Chapter 1
Introduction

The goal of this book is to describe a method for handling certain large dense matrices
efficiently. The fundamental idea of the J#2-matrix approach is to reduce the storage
requirements by using an alternative multilevel representation of a dense matrix instead
of the standard representation by a two-dimensional array.

1.1 Origins of J¢2-matrix methods

The need for efficient algorithms for handling dense matrices arises from several fields
of applied mathematics: in the simulation of many-particle systems governed by the
laws of gravitation or electrostatics, a fast method for computing the forces acting on
the individual particles is required, and these forces can be expressed by large dense
matrices.

Certain homogeneous partial differential equations can be reformulated as boundary
integral equations, and compared to the standard approach, these formulations have the
advantage that they reduce the spatial dimension, improve the convergence and can even
simplify the handling of complicated geometries. The discretization of the boundary
integral equations leads again to large dense matrices.

A number of models used in the fields of population dynamics or machine learning
also lead to integral equations that, after discretization, yield large dense matrices.

Several approaches for handling these kinds of problems have been investigated:
for special integral operators and special geometries, the corresponding dense matrices
are of Toeplitz or circulant form, and the fast Fourier transform [37] can be used
to compute the matrix-vector multiplication in @ (n logn) operations, where 7 is the
matrix dimension. The restriction to special geometries limits the range of applications
that can be treated by this approach.

The panel clustering method [71], [72], [91], [45] follows a different approach to
handle arbitrary geometries: the matrix is not represented exactly, but approximated
by a data-sparse matrix, i.e., by a matrix that is still dense, but can be represented in
a compact form. This approximation is derived by splitting the domain of integration
into a partition of subdomains and replacing the kernel function by local separable
approximations. The resulting algorithms have a complexity of @ (nm® log? n) for
problem-dependent small exponents «, 8 > 0 and a parameter m controlling the accu-
racy of the approximation.

The well-known multipole method [58], [60] is closely related and takes advantage
of the special properties of certain kernel functions to improve the efficiency. It has
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originally been introduced for the simulation of many-particle systems, but can also
be applied to integral equations [88], [86], [85], [57]. “Multipole methods without
multipoles” [2], [82], [108] replace the original multipole approximation by more
general or computationally more efficient expansions while keeping the basic structure
of the corresponding algorithms. Of particular interest is a fully adaptive approach [46]
that constructs approximations based on singular value decompositions of polynomial
interpolants and thus can automatically find efficient approximations for relatively
general kernel functions.

It should be noted that the concept of separable approximations used in both the
panel clustering and the multipole method is already present in the Ewald summation
technique [44] introduced far earlier to evaluate Newton potentials in crystallographical
research efficiently.

Wavelet techniques use a hierarchy of nested subspaces combined with a Galerkin
method in order to approximate integral operators [94], [9], [41], [39], [73], [105],
[102]. This approach reaches very good compression rates, but the construction of
suitable subspaces on complicated geometries is significantly more complicated than
for the techniques mentioned before.

Hierarchical matrices [62], [68], [67], [49], [52], [63] and the closely related mosaic
skeleton matrices [103] are the algebraic counterparts of panel-clustering and multi-
pole methods: a partition of the matrix takes the place of the partition of the domains
of integration, and low-rank submatrices take the place of local separable expansions.
Due to their algebraic structure, hierarchical matrices can be applied not only to in-
tegral equations and particle systems, but also to more general problems, e.g., partial
differential equations [6], [56], [55], [54], [76], [77], [78] or matrix equations from
control theory [53], [S1]. Efficient approximations of densely populated matrices re-
lated to integral equations can be constructed by interpolation [16] or more efficient
cross approximation schemes [5], [4], [7], [17].

J€2-matrices [70], [64] combine the advantages of hierarchical matrices, i.e., their
flexibility and wide range of applications, with those of wavelet and fast multipole
techniques, i.e., the high compression rates achieved by using a multilevel basis. The
construction of this cluster basis for different applications is one of the key challenges
in the area of J¢2-matrices: it has to be efficient, i.e., it has to consist of a small number
of vectors, but it also has to be accurate, i.e., it has to be able to approximate the original
matrix up to a given tolerance. In some situations, an J?-matrix approximation can
reach the optimal order O (n) of complexity while keeping the approximation error
consistent with the requirements of the underlying discretization scheme [91], [23].

Obviously, we cannot hope to be able to approximate all dense matrices in this
way: if a matrix contains only independent random values, the standard representation
is already optimal and no compression scheme will be able to reduce the storage
requirements. Therefore we have first to address the question “Which kinds of matrices
can be compressed by #2-matrix methods?”

It is not sufficient to know that a matrix can be compressed, we also have to be
able to find the compressed representation and to use it in applications, e.g., to perform
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matrix-vector multiplications or solve systems of linear equations. Of course, we do not
want to convert the J¢2-matrices back to the less efficient standard format, therefore we
have to consider the question “Which kinds of operations can be performed efficiently
with compressed matrices?”

Once these two theoretical questions have been answered, we can consider prac-
tical applications of the #¢2-matrix technique, i.e., try to answer the question “Which
problems can be solved efficiently by #2-matrices?”

1.2 Which kinds of matrices can be compressed?

There are two answers to this question: in the introductory Chapter 2, a very simple
one-dimensional integral equation is discussed, and it is demonstrated that its discrete
counterpart can be handled by J#Z-matrices: if we replace the kernel function by a
separable approximation, the resulting matrix will be an #¢2-matrix and can be treated
efficiently. Chapter 4 generalizes this result to the more general setting of integral
operators with asymptotically smooth kernel functions.

In Chapter 6, on the other hand, a relatively general characterization of #2-matrices
is introduced. Using this characterization, we can determine whether arbitrary matrices
can be approximated by #¢2-matrices. In this framework, the approximation of integral
operators can be treated as a special case, but it is also possible to investigate more
general applications, e.g., the approximation of solution operators of ordinary [59],
[96] and elliptic partial differential equations by J2-matrices [6], [15]. The latter very
important case is treated in Chapter 9.

Separable approximations

Constructing an J2-matrix based on separable approximations has the advantage that
the problem is split into two relatively independent parts: the first task is to approximate
the kernel function in suitable subdomains by separable kernel functions. This task
can be handled by Taylor expansions [72], [100] or interpolation [45], [65], [23] if the
kernel function is locally analytic. Both of these approaches are discussed in Chapter 4.

For special kernel functions, special approximations like the multipole expansion
[58], [60] or its counterparts for the Helmholtz kernel [1], [3] can be used. The special
techniques required by these methods are not covered here.

Once a good separable approximation of the kernel function has been found, we face
the second task: the construction of an J#¢2-matrix. This is accomplished by splitting
the integral operator into a sum of local operators on suitably defined subsets and then
replacing the original kernel function by its separable approximations. Discretizing
the resulting perturbed integral operator by a standard scheme (e.g., Galerkin methods,
collocation or Nystrgm techniques) then yields an J/2-matrix approximation of the
original matrix.
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The challenge in this task is to ensure that the number of local operators is as small
as possible: using one local operator for each matrix entry will not lead to a good
compression ratio, therefore we are looking for methods that ensure that only a small
number of local operators are required.

The standard approach in this context is to use cluster trees, i.e., to split the domains
defining the integral operator into a hierarchy of subdomains and use an efficient recur-
sive scheme to find an almost optimal decomposition of the original integral operator
into local operators which can be approximated.

The efficiency of this technique depends on the properties of the discretization
scheme. If the supports of the basis functions are local, i.e., if a neighborhood of
the support of a basis function intersects only a small number of supports of other
basis functions, it can be proven that the cluster trees will lead to efficient approxi-
mations of the matrix [52]. For complicated anisotropic meshes or higher-order basis
functions, the situation becomes more complicated and special techniques have to be
employed.

General characterization

Basing the construction of an J¢2-matrix on the general theory presented in Chapter 6
has the advantage that it allows us to treat arbitrary dense matrices. Whether a matrix can
be approximated by an J2-matrix or not can be decided by investigating the effective
ranks of two families of submatrices, the total cluster bases. If all of these submatrices
can be approximated using low ranks, the matrix itself can be approximated by an
J02-matrix.

Since this characterization relies only on low-rank approximations, but requires no
additional properties, it can be applied in relatively general situations, e.g., to prove that
solution operators of strongly elliptic partial differential operators with L°° coefficients
can be approximated by J#2-matrices. Chapter 9 gives the details of this result.

1.3 Which kinds of operations can be performed efficiently?

In this book, we consider three types of operations: first the construction of an ap-
proximation of the system matrix, then arithmetic operations like matrix-vector and
matrix-matrix multiplications, and finally more complicated operations like matrix
factorizations or matrix inversion, which can be constructed based on the elementary
arithmetic operations.

Construction

An J¢2-matrix can be constructed in several ways: if it is the approximation of an
explicitly given integral operator, we can proceed as described above and compute the
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J¢2-matrix by discretizing a number of local separable approximations. For integral
operators with locally smooth kernel functions, the implementation of this method
is relatively straightforward and it performs well. This approach is described in
Chapter 4.

If we want to approximate a given matrix, we can use the compression algorithms
introduced in Chapter 6. These algorithms have the advantage that they construct
quasi-optimal approximations, i.e., they will find an approximation that is almost as
good as the best possible J2-matrix approximation. This property is very useful, since
it allows us to use J 2-matrices as a “black box” method.

It is even possible to combine both techniques: if we want to handle an integral
operator, we can construct an initial approximation by using the general and simple
interpolation scheme, and then improve this approximation by applying the appropri-
ate compression algorithm. The experimental results in Chapter 6 indicate that this
technique can reduce the storage requirements by large factors.

Arithmetic operations

If we want to solve a system of linear equations with a system matrix in J2-represen-
tation, we at least have to be able to evaluate the product of the matrix with a vector.
This and related operations, like the product with the transposed matrix or forward
and backward substitution steps for solving triangular systems, can be accomplished
in optimal complexity for #2-matrices: not more than two operations are required per
unit of storage.

Using Krylov subspace methods, it is even possible to construct solvers based ex-
clusively on matrix-vector multiplications and a number of simple vector operations.
This is the reason why most of today’s schemes for solving dense systems of equa-
tions (e.g., based on panel clustering [72], [91] or multipole expansions [58], [60])
provide only efficient algorithms for matrix-vector multiplications, but not for more
complicated operations.

Hierarchical matrices and J/2-matrices, on the other hand, are purely algebraic
objects, and since we have efficient compression algorithms at our disposal, we are able
to approximate the results of complex operations like the matrix-matrix multiplication.
In Chapters 7 and 8, two techniques for performing this fundamental computation are
presented. The first one reaches the optimal order of complexity, but requires a priori
knowledge of the structure of the result. The second one is slightly less efficient, but has
the advantage that it is fully adaptive, i.e., that it is possible to guarantee a prescribed
accuracy of the result.

Inversion and preconditioners

Using the matrix-matrix multiplication algorithms, we can perform more complicated
arithmetic operations like the inversion or the LU factorization. The derivation of the
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corresponding algorithms is straightforward: if we express the result in terms of block
matrices, we see that it can be computed by a sequence of matrix-matrix multiplications.
We replace each of these products by its J2-matrix approximation and combine all of
the #¢2-submatrices to get an F2-matrix approximation of the result (cf. Section 6.7
and Chapter 10).

If we perform all operations with high accuracy, the resulting inverse or factorization
can be used as a direct solver for the original system, although it may require a large
amount of storage. If we use only a low accuracy, we can still expect to get a good
preconditioner which can be used in an efficient iterative or semi-iterative scheme, e.g.,
a conjugate gradient or GMRES method.

1.4 Which problems can be solved efficiently?

In this book, we focus on dense matrices arising from the discretization of integral
equations, especially those connected to solving homogeneous elliptic partial differ-
ential equations with the boundary integral method. For numerical experiments, these
matrices offer the advantage that they are discretizations of a continuous problem,
therefore we have a scale of discretizations of differing resolution at our disposal and
can investigate the behavior of the methods for very large matrices and high condition
numbers. The underlying continuous problem is relatively simple, so we can easily
construct test cases and verify the correctness of an implementation.

We also consider the construction of approximate inverses for the stiffness matrices
arising from finite element discretizations of elliptic partial differential operators. In
the paper [6], it has been proven that these inverses can be approximated by hierarchical
matrices [62], [52], [63], but the proof is based on a global approximation argument that
does not carry over directly to the case of #2-matrices. Chapter 9 uses the localized
approach presented in [15] to construct low-rank approximations of the total cluster
bases, and applying the general results of Chapter 6 and [13] yields the existence of
J¢2-matrix approximations.

J¢2-matrices have also been successfully applied to problems from the field of
electromagnetism [24], heat radiation, and machine learning.

1.5 Organization of the book

In the following, I try to give an overview of the current state of the field of #2-matrices.
The presentation is organized in nine chapters covering basic definitions, algorithms
with corresponding complexity analysis, approximation schemes with corresponding
error analysis, and a number of numerical experiments.



1.5 Organization of the book 7

Chapter 2: Model problem This chapter introduces the basic concepts of F2-
matrices for a one-dimensional model problem. In this simple setting, the construction
of an #2-matrix and the analysis of its complexity and approximation properties is
fairly straightforward.

Chapter 3: Hierarchical matrices This chapter considers the generalization of the
definition of J/2-matrices to the multi-dimensional setting. J2-matrices are defined
based on a block cluster tree describing a partition of the matrix into a hierarchy of
submatrices and cluster bases describing the form of these submatrices. If a number of
relatively general conditions for the block cluster tree and the cluster bases are fulfilled,
itis possible to derive optimal-order estimates for the storage requirements and the time
needed to compute the matrix-vector multiplication

Chapter 4: Integral operators A typical application of J2-matrices is the approxi-
mation of matrices resulting from the finite element (or boundary element) discretiza-
tion of integral operators. This chapter describes simple approximation schemes based
on Taylor expansion and constant-order interpolation, but also more advanced ap-
proaches based on variable-order interpolation. The error of the resulting J¢2-matrices
is estimated by using error bounds for the local approximants of the kernel function.

Chapter 5: Orthogonal cluster bases This chapter describes techniques for finding
the optimal J¢2-matrix approximation of a given arbitrary matrix under the assumption
that a suitable block cluster tree and good cluster bases are already known. If the cluster
bases are orthogonal, the construction of the optimal approximation is straightforward,
therefore this chapter contains two algorithms for converting arbitrary cluster bases into
orthogonal cluster bases: the first algorithm yields an orthogonal cluster basis that is
equivalent to the original one, the second algorithm constructs an approximation of
lower complexity.

Chapter 6: Compression This chapter introduces the fotal cluster bases that allow
us to give an alternative characterization of J#2-matrices and to develop algorithms for
approximating arbitrary matrices. The analysis of these algorithms relies on the results
of Chapter 5 in order to establish quasi-optimal error estimates.

Chapter 7: A priori matrix arithmetic Once a matrix has been approximated by an
J¢2-matrix, the question of solving corresponding systems of linear equations has to
be answered. For dense matrices, the usual solution strategies require factorizations of
the matrix or sometimes even its inverse. Since applying these techniques directly to
J¢2-matrices would be very inefficient, this chapter introduces an alternative: factor-
ization and inversion can be performed using matrix-matrix products, therefore finding
an efficient algorithm for approximating these products is an important step towards
solving linear systems. By using the orthogonal projections introduced in Chapter 5
and preparing suitable quantities in advance, the best approximation of a matrix-matrix
product in a given J¢2-matrix space can be computed very efficiently.
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Chapter 8: A posteriori matrix arithmetic The algorithms introduced in Chapter 7
compute the best approximation of the matrix-matrix product in a given matrix space,
but if this space is not chosen correctly, the resulting error can be quite large. This
chapter describes an alternative algorithm that constructs an J2-matrix approximation
of the matrix-matrix product and chooses the cluster bases in such a way that a given
precision can be guaranteed.

Chapter 9: Elliptic partial differential equations Based on the a posteriori arith-
metic algorithms of Chapter 8, it is possible to compute approximate inverses of J2-
matrices, but it is not clear whether these inverses can be represented efficiently by an
J¢2-matrix. This chapter proves that the inverse of the stiffness matrix of an elliptic
partial differential equation can indeed be approximated well in the compressed format,
and due to the best-approximation property of the compression algorithm, this means
that the computation can be carried out efficiently.

Chapter 10: Applications The final chapter considers a number of practical ap-
plications of #2-matrices. Most of the applications are related to boundary integral
formulations for Laplace’s equation, but there are also some examples related to more
general elliptic partial differential equations.

In some chapters, I have collected technical lemmas in a separate section in the
hope of focusing the attention on the important results, not on often rather technical
proofs of auxiliary statements.



