
1 Introduction

Discrete optimization problems are fundamental to every area of science and engineering.
The mathematical modeling of a real-life problem as a discrete optimization problem
consists of representing the feasible scenarios by integer points in some high dimensional
space and the cost or utility associated with these scenarios by a real-valued function on
this space. The problem is then to efficiently compute an optimal point which enables to
identify an optimal scenario. The general mathematical nonlinear discrete optimization
problem can be setup as follows.

Nonlinear discrete optimization problem. Given a set S ⊆ Zn of integer points, an
integer d × n matrix W , and a real-valued function f : Zd → R, find x ∈ S which
minimizes or maximizes the objective function f(Wx), that is, solve the following:

min
{
f(Wx) : x ∈ S

}
or max

{
f(Wx) : x ∈ S

}
.

Several explanatory notes are in order here. The problem is discrete since the feasible
points are integer. The dimension n is always a variable part of the input. The compos-
ite form f(Wx) of the objective function results in no loss of generality: taking d := n
and W := In the identity matrix, the objective becomes an arbitrary function f(x) on S.
While discrete optimization problems are typically computationally very hard and often
intractable, this composite form enables a finer classification of efficiently solvable prob-
lems. We determine broad classes of triples S,W, f for which the problem can be solved
in polynomial time (usually deterministically but sometimes randomly or approximately).
The composite form is also natural and useful in modeling: the problem can be interpreted
as multicriterion or multiplayer optimization, where row Wi of the matrix gives a linear
function Wix representing the value of feasible point x ∈ S under criterion i or its utility
to player i, and the objective value f(Wx) = f(W1x, . . . ,Wdx) is the “centralized” or
“social” balancing of the d criteria or d player utilities.

The function f is sometimes the restriction to Zd ⊂ Rd of a function f : Rd → R
defined on the entire space. We assume most of the time that f is presented by a compar-
ison oracle that, queried on x, y ∈ Zd, asserts whether or not f(x) ≤ f(y). Therefore,
we do not have a problem with the fact that the actual values of f may be real (possibly
nonrational) numbers. This is a very broad presentation that reveals little information on
the function and makes the problem harder to solve, but is very expressive and allows for
flexibility in using the algorithms that we develop. Often, we assume that the function
possesses some additional structure such as being convex or separable on the variables.

The weight matrix W is typically assumed to have a fixed number d of rows. In par-
ticular, with d := 1, W := w ∈ Zn and f the identity on R, the objective function
f(Wx) = wx =

∑n
i=1 wixi is linear, which is the case considered in most literature

on discrete optimization and is already hard and often intractable. The matrix W is given
explicitly, and the computational complexity of the problem depends on the encoding of
its entries (binary versus unary).

2 1 Introduction

The computational complexity of the nonlinear discrete optimization problem most
heavily depends on the presentation of the set S of feasible points. Accordingly, the algo-
rithmic theory splits into two major branches as follows.

The first branch of the theory is nonlinear integer programming, where the feasible
set S consists of the integer points which satisfy a system of linear inequalities given
explicitly by an integer matrix A and a right-hand side vector b:

S := {x ∈ Zn : Ax ≤ b}.

The second branch of the theory is nonlinear combinatorial optimization, where the
feasible set S ⊆ {0, 1}n consists of {0, 1}-valued vectors and is often interpreted as the
set S = {1F : F ∈ F} of indicators of a family F ⊆ 2N of subsets of a ground set
N := {1, . . . , n} with 1F :=

∑
j∈F 1j , where 1j is the jth standard unit vector in Rn.

The set S is presented implicitly through some given compact structure or by a suitable
oracle. A typical compact structure is a graph, where S is defined to be the set of indicators
of subsets of edges that satisfy a given combinatorial property, such as being a matching
or a forest. Typical oracles include a membership oracle, that queried on x ∈ {0, 1}n,
asserts whether or not x ∈ S, and a linear-optimization oracle, that queried on w ∈ Zn

solves the linear optimization problem max{wx : x ∈ S} over the feasible set S.
We are interested, throughout, in the situation where the feasible set S is finite. This

holds by definition in combinatorial optimization, where S ⊆ {0, 1}n. It also holds in
most natural integer programming applications; moreover, typically the feasible set can
be made finite by more careful modeling. As demonstrated in Section 1.3.3, nonlinear
discrete optimization over infinite sets is quite hopeless even in one variable. Nonetheless,
we do allow the input set to be infinite, and our algorithms are required to identify this
situation in polynomial time as well.

Therefore, throughout this monograph, and in all formal statements, an algorithm is
said to solve a nonlinear discrete optimization problem if, for any given S, it either finds
an optimal solution x ∈ S or asserts that S is infinite or empty.

There is a massive body of knowledge and literature on linear discrete optimization
including linear combinatorial optimization and linear integer programming. But lately,
there has been tremendous progress on nonlinear discrete optimization as well. The pur-
pose of this monograph is to provide a comprehensive, unified treatment of nonlinear dis-
crete optimization that incorporates these new developments. Our goal is twofold: first,
to enable users of discrete optimization to benefit from these new developments and the
recently attained polynomial time solvability of broad fundamental classes of nonlinear
discrete optimization problems; second, to stimulate further research on these fascinating
important classes of problems, their mathematical structure, computational complexity,
and numerous applications.

1.1 Outline of the monograph

The main body of the monograph can be divided into three parts: Chapter 2 on convex
discrete maximization, Chapters 3–5 on nonlinear integer programming, and Chapter 6 on
nonlinear combinatorial optimization. The three parts, and in fact the individual chapters

1.1 Outline of the monograph 3

as well, can be quite easily read independently of each other, just browsing now and then
for relevant definitions and results as needed.

The monograph can also be divided into theory versus applications. The applications
are discussed in Sections 1.2, 2.5, 4.3, 5.2, and 6.3, which can be read independently of
the theoretical development. All other sections of Chapters 2–6 develop the theory and
can be read independently of the applications sections.

The next introductory, Section 1.2, describes two prototypical examples of classes of
combinatorial optimization and integer programming problems. These and other appli-
cations motivate the theory developed herein and are discussed in more detail and solved
under various assumptions in the later applications sections. We conclude the introduction
in Section 1.3 with some preliminary technical issues.

In Chapter 2, we consider convex discrete maximization, that is, the problem
max{f(Wx) : x ∈ S} with f : Zd → R convex. The methods used in this chapter
are mostly geometric. We provide several polynomial time algorithms for convex maxi-
mization in various situations. These results apply to both combinatorial optimization and
integer programming branches of our theory. The main result of this chapter is Theorem
2.16 which enables convex maximization in polynomial time using the edge directions of
the polytope conv(S). We also discuss various direct applications including matroids and
vector partitioning problems.

In Chapters 3–5, we study nonlinear integer programming, that is, optimizing a
(non)linear function over a set S given by inequalities, mostly of the form:

S :=
{
x ∈ Zn : Ax = b, l ≤ x ≤ u

}
(1.1)

for some integer matrix A, right-hand side b, and l, u ∈ Zn
∞ with Z∞ := Z�{±∞}. The

methods used here are mostly algebraic. These chapters proceed as follows.
In Chapter 3, we introduce the Graver basis of an integer matrix and show that it can

be used to optimize in polynomial time linear and various nonlinear objective functions
over sets of the form (1.1). The main result of this chapter is Theorem 3.12 which enables
the polynomial time minimization of separable convex functions over sets of form (1.1).
This in particular implies that the Graver basis enables linear integer programming in
variable dimension in polynomial time. Combining this with the results of Chapter 2, we
further show that the Graver basis also enables convex maximization over sets of form
(1.1) in polynomial time.

In Chapter 4, we introduce the theory of n-fold integer programming. This theory,
which incorporates the results of Chapter 3, enables the first polynomial time solution of
very broad fundamental classes of linear and nonlinear integer programming problems
in variable dimension. In particular, Theorems 4.10 and 4.12 enable, respectively, maxi-
mization and minimization of broad classes of convex functions over n-fold programs in
polynomial time. In fact, as shown in Chapter 5, every integer program is an n-fold integer
program. We discuss some of the numerous applications of this powerful theory including
linear and nonlinear multicommodity transportation and transshipment problems. Discus-
sion of further applications to multiway tables is postponed to Chapter 5. We also show
that similar methods enable the first polynomial time solution, in Theorem 4.19, of the
important and extensively studied stochastic integer programming problem.

4 1 Introduction

In Chapter 6, we discuss multiway tables. Such tables occur naturally in any context
involving multiply-indexed variables and are used extensively in operations research and
statistics. We prove the universality Theorem 5.1 which shows that every integer program
is a program over l × m × 3 tables and conclude the universality Theorem 5.12 of n-fold
integer programming. These results provide powerful tools for establishing the presum-
able limits of polynomial time solvability of table problems. We discuss applications of
the n-fold integer programming theory of Chapter 4 and the universality theorems to mul-
tiindex transportation problems and privacy in statistical databases. We also introduce
and discuss the Graver complexity of graphs and digraphs, new important and fascinating
invariants.

Finally, in Chapter 6, we discuss nonlinear combinatorial optimization, that is, the
problem min{f(Wx) : x ∈ S} with f arbitrary and S ⊆ {0, 1}n presented compactly or
by an oracle. We solve the problem in polynomial time for several combinatorial struc-
tures S using various methods. In particular, we provide, in Theorems 6.8, 6.12, and
6.23, respectively, a deterministic algorithm for matroids, a randomized algorithm for
two matroid intersections, and an approximative algorithm for independence systems.
This approximation is of an unusual flavor and the quality of the approximative solution
is bounded in terms of certain Frobenius numbers derived from the entries of the weight
matrix W . We also establish an exponential lower bound on the running time needed to
solve the problem to optimality. We conclude with some concrete applications including
experimental design in statistics and universal Gröbner bases in computational algebra.

1.2 Two prototypical classes of examples

We now describe one prototypical class of examples of combinatorial optimization prob-
lems and one prototypical class of examples of integer programming problems, discussed
in Sections 1.2.1 and 1.2.2, respectively. The special cases of these problems with lin-
ear objective functions are classical and had been studied extensively in the literature.
The nonlinear optimization extensions are solved under various assumptions later in the
monograph as applications of the theory which we develop.

1.2.1 Nonlinear matroid problems

Matroids and spanning trees

A matroid is a pair M = (N,B), where N is a finite ground set, typically taken to
be N := {1, . . . , n}, and B is a nonempty family of subsets of N , called bases of the
matroid, such that for every B,B′ ∈ B, and j ∈ B \ B′, there is a j′ ∈ B′ such that
B \ {j} ∪ {j′} ∈ B. All bases turn out to have the same cardinality, called the rank of
M . A subset I ⊆ N is called independent in the matroid if I ⊆ B for some B ∈ B. The
family of independent sets of M is denoted by I and determines M .

A basic model is the graphic matroid of a graph G = (V,N): its ground set is the set
N of edges of G; its independent sets are subsets of edges forming forests; its bases are
inclusion-maximal forests. In particular, if G is connected then its bases are the spanning
trees. A broader model is the vectorial matroid of a matrix A over a field F: its ground

1.2 Two prototypical classes of examples 5

set is the set N of indices of columns of A; its independent sets are subsets of indices of
columns of A which are linearly independent over F; its bases are the subsets of indices of
columns of A forming bases of the column space of A. Graphic matroids are very special
vectorial matroids over R: given a graph G = (V,N) with set of edges N , orient its edges
arbitrarily and let D be the V × N incidence matrix of the resulting digraph, which is
defined by Dv,e := −1 if edge e ∈ N leaves vertex v ∈ V , Dv,e := 1 if e enters v, and
Dv,e := 0 otherwise. Then the graphic matroid of G is precisely the vectorial matroid
of D.

A matroid can be presented either through a compact given structure, such as graph or
matrix for graphic or vectorial matroid, or by a suitable oracle. Two natural oracles are a
basis oracle that, queried on B ⊆ N , asserts whether or not B ∈ B, and an independence
oracle, that queried on I ⊆ N , asserts whether or not I ∈ I. Both oracles are easily
realizable from a graph or matrix presentation.

The classical linear optimization problem over a matroid is the following: given ma-
troid M = (N,B) and weight vector w ∈ Zn, find a basis B ∈ B of maximum weight
w(B) :=

∑
j∈B wj . Letting S := {1B : B ∈ B} ⊆ {0, 1}n be the set of indicators of

bases, the problem can be written in the form max{wx : x ∈ S}.
This classical problem can be easily solved even when the matroid is presented by

an independence oracle, by the following well-known greedy algorithm that goes back to
[32]: initialize I := ∅; while possible, pick an element j ∈ N \ I of largest weight wj

such that I := I � {j} ∈ I, set I := I � {j}, and repeat; output B := I . Further details
on classical matroid theory can be found in [98].

This is a good point to illustrate the sensitivity of the complexity of a problem to the
presentation of the feasible set. A basis oracle presentation of a matroid does not admit a
polynomial time solution even with linear objective w := 0. Indeed, for each B ⊆ N let
MB := (N, {B}) be the matroid with single basis B. Any algorithm that makes less than
2n − 1 oracle queries leaves at least two subsets B,B′ ⊂ N unqueried, in which case, if
the oracle presents either MB or MB′ then it replies “no” to all queries, and the algorithm
cannot tell whether the oracle presents MB or MB′ and hence cannot tell whether the
optimal basis is B or B′.

We proceed to define the general, nonlinear, optimization problem over a matroid. The
data for the problem consist of a matroid M = (N,B), an integer d×n weight matrix W ,
and a function f : Zd → R. Each column W j of W can be interpreted as vectorial utility
of element j ∈ N in the ground set, and each row Wi can be interpreted as a linear form
representing the values of the ground set elements under criterion i. So Wi,j is the value
of element j under criterion i. The objective value of independent set or basis F ⊆ N is
the balancing f(W (F)) := f(W1F) by f of the utility of F under the d given criteria.
So the problem is as follows.

Nonlinear matroid optimization. Given a matroid M = (N,B) on ground set N :=
{1, . . . , n}, an integer d × n matrix W , and a function f : Zd → R, solve

max{f(Wx) : x ∈ S}
with S ⊆ {0, 1}n the set of (indicators of) bases or independent sets of M :

S := {1B : B ∈ B} or S := {1I : I ∈ I}.

6 1 Introduction

Here is a concrete example of a nonlinear matroid optimization application.

Example 1.1 (maximum norm spanning tree, see Figure 1.1). Let d be a positive integer
and 1 ≤ p ≤ ∞. Let f : Rd → R be the lp norm f := ‖ · ‖p on Rd given by ‖y‖p

p =∑d
i=1 |yi|p for 1 ≤ p < ∞ and ‖y‖∞ = maxd

i=1 |yi|. Let G be a connected graph with set
of edges N := {1, . . . , n}. Let W be an integer d×n weight matrix with Wi,j the value of
edge j under criterion i. The problem is to find a spanning tree T of G with utility vector
of maximum lp norm ‖∑j∈T W j‖p and is the nonlinear matroid optimization problem
over the graphic matroid of G.

optimal tree is x = (0 0 0 1 1 1)

with Wx = (-3 6) and f(Wx) = 45

321-10-2

-2-10213 Criterion/player 1

Criterion/player 2

(3 -2)

(-1 2)

(1 0)(2 -1)

(0 1)

e1

e2e3

e4
e5

e6

(-2 3)

S in {0,1}6 consists of spanning trees in graph K4

W =

f is given by f(y) = |y |2 = y1
2 + y2

2 balancing criteria

The nonlinear problem is

max {f(Wx) : x in {0,1}6 spanning tree}

Data:

Solution and Value:

Figure 1.1: Maximum norm spanning tree example

The nonlinear matroid optimization problem is solved in Section 2.5.2 for convex f
and under suitable assumptions in Section 6.1.2 for arbitrary f . This in particular applies
to nonlinear spanning tree problems as in Example 1.1. One concrete application area is
in model fitting in experimental design [10] and is discussed in Section 6.3.2. Another
useful application is a polynomial time algorithm for computing the universal Gröbner
basis of any system of polynomials with a finite set of common zeros in fixed number of
variables [6], [85] and is discussed in Section 6.3.3.

Matroid intersections and independence systems

We proceed to introduce two broad extensions of nonlinear matroid optimization.

1.2 Two prototypical classes of examples 7

Nonlinear matroid intersection. Given k matroids Mi = (N,Bi) on common n ele-
ment ground set N , integer d × n matrix W , and function f : Zd → R, solve

max
{
f(Wx) : x ∈ S

}
with S ⊆ {0, 1}n the set of common bases or common independent sets:

S :=
{
1B : B ∈ B1 ∩ · · · ∩ Bk

}
or S :=

{
1I : I ∈ I1 ∩ · · · ∩ Ik

}
.

For k ≥ 3, even the linear problem is hard: the NP-hard traveling salesman problem
is reducible to linear three-matroid intersection, see Section 2.5.2.

For k = 2, the nonlinear (two) matroid intersection problem is solved under suitable
assumptions in Section 2.5.2 for convex f and in Section 6.1.3 for arbitrary f .

The set of common independent sets of several matroids is a special case of the follow-
ing generic monotonically closed down structure. An independence system (sometimes
termed simplicial complex) is a nonempty set S ⊆ {0, 1}n such that z ∈ {0, 1}n and
z ≤ x ∈ S imply z ∈ S. We also consider the following problem.

Nonlinear independence system optimization. Given independence system S⊆{0,1}n,
integer d × n matrix W , and f : Zd → R, solve max{f(Wx) : x ∈ S}.

This is a very broad problem – any reasonable set of {0, 1}-vectors can be closed
down to become an independence system – and so is very hard to solve. In Section 6.2,
we provide, under suitable restrictions, an approximative solution to this problem whose
quality is bounded by certain Frobenius numbers derived from the entries of W and show
that finding a true optimal solution requires exponential time.

1.2.2 Nonlinear multicommodity flows

Multiindex transportation problems

The classical transportation problem concerns the minimum cost routing of a discrete
commodity subject to supply, demand, and channel capacity constraints. The data for the
problem is as follows. There are m suppliers and n consumers. Supplier i supplies si

units, and consumer j consumes cj units. For each supplier i and consumer j, there is a
capacity (upper bound) ui,j on the number of units that can be routed from i to j and a cost
wi,j per unit routed from i to j. A transportation is a nonnegative integer m×n matrix x,
with xi,j the number of units to be routed from i to j, that satisfies the capacity constraints
xi,j ≤ ui,j and the supply and consumption constraints

∑n
j=1 xi,j = si,

∑m
i=1 xi,j = cj

for all i, j. So the set of feasible transportations is the set of nonnegative integer matrices
with row sums si, column sums cj , and entry upper bounds ui,j , given by

S :=
{
x ∈ Zm×n

+ :
∑n

j=1 xi,j = si,
∑m

i=1 xi,j = cj , xi,j ≤ ui,j

}
. (1.2)

The transportation problem is to find a transportation x of minimum total cost wx :=∑m
i=1

∑n
j=1 wi,jxi,j , that is, the linear integer programming problem:

min
{
wx : x ∈ Zm×n

+ ,
∑

j xi,j = si,
∑

i xi,j = cj , xi,j ≤ ui,j

}
. (1.3)

8 1 Introduction

It is well known [54] that the matrix defining the system of inequalities in (1.3) is totally
unimodular, implying that the underlying polytope is integer, that is,

conv(S) = conv
{
x ∈ Zm×n

+ :
∑

j xi,j = si,
∑

i xi,j = cj , xi,j ≤ ui,j

}
=

{
x ∈ Rm×n

+ :
∑

j xi,j = si,
∑

i xi,j = cj , xi,j ≤ ui,j

}
.

(1.4)

Since the minimum of a linear function over a polytope is attained at a vertex, (1.4) implies
that problem (1.3) can be solved in polynomial time by linear programming [59], [87] (see
Section 2.3.4 for a more detailed discussion of totally unimodular systems).

We proceed to discuss a fundamental and much more difficult extension of the prob-
lem. The multiindex transportation problem, introduced by Motzkin in [75], is the problem
of finding a minimum cost multiindexed nonnegative integer array x = (xi1,...,id

) with
specified sums over some of its lower dimensional subarrays (termed margins in statis-
tics). For simplicity, we discuss now only the case of triple-index problems with line-sum
constraints and postpone discussion of the general case to Section 5.2.1. The data for the
triple-index, line-sum problem of format l ×m× n consists of mn + ln + lm line sums,
that is, nonnegative integer numbers:

v∗,j,k, vi,∗,k, vi,j,∗, 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

replacing the supplies and consumptions of the classical problem, and an integer l×m×n
cost array w. The problem is the linear integer programming problem:

min
{
wx : x ∈ Zl×m×n

+ ,
∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗
}
.

The matrix which defines the system of inequalities of the triple-index transportation
problem is not totally unimodular. Therefore, the underlying polytope is typically not
integer, and, as the next example shows, we have strict containment:

conv
{
x ∈ Zl×m×n

+ ,
∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗
}

�
{
x ∈ Rl×m×n

+ ,
∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗
}
.

Example 1.2 (real-feasible integer-infeasible tri-index transportation). Consider the 6 ×
4 × 3 transportation problem with the following line sums:

(
vi,j,∗

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 1 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
(
vi,∗,k

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
(
v∗,j,k

)
=

⎛
⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 1 1

⎞
⎟⎟⎠ .

1.2 Two prototypical classes of examples 9

It can be shown that the following fractional point is the unique feasible one:

(
xi,j,1

)
=

1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 1 0
1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
(
xi,j,2

)
=

1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(
xi,j,3

)
=

1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

As suggested by Example 1.2 and the preceding discussion, the linear multiindex
problem is NP-hard and hence presumably computationally intractable. In fact, in
Section 5.1 we show that the problem already over l × m × 3 arrays is universal: ev-
ery integer programming problem is an l × m × 3 transportation problem.

More generally, we consider the nonlinear multiindex problem stated as follows (with
the precise definition of a list of hierarchical margins postponed to Section 5.2.3).

Nonlinear multiindex transportation problem. Given list v of hierarchical integer mar-
gins for m1 × · · · × md arrays and a function f : Zm1×···×md → R, solve

min
{
f(x) : x ∈ Zm1×···×md

+ , x has the given margins v
}
.

In spite of the hardness of even the linear problem indicated above, we solve the
(non)linear multiindex problem under suitable assumptions in Sections 5.2.1 and 5.2.3.

Multicommodity transshipment problems

Another broad extension of the transportation problem is the multicommodity transship-
ment problem. This is a very general flow problem which seeks minimum cost routing of
several discrete commodities over a digraph subject to vertex demand and edge capacity
constraints. The problem data is as follows (see Figure 1.2 for a trivial example). There
is a digraph G with s vertices and t edges. There are l types of commodities. Each com-
modity has a demand vector dk ∈ Zs with dk

v , the demand for commodity k at vertex v
(interpreted as supply when positive and consumption when negative). Each edge e has a
capacity ue (upper bound on the combined flow of all commodities on it). A multicom-
modity transshipment is a vector x = (x1, . . . , xl) with xk ∈ Zt

+ for all k and xk
e the flow

of commodity k on edge e, satisfying the capacity constraint
∑l

k=1 xk
e ≤ ue for each

edge e and demand constraint
∑

e∈δ+(v) xk
e −∑

e∈δ−(v) xk
e = dk

v for each vertex v and
commodity k (with δ+(v), δ−(v) the sets of edges entering and leaving vertex v).

The cost of transshipment x is defined as follows. There are cost functions fe, g
k
e :

Z → Z for each edge and each edge-commodity pair. The transshipment cost on edge e is

10 1 Introduction

Edgecosts fe(x1
e+x2

e):=(x1
e+x2

e)2 and g1
e(x1

e):=g2
e(x2

e):=0

d1 := (3 -1 -2)
d2 := (-3 2 1)

Vertex demands:

Solution:

X1 = (3 2 0)
X2 = (0 2 3)

Data:

Cost:

(3+0)2+(2+2)2+(0+3)2 = 34

Digraph G

(2 2)

-2 1

3 -3 -1 2
(3 0)

(0 3)
G

Edge capacities ue ulimited

Two commodities:red and green

Figure 1.2: Multicommodity transshipment example

fe(
∑l

k=1 xk
e) +

∑l
k=1 gk

e (xk
e) with the first term being the value of fe on the combined

flow of all commodities on e, and the second term being the sum of costs that depends on
both the edge and the commodity. The total cost is

t∑
e=1

(
fe

(l∑
k=1

xk
e

)
+

l∑
k=1

gk
e

(
xk

e

))
.

The cost can in particular be convex such as αe|
∑l

k=1 xk
e |βe +

∑l
k=1 γk

e |xk
e |δ

k
e for

some nonnegative integers αe, βe, γ
k
e , δk

e , which takes into account the increase in cost due
to channel congestion when subject to heavy traffic or communication load [88] (with the
standard linear special case obtained by βe = δk

e = 1).
So we have the following very general nonlinear multicommodity flow problem.

Nonlinear multicommodity transshipment problem. Given a digraph G with s vertices
and t edges, l commodity types, demand dk

v ∈ Z for each commodity k and vertex v, edge
capacities ue ∈ Z+, and cost functions fe, g

k
e : Z → Z, solve

min
∑

e

(
fe

(l∑
k=1

xk
e

)
+

l∑
k=1

gk
e

(
xk

e

))

subject to xk
e ∈ Z+,

∑
e∈δ+(v)

xk
e −

∑
e∈δ−(v)

xk
e = dk

v ,
l∑

k=1

xk
e ≤ ue.

1.3 Notation, complexity, and finiteness 11

This problem, already with linear costs, is very difficult. It is NP-hard for two com-
modities over the bipartite digraphs Km,n (oriented from one side to the other) and for
variable number l of commodities over K3,n. Nonetheless, we do solve the (non)linear
problem in polynomial time in two broad situations in Sections 4.3.1 and 4.3.2. In partic-
ular, our theory provides the first solution for the linear problem with two commodities
over K3,n and with l commodities over the tiny graph K3,3.

1.3 Notation, complexity, and finiteness

We conclude our introduction with some notation and preliminary technical issues.

1.3.1 Notation

We use R, R+, Z, Z+, for the reals, nonnegative reals, integers, and nonnegative integers,
respectively. We use R∞ := R � {±∞} and Z∞ := Z � {±∞} for the extended reals
and integers. The absolute value of a real number r is denoted by |r| and its sign by
sign(r) ∈ {−1, 0, 1}. The ith standard unit vector in Rn is denoted by 1i. We use 1 :=∑n

i=1 1i for the vector with all entries equal to 1. The support of x ∈ Rn is the index
set supp(x) := {i : xi �= 0} of nonzero entries of x. The indicator of subset I ⊆ N :=
{1, . . . , n} is the vector 1I :=

∑
i∈I 1i, so supp(1I) = I . Vectors are typically regarded

as columns unless they are rows of a matrix or otherwise specified. When vectors in a
list are indexed by subscripts wi ∈ Rn, their entries are indicated by pairs of subscripts,
as wi = (wi,1, . . . , wi,n). When vectors in a list are indexed by superscripts xj ∈ Rn,
their entries are indicated by subscripts, as xj = (xj

1, . . . , x
j
n). The integer lattice Zn

is naturally embedded in Rn. The space Rn is endowed with the standard inner product
which, for w, x ∈ Rn, is given by wx :=

∑n
i=1 wixi. Vectors w in Rn will also be

regarded as linear functions on Rn via the inner product wx. Thus, we refer to elements of
Rn as points, vectors, or linear functions, as is appropriate from the context. The lp norm
on Rn is defined by ‖x‖p

p :=
∑n

i=1 |xi|p for 1 ≤ p < ∞ and ‖x‖∞ := maxn
i=1 |xi|. The

rows of a matrix W are denoted by Wi, the columns by W j , and the entries by Wi,j . The
inner product of matrices lying in the same matrix space is W · X :=

∑
i

∑
j Wi,jXi,j .

For matrix W , we use ‖W‖∞ := maxi,j |Wi,j |. Additional, more specific notation is
introduced wherever needed, recalled in later occurrences and appropriately indexed.

1.3.2 Complexity

Explicit numerical data processed by our algorithms is assumed to be rational, and hence
algorithmic time complexity is as in the standard Turing machine model, see, for example
[55], [64]. When numerical data is used implicitly, such as in the case of a function f
presented by a comparison oracle, whose precise values are irrelevant, we can and are
being sloppy about whether these values are rationals or reals.

The input to our algorithms typically consists of integer numbers, vectors, matrices,
and finite sets of such objects. The binary length of an integer z ∈ Z is the number of
bits in its binary encoding, which is 〈z〉 := 1 + �log2(|z| + 1)� with the extra bit for
the sign. The length of a rational number presented as a fraction r = p

q with p, q ∈ Z is

12 1 Introduction

〈r〉 := 〈p〉 + 〈q〉. The length of an m × n matrix A, and in particular of a vector, is the
sum 〈A〉 :=

∑
i,j〈ai,j〉 of the lengths of its entries. Note that the length of A is no smaller

than the number of its entries, that is, 〈A〉 ≥ mn. Thus, 〈A〉 already accounts for mn and
hence we usually do not account for m,n separately. Yet, sometimes, especially in results
related to n-fold integer programming, we do emphasize n as part of the input. Similarly,
the length of a finite set E of numbers, vectors or matrices, is the sum of lengths of its
elements, and hence, since 〈E〉 ≥ |E|, accounts for its cardinality as well.

Sometimes we assume part of the input is encoded in unary. The unary length of an
integer z ∈ Z is the number |z| + 1 of bits in its unary encoding, again, with an extra
bit for the sign. The unary length of rational number, vector, matrix, or finite sets of such
objects is defined again as the sums of lengths of their numerical constituents and is again
no smaller than the number of such constituents.

Both binary and unary lengths of any ±∞ entry of any lower or upper bound vector
l, u over the set Z∞ = Z � {±∞} of extended integers are constant.

An algorithm is polynomial time if its running time is polynomial in the length of
the input. In every formal algorithmic statement, we indicate the length of the input by
explicitly listing every input object and indicating if it affects the running time through
its unary length or binary length. For example, saying that “an algorithm runs in time
polynomial in W and 〈A, b〉”, where W is a weight matrix and A, b define the feasible set
S through an inequality system, means that the time is polynomial in the unary length of
W and the binary length of A, b.

Often, as in [44], [72], parts of the input, such as the feasible set S or the objective
function f , are presented by oracles. The running time then counts also the number of
oracle queries. An oracle algorithm is polynomial time if its running time, including the
number of oracle queries and the length of manipulated numbers including answers to
oracle queries, is polynomial in the input length.

1.3.3 Finiteness

We typically assume that the objective function f in a nonlinear discrete optimization
problem is presented by a mere comparison oracle. Under such broad presentation, if the
feasible set S is infinite then the problem is quite hopeless even in dimension n = 1. To
see this, consider the following family of simple univariate nonlinear integer programs
with convex functions fu parameterized by 0 ≤ u ≤ ∞ as follows:

max
{
fu(x) : x ∈ Z+

}
, fu(x) :=

{
−x if x < u,

x − 2u if x ≥ u.

Consider any algorithm attempting to solve the problem and let u be the maximum value
of x in all queries made by the algorithm to the oracle of f . Then the algorithm can-
not distinguish between the problem with fu having unbounded objective values and the
problem with f∞ having optimal objective value 0.

So as already noted, we are interested in the situation where the set S is finite. We
define the radius ρ(S) of a set S ⊆ Zn to be its l∞ radius, which is given by

ρ(S) := sup
{‖x‖∞ : x ∈ S

}
with ‖x‖∞ := max

{∣∣xi

∣∣ : i = 1, . . . , n
}
.

1.3 Notation, complexity, and finiteness 13

So ρ(S) is the smallest ρ ∈ Z∞ for which the box [−ρ, ρ]n contains S. When dealing
with arbitrary, oracle presented, sets S ⊆ Zn, mostly in Chapter 2, the radius may affect
the running time of some algorithms, but we do not require that it is an explicit part of the
input, and get along without knowing it in advance.

In combinatorial optimization, with S ⊆ {0, 1}n, we always have ρ(S) ≤ 1. In integer
programming, with S = {x ∈ Zn : Ax ≤ b} given by inequalities, mostly in standard
form S = {x ∈ Zn : Ax = b, l ≤ x ≤ u}, the binary length of ρ(S) is polynomially
bounded in the binary length 〈A, b, l, u〉 of the data by Cramer’s rule, see, for example
[90]. Therefore, in these contexts, the radius is already polynomial in the data and does
not play a significant role in Chapters 3–5 on integer programming and in Chapter 6 on
combinatorial optimization.

Finally, we note again that, throughout, and in all formal statements, an algorithm is
said to solve a nonlinear discrete optimization problem if, for any given S, it either finds
an optimal solution x ∈ S, or asserts that S is infinite or empty.

Notes

Background on the classical theory of linear integer programming can be found in the
book [90] by Schrijver. More recent sources on integer programming containing also ma-
terial on nonlinear optimization and on mixed integer programming, where some of the
variables are integer and some are real, are the book [14] by Bertsimas and Weismantel
and survey [49] by Hemmecke, Köppe, Lee, and Weismantel. Development of an algo-
rithmic theory of integer programming in fixed dimension using generating functions can
be found in the book [9] by Barvinok. The algorithmic theory of integer programming
in variable dimension developed here has some of its origins in the work of Sturmfels
described in his book [95]. Among the numerous sources on cutting methods for integer
programming, let us mention the classical paper [18] by Chvátal on Gomory cuts, the
paper [73] by Lovász and Schrijver and survey [65] by Laurent and Rendl on more recent
semidefinite cutting methods, and the survey [21] by Cornuéjols on cutting methods for
mixed integer programming. Background on the classical theory of linear combinatorial
optimization can be found in the trilogy [91] by Schrijver. Geometric development of
the algorithmic equivalence of separation and optimization via the ellipsoid method and
its many applications in combinatorial optimization can be found in the books [44] by
Grötschel, Lovász and Schrijver, and [72] by Lovász.

Let us note that many of the polynomial time algorithms that result from the theory
developed in this monograph have running times which are polynomials of very large
degree. Therefore, an important role of our theory is to enable to identify that a (non)linear
discrete optimization problem can be at all solved in polynomial time. Then there is hope
that a more efficient, ad-hoc algorithm can be designed for such a problem. In particular,
there is much room for improvements in the polynomial running times for some of the
many applications discussed herein.

