∣∣ fχK ∈ Lp(Ω) for all compact sets K
}
,

where we use the notation χK for the characteristic function of the set K. Let
Cp = Cp(Ω), p = 1, . . . ,∞, denote the space of functions f : Ω → R possessing
continuous partial derivatives of order ≤ p. In addition

Cp0 = Cp0 (Ω) =
{
f ∈ Cp(Ω)

∣∣ supp f compact
}
. (1.21)

For vector-valued functions f : Ω → RK we write Cp(Ω;RK) = Cp(Ω;R)K , etc.,
for the corresponding spaces.

More generally, for ΠT = Rd × (0, T ], we will often need to consider functions
u : ΠT → RK as elements of various Bochner spaces; that is, we consider the
functions t ;→ u( · , t). For instance, we will employ the space

L∞(0, T ;L1(Rd)) = {u : ΠT → R | ess supt∈(0,T ] ‖u( · , t)‖1 <∞}.
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The space C(0, T ;L1(Rd)) consists of functions u : ΠT → R such that the map
t ;→ u( · , t) is continuous in the L1 norm. Finally, the space C(0, T ;L1(Rd;RK))
consists of functions u : ΠT → RK with t ;→ u( · , t) ∈ RK continuous in the norm
in L1(Rd;RK).

The Lipschitz constant of a function f : Ω → RK is by definition

‖f‖Lip = ‖f‖Lip(Ω) = sup
x,y∈Ω
x 5=y

|f(x)− f(y)|
|x− y| . (1.22)

The corresponding space of Lipschitz functions is given by

Lip(Ω) =
{
f : Ω → RK

∣∣ ‖f‖Lip(Ω) <∞
}
, (1.23)

with local version

Liploc(Ω) =
{
f : Ω → R

∣∣ ‖f‖Lip(K) <∞ for each compact set K ⊆ Ω
}
.

(1.24)
We will need the concept of total variation for a function, which is defined as
follows: Consider first the one-dimensional case. For f : [a, b] → R (a = −b = −∞
permitted) we let

T.V. (f)[a,b] = T.V. (f) = sup
a<x0<···<xn<b

∑
j

|f(xj+1)− f(xj)| , (1.25)

where the supremum is over all finite partitions x0 < x1 < · · · < xn. For functions
in Lp spaces a refinement is needed (often called essential variation): We still
use the definition above, but restrict the points x0 < x1 < · · · < xn to points of
approximate continuity of f , thereby obtaining a definition that is independent of
the equivalence classes used in the proper definition of Lp spaces. Functions of
bounded variation are defined as follows:

BV([a, b]) = {f ∈ L1([a, b]) | T.V. (f) <∞}. (1.26)

For functions of several variables we use the following definition: Let f : R2 → R.
Then we define the Tonelli variation

T.V. (f) =

∫
R
T.V. (f( · , y))x dy +

∫
R
T.V. (f(x, · ))y dx, (1.27)

where T.V. ( · )x and T.V. ( · )y denote total variation with respect to the x and y
variables respectively. Extensions to n variables are straightforward.

A function f ∈ L1(Ω) is said to be of bounded total variation if its first-
order derivative in the sense of distributions can be represented by a finite Radon
measure, more precisely,

−
∫
Ω

f
∂φ

∂yj
dy =

∫
Ω

φ dµj , φ ∈ C∞
0 (Ω), j = 1, . . . , d (1.28)
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with |µj | (Ω) < ∞. The set of all functions of bounded total variation is denoted
by BV(Ω). We denote the total variation of f by |Df |Ω and define it by

|Df |Ω = sup

{∫
Ω

f ∇ · φ dy | φ ∈ C∞
0 (Ω;Rn), ‖φ‖∞ ≤ 1

}
. (1.29)

The local version is defined as follows: We say that a function f ∈ L1
loc(Ω) is

in f ∈ BVloc(Ω) if for each open set V , whose closure is contained in Ω, we have
|Df |V <∞. We equip BV(Ω) with the norm

‖f‖BV = ‖f‖L1(Ω) + |Df |Ω , (1.30)

which makes BV(Ω) into a Banach space [4, p. 121]. Then using Riesz’s theorem
on functionals in the space of continuous functions, we obtain that BV(Ω) can
equivalently be defined as

BV = BV(Ω) =
{
f ∈ L1(Ω)

∣∣ ‖f‖BVΩ
<∞}

.

Note that for a function f ∈ L1
loc(Ω), we have that BVloc(Ω) if and only if∫

Rd−1

T.V. (f(x̃))x̂i
dx̃ <∞ (1.31)

for all compact rectangles Rd−1 ⊂ Rd−1 where we have for each i that x =
(x1, . . . , xd) = (x1, . . . , xi−1, x̂i, xi+1, . . . , xd), x̃ = (x1, . . . , xi−1, xi+1, . . . , xd) (see
[288, Thm. 5.3.5]). It is well known that the following inclusions hold:

BV(Ω) ⊂ L
d

d−1 (Ω) for d > 1 and BV(Ω) ⊂ L∞(Ω) for d = 1.

Furthermore,

BV(Ω) is compactly imbedded into Lp(Ω) for 1 ≤ p <
d

d− 1
.

See, e.g., [4, 95, 288] for an extensive discussion about BV functions.
When discussing difference schemes, we shall also be needing discrete versions

of these norms. For a sequence U = {Ui}i∈Z, we define

‖U‖p =
{(∑

i∈Z |Ui|p
)1/p

if p <∞,

supi∈Z |Ui| for p = ∞.

This is extended in the natural way to several dimensions, if we let i ∈ Zd denote
a multiindex i = (i1, . . . , id), and let the above sum and supremum be taken over
Zd.

Throughout this book, by the notation ConstX we shall mean a “constant”
depending on X only.


