
Introduction

Summary

Chapter 1 starts with elementary examples (§A), the first being the one that is
depicted on the cover of the book of Kemeny and Snell [K-S]. This is followed
by an informal description (“What is a Markov chain?”, “The graph of a Markov
chain”) and then (§B) the axiomatic definition as well as the construction of the
trajectory space as the standard model for a probability space on which a Markov
chain can be defined. This quite immediate first impact of measure theory might be
skipped at first reading or when teaching at an elementary level. After that we are
back to basic transition probabilities and passage times (§C). In the last section (§D),
the first encounter with generating functions takes place, and their basic properties
are derived. There is also a short explanation of transition probabilities and the
associated generating functions in purely combinatorial terms of paths and their
weights.

Chapter 2 contains basic material regarding irreducible classes (§A) and periodicity
(§B), interwoven with examples. It ends with a brief section (§C) on the spectral
radius, which is the inverse of the radius of convergence of the Green function (the
generating function of n-step transition probabilities).

Chapter 3 deals with recurrence vs. transience (§A & §B) and the fundamental
convergence theorem for positive recurrent chains (§C & §E). In the study of posi-
tive recurrence and existence and uniqueness of stationary probability distributions
(§B), a mild use of generating functions and de l’Hospital’s rule as the most “dif-
ficult” tools turn out to be quite efficient. The convergence theorem for positive
recurrent, aperiodic chains appears so important to me that I give two different
proofs. The first (§C) applies primarily (but not only) to finite Markov chains and
uses Doeblin’s condition and the associated contraction coefficient. This is pure
matrix analysis which leads to crucial probabilistic interpretations. In this context,
one can understand the convergence theorem for finite Markov chains as a special
case of the famous Perron–Frobenius theorem for non-negative matrices. Here
(§D), I make an additional detour into matrix analysis by reversing this viewpoint:
the convergence theorem is considered as a main first step towards the proof of the
Perron–Frobenius theorem, which is then deduced. I do not claim that this proof
is overall shorter than the typical one that one finds in books such as the one of
Seneta [Se]; the main point is that I want to work out how one can proceed by
extending the lines of thought of the preceding section. What follows (§E) is an-
other, elegant and much more probabilistic proof of the convergence theorem for
general positive recurrent, aperiodic Markov chains. It uses the coupling method,
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see Lindvall [Li]. In the original Italian text, I had instead presented the proof
of the convergence theorem that is due to Erdös, Feller and Pollard [20], a
breathtaking piece of “elementary” analysis of sequences; see e.g, [Se, §5.2]. It is
certainly not obsolete, but I do not think I should have included a third proof here,
too. The second important convergence theorem, namely, the ergodic theorem for
Markov chains, is featured in §F. The chapter ends with a short section (§G) about
�-recurrence.

Chapter 4. The chapter (most of whose material is not contained in [W1]) starts
with the network interpretation of a reversible Markov chain (§A). Then (§B) the
interplay between the spectrum of the transition matrix and the speed of convergence
to equilibrium (D the stationary probability) for finite reversible chains is studied,
with some specific emphasis on the special case of symmetric random walks on
finite groups. This is followed by a very small introductory glimpse (§C) at the
very impressive work on geometric eigenvalue bounds that has been promoted in
the last two decades via the work of Diaconis, Saloff-Coste and others; see [SC]
and the references therein, in particular, the basic paper by Diaconis and Stroock
[15] on which the material here is based. Then I consider recurrence and transience
criteria for infinite reversible chains, featuring in particular the flow criterion (§D).
Some very basic knowledge of Hilbert spaces is required here. While being close
to [W2, §2.B], the presentation is slightly different and “slower”. The last section
(§E) is about recurrence and transience of random walks on integer lattices. Those
Markov chains are not always reversible, but I figured this was the best place to
include that material, since it starts by applying the flow criterion to symmetric
random walks. It should be clear that this is just a very small set of examples from
the huge world of random walks on lattices, where the classical source is Spitzer’s
famous book [Sp]; see also (for example) Révész [Ré], Lawler [La] and Fayolle,
Malyshev and Men’shikov [F-M-M], as well as of course the basic material in
Feller’s books [F1], [F2].

Chapter 5 first deals with two specific classes of examples, starting with birth-
and-death chains on the non-negative integers or a finite interval of integers (§A).
The Markov chains are nearest neighbour random walks on the underlying graph,
which is a half-line or line segment. Amongst other things, the link with analytic
continued fractions is explained. Then (§B) the classical analysis of the Galton–
Watson process is presented. This serves also as a prelude of the next section (§C),
which is devoted to an outline of some basic features of branching Markov chains
(BMCs, §C). The latter combine Markov chains with the evolution of a “population”
according to a Galton–Watson process. BMCs themselves go beyond the theme of
this book, Markov chains. One of their nice properties is that certain probabilistic
quantities associated with BMC are expressed in terms of the generating functions
of the underlying Markov chain. In particular, �-recurrence of the chain has such an
interpretation via criticality of an embedded Galton–Watson process. In view of my
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insisting on the utility of generating functions, this is a very appealing propaganda
instrument regarding their probabilistic nature.

In the sections on the Galton–Watson process and BMC, I pay some extra
attention to the rigorous construction of a probability space on which the processes
can be defined completely and with all their features; see my remarks about a
certain nonchalance regarding the existence of the “probabilistic heaven” further
below which appear to be particularly appropriate here. (I do not claim that the
proposed model probability spaces are the only good ones.)

Of this material, only the part of §A dealing with continued fractions was already
present in [W1].

Chapter 6 displays basic notions, terminology and results of potential theory in the
discrete context of transient Markov chains. The discrete Laplacian isP �I , where
P is the transition matrix and I the identity matrix. The starting point (§A) is the
finite case, where we declare a part of the state space to be the boundary and its
complement to be the interior. We look for functions that have preassigned value
on the boundary and are harmonic in the interior. This discrete Dirichlet problem
is solved in probabilistic terms.

We then move on to the infinite, transient case and (in §B) consider basic features
of harmonic and superharmonic functions and their duals in terms of measures on
the state space. Here, functions are thought of as column vectors on which the
transition matrix acts from the left, while measures are row vectors on which the
matrix acts from the right. In particular, transience is linked with the existence
of non-constant positive superharmonic functions. Then (§C) induced Markov
chains and their interplay with superharmonic functions and excessive measures
are displayed, after which (§D) classical results such as the Riesz decomposition
theorem and the approximation theorem for positive superharmonic functions are
proved. The chapter ends (§E) with an explanation of “balayage” in terms of first
entrance and last exit probabilities, concluding with the domination principle for
superharmonic functions.

Chapter 7 is an attempt to give a careful exposition of Martin boundary theory
for transient Markov chains. I do not aim at the highest level of sophistication but
at the broadest level of comprehensibility. As a mild but natural restriction, only
irreducible chains are considered (i.e., all states communicate), but substochastic
transition matrices are admitted since this is needed anyway in some of the proofs.
The starting point (§A) is the definition and first study of the extreme elements
in the convex cone of positive superharmonic functions, in particular, the minimal
harmonic functions. The construction/definition of the Martin boundary (§B) is pre-
ceded by a preamble on compactifications in general. This section concludes with
the statement of one of the two main theorems of that theory, namely convergence to
the boundary. Before the proof, martingale theory is needed (§C), and we examine
the relation of supermartingales with superharmonic functions and, more subtle and
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important here, with excessive measures. Then (§D) we derive the Poisson–Martin
integral representation of positive harmonic functions and show that it is unique
over the minimal boundary. Finally (§E) we study the integral representation of
bounded harmonic functions (the Poisson boundary), its interpretation via termi-
nal random variables, and the probabilistic Fatou convergence theorem. At the
end, the alternative approach to the Poisson–Martin integral representation via the
approximation theorem is outlined.

Chapter 8 is very short and explains the rather algebraic procedure of finding all
minimal harmonic functions for random walks on integer grids.

Chapter 9, on the contrary, is the longest one and dedicated to nearest neighbour
random walks on trees (mostly infinite). Here we can harvest in a concrete class
of examples from the seed of methods and results of the preceding chapters. First
(§A), the fundamental equations for first passage time generating functions on trees
are exhibited, and some basic methods for finite trees are outlined. Then we turn to
infinite trees and their boundary. The geometric boundary is described via the end
compactification (§B), convergence to the boundary of transient random walks is
proved directly, and the Martin boundary is shown to coincide with the space of ends
(§C). This is also the minimal boundary, and the limit distribution on the boundary
is computed. The structural simplicity of trees allows us to provide also an integral
representation of all harmonic functions, not only positive ones (§D). Next (§E) we
examine in detail the Dirichlet problem at infinity and the regular boundary points,
as well as a simple variant of the radial Fatou convergence theorem. A good part
of these first sections owes much to the seminal long paper by Cartier [Ca], but
one of the innovations is that many results do not require local finiteness of the
tree. There is a short intermezzo (§F) about how a transient random walk on a tree
approaches its limiting boundary point. After that, we go back to transience/recur-
rence and consider a few criteria that are specific to trees, with a special eye on
trees with finitely many cone types (§G). Finally (§H), we study in some detail two
intertwined subjects: rate of escape (i.e., variants of the law of large numbers for the
distance to the starting point) and spectral radius. Throughout the chapter, explicit
computations are carried out for various examples via different methods.

Examples are present throughout all chapters.

Exercises are not accumulated at the end of each section or chapter but “built in”
the text, of which they are considered an integral part. Quite often they are used in
the subsequent text and proofs. The imaginary ideal reader is one who solves those
exercises in real time while reading.

Solutions of all exercises are given after the last chapter.

The bibliography is subdivided into two parts, the first containing textbooks and
other general references, which are recognizable by citations in letters. These are
also intended for further reading. The second part consists of research-specific
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references, cited by numbers, and I do not pretend that these are complete. I tried
to have them reasonably complete as far as material is concerned that is relatively
recent, but going back in time, I rely more on the belief that what I’m using has
already reached a confirmed status of public knowledge.

Raison d’être

Why another book about Markov chains? As a matter of fact, there is a great
number and variety of textbooks on Markov chains on the market, and the older ones
have by no means lost their validity just because so many new ones have appeared
in the last decade. So rather than just praising in detail my own opus, let me display
an incomplete subset of the mentioned variety.

For me, the all-time classic is Chung’s Markov chains with stationary transition
probabilities [Ch], along with Kemeny and Snell, Finite Markov chains [K-S],
whose first editions are both from 1960. My own learning of the subject, years
ago, owes most to Denumerable Markov chains by Kemeny, Snell and Knapp
[K-S-K], for which the title of this book is thought as an expression of reverence
(without claiming to reach a comparable amplitude). Besides this, I have a very high
esteem of Seneta’s Non-negative matrices and Markov chains [Se] (first edition
from 1973), where of course a reader who is looking for stochastic adventures will
need previous motivation to appreciate the matrix theory view.

Among the older books, one definitely should not forget Freedman [Fr]; the
one of Isaacson and Madsen [I-M] has been very useful for preparing some of
my lectures (in particular on non time-homogeneous chains, which are not featured
here), and Revuz’ [Re] profound French style treatment is an important source
permanently present on my shelf.

Coming back to the last 10–12 years, my personal favourites are the monograph
by Brémaud [Br] which displays a very broad range of topics with a permanent eye
on applications in all areas (this is the book that I suggest to young mathematicians
who want to use Markov chains in their future work), and in particular the very
nicely written textbook by Norris [No], which provides a delightful itinerary into
the world of stochastics for a probabilist-to-be. Quite recently, D. Stroock enriched
the selection of introductory texts on Markov processes by [St2], written in his
masterly style.

Other recent, maybe more focused texts are due to Behrends [Be] and Hägg-
ström [Hä], as well as the St. Flour lecture notes by Saloff-Coste [SC]. All
this is complemented by the high level exercise selection of Baldi, Mazliak and
Priouret [B-M-P].

In Italy, my lecture notes (the first in Italian dedicated exclusively to this topic)
were followed by the densely written paperback by Pintacuda [Pi]. In this short
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review, I have omitted most of the monographs about Markov chains on non-discrete
state spaces, such as Nummelin [Nu] or Hernández-Lerma and Lasserre [H-L]
(to name just two besides [Re]) as well as continuous-time processes.

So in view of all this, this text needs indeed some additional reason of being.
This lies in the three subtitle topics generating functions, boundary theory, random
walks on trees, which are featured with some extra emphasis among all the material.

Generating functions. Some decades ago, as an apprentice of mathematics, I learnt
from my PhD advisor Peter Gerl at Salzburg how useful it was to use generating
functions for analyzing random walks. Already a small amount of basic knowl-
edge about power series with non-negative coefficients, as it is taught in first or
second year calculus, can be used efficiently in the basic analysis of Markov chains,
such as irreducible classes, transience, null and positive recurrence, existence and
uniqueness of stationary measures, and so on. Beyond that, more subtle methods
from complex analysis can be used to derive refined asymptotics of transition prob-
abilities and other limit theorems. (See [53] for a partial overview.) However, in
most texts on Markov chains, generating functions play a marginal role or no role
at all. I have the impression that quite a few of nowadays’ probabilists consider
this too analytically-combinatorially flavoured. As a matter of fact, the three Italian
reviewers of [W1] criticised the use of generating functions as being too heavy to
be introduced at such an early stage in those lecture notes. With all my students
throughout different courses on Markov chains and random walks, I never noticed
any such difficulties.

With humble admiration, I sympathise very much with the vibrant preface of
D. Stroock’s masterpiece Probability theory: an analytic view [St1]: (quote) “I
have never been able to develop sufficient sensitivity to the distinction between
a proof and a probabilistic proof ”. So, confirming hereby that I’m not a (quote)
“dyed-in-the-wool probabilist”, I’m stubborn enough to insist that the systematic use
of generating functions at an early stage of developing Markov chain basics is very
useful. This is one of the specific raisons d’être of this book. In any case, their use
here is very very mild. My original intention was to include a whole chapter on the
application of tools from complex analysis to generating functions associated with
Markov chains, but as the material grew under my hands, this had to be abandoned
in order to limit the size of the book. The masters of these methods come from
analytic combinatorics; see the very comprehensive monograph by Flajolet and
Sedgewick [F-S].

Boundary theory and elements of discrete potential theory. These topics are
elaborated at a high level of sophistication by Kemeny, Snell and Knapp [K-S-K]
and Revuz [Re], besides the literature from the 1960s and ’70s in the spirit of
abstract potential theory. While [K-S-K] gives a very complete account, it is not
at all easy reading. My aim here is to give an introduction to the language and
basics of the potential theory of (transient) denumerable Markov chains, and, in
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particular, a rather complete picture of the associated topological boundary theory
that may be accessible for good students as well as interested colleagues coming
from other fields of mathematics. As a matter of fact, even advanced non-experts
have been tending to mix up the concepts of Poisson and Martin boundaries as well
as the Dirichlet problem at infinity (whose solution with respect to some geometric
boundary does not imply that one has identified the Martin boundary, as one finds
stated). In the exposition of this material, my most important source was a rather
old one, which still is, according to my opinion, the best readable presentation of
Martin boundary theory of Markov chains: the expository article by Dynkin [Dy]
from 1969.

Potential and boundary theory is a point of encounter between probability and
analysis. While classical potential theory was already well established when its
intrinsic connection with Brownian motion was revealed, the probabilistic theory
of denumerable Markov chains and the associated potential theory were developed
hand in hand by the same protagonists: to their mutual benefit, the two sides
were never really separated. This is worth mentioning, because there are not only
probabilists but also analysts who distinguish between a proof and a probabilistic
proof – in a different spirit, however, which may suggest that if an analytic result
(such as the solution of the Dirichlet problem at infinity) is deduced by probabilistic
reasoning, then that result is true only almost surely before an analytic proof has
been found.

What is not included here is the potential and boundary theory of recurrent
chains. The former plays a prominent role mainly in relation with random walks
on two-dimensional grids, and Spitzer’s classic [Sp] is still a prominent source on
this; I also like to look up some of those things in Lawler [La]. Also, not much
is included here about the `2-potential theory associated with reversible Markov
chains (networks); the reader can consult the delightful little book by Doyle and
Snell [D-S] and the lecture notes volume by Soardi [So].

Nearest neighbour random walk on trees is the third item in the subtitle. Trees
provide an excellent playground for working out the potential and boundary theory
associated with Markov chains. Although the relation with the classical theory is
not touched here, the analogy with potential theory and Brownian motion on the
open unit disk, or rather, on the hyperbolic plane, is striking and obvious. The com-
binatorial structure of trees is simple enough to allow a presentation of a selection of
methods and results which are well accessible for a sufficiently ambitious beginner.
The resulting, rather long final chapter takes up and elaborates upon various topics
from the preceding chapters. It can serve as a link with [W2], where not as much
space has been dedicated to this specific theme, and, in particular, the basics are not
developed as broadly as here.

In order to avoid the impact of additional structure-theoretic subtleties, I insist
on dealing only with nearest neighbour random walks. Also, this chapter is certainly
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far from being comprehensive. Nevertheless, I think that a good part of this material
appears here in book form for the first time. There are also a few new results and/or
proofs.

Additional material can be found in [W2], and also in the ever forthcoming,
quite differently flavoured wonderful book by Lyons with Peres [L-P].

At last, I want to say a few words about

the role of measure theory. If one wants to avoid measure theory, and in particular
the extension machinery in the construction of the trajectory space of a Markov
chain, then one can carry out a good amount of the theory by considering the Markov
chain in a finite time interval f0; : : : ; ng. The trajectory space is then countable and
the underlying probability measure is atomic. For deriving limit theorems, one may
first consider that time interval and then let n ! 1. In this spirit, one can use a
rather large part of the initial material in this book for teaching Markov chains at
an elementary level, and I have done so on various occasions.

However, it is my opinion that it has been a great achievement that probability has
been put on the solid theoretical fundament of measure theory, and that students of
mathematics (as well as physics) should be exposed to that theoretical fundament,
as opposed to fake attempts to make their curricula more “soft” or “applied” by
giving up an important part of the mathematical edifice.

Furthermore, advanced probabilists are quite often – and with very good reason –
somewhat nonchalant when referring to the spaces on which their random processes
are defined. The attitude often becomes one where we are confident that there always
is some big probability space somewhere up in the clouds, a kind of probabilistic
heaven, on which all the random variables and processes that we are working with
are defined and comply with all the properties that we postulate, but we do not
always care to see what makes it sure that this probabilistic heaven is solid. Apart
from the suspicion that this attitude may be one of the causes of the vague distrust
of some analysts to which I alluded above, this is fine with me. But I believe this
should not be a guideline of the education of master or PhD students; they should
first see how to set up the edifice rigorously before passing to nonchalance that is
based on firm knowledge.

What is not contained about Markov chains is of course much more than what is
contained in this book. I could have easily doubled its size, thereby also changing its
scope and intentions. I already mentioned recurrent potential and boundary theory,
there is a lot more that one could have said about recurrence and transience, one
could have included more details about geometric eigenvalue bounds, the Galton–
Watson process, and so on. I have not included any hint at continuous-time Markov
processes, and there is no random environment, in spite of the fact that this is
currently very much en vogue and may have a much more probabilistic taste than
Markov chains that evolve on a deterministic space. (Again, I’m stubborn enough
to believe that there is a lot of interesting things to do and to say about the situation
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where randomness is restricted to the transition probabilities themselves.) So, as I
also said elsewhere, I’m sure that every reader will be able to single out her or his
favourite among those topics that are not included here. In any case, I do hope that
the selected material and presentation may provide some stimulus and usefulness.


