
Introduction

The theory we describe in this book was developed over a long period, starting about
1965, and always with the aim of developing groupoid methods in homotopy theory
of dimension greater than 1. Algebraic work made substantial progress in the early
1970s, in work with Chris Spencer. A substantial step forward in 1974 by Brown and
Higgins led us over the years into many fruitful areas of homotopy theory and what
is now called ‘higher dimensional algebra’2. We published detailed reports on all we
found as the journey proceeded, but the overall picture of the theory is still not well
known. So the aim of this book is to give a full, connected account of this work in
one place, so that it can be more readily evaluated, used appropriately, and, we hope,
developed.

Structure of the subject

There are several features of the theory and so of our exposition which divert from
standard practice in algebraic topology, but are essential for the full success of our
methods.

Sets of base points: Enter groupoids

The notion of a ‘space with base point’ is standard in algebraic topology and homotopy
theory, but in many situations we are unsure which base point to choose. One example
is if p W Y ! X is a covering map of spaces. Then X may have a chosen base point
x, but it is not clear which base point to choose in the discrete inverse image space
p�1.x/. It makes sense then to take p�1.x/ as a set of base points.

Choosing a set of base points according to the geometry of the situation has the
implication that we deal with fundamental groupoids �1.X;X0/ on a set X0 of base
points rather than with the family of fundamental groups �1.X; x/, x 2 X0. The
intuitive idea is to considerX as a country with railway stations at the points ofX0; we
then want to consider all the journeys between the stations and not just what is usually
called ‘change of base point’, the somewhat bizarre concept of the set of return journeys
from the individual stations, together with ways of moving from a return journey at
one station to a return journey at another.

Sets of base points are used freely in what we call ‘Seifert–van Kampen type situa-
tions’ in [Bro06], when two connected open sets U; V have a disconnected intersection
U \ V . In such case it is sensible to choose a set X0 of base points, say one point in
each component of the intersection.3
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The method is to use a Seifert–van Kampen type theorem to pass from topology
to algebra by determining the fundamental groupoid �1.U [ V;X0/ of a union, and
then to compute a particular fundamental group �1.U [ V; x/ by using what we call
‘combinatorial groupoid methods’, i.e. using graphs and trees in combination with the
groupoid theory. This follows the principle of keeping track of structure for as long as
is reasonable.

Groupoids in 2-dimensional homotopy theory

The successful use of groupoids in 1-dimensional homotopy theory in [Bro68] sugg-
ested the desirability of investigating the use of groupoids in higher homotopy theory.
One aspect was to find a mathematics which allowed ‘algebraic inverse to subdivision’,
in the sense that it could represent multiple compositions as in the following diagram

7! (multcomp)

in a manner analogous to the use of .a1; a2; : : : ; an/ 7! a1a2 : : : an in categories and
groupoids, but in dimension 2. Note that going from right to left in the diagram is
subdivision, a standard technique in mathematics.

Traditional homotopy theory described the family �2.X; x/ of homotopy groups,
consisting of homotopy classes of maps I 2 ! X which take the edges of the square
I 2 to x, but this did not incorporate the groupoid idea, except under ‘change of base
point’.

Also considered were the relative homotopy groups �n.X;A; x/ of a based pair
.X;A; x/ where x 2 A � X . In dimension 2 the picture is as follows, where thick
lines denote constant maps:

1

2

��

��

A

Xx x

x

That is, we have homotopy classes of maps from the square I 2 to X which take the
edge @�

1 to A, and the remaining three edges to the base point.
This definition involves choices, is unsymmetrical with respect to directions, and

so is unaesthetic. The composition in �2.X;A; x/ is the clear horizontal composition,
and does give a group structure, but even large compositions are still 1-dimensional,
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i.e. in a line:

A

In 1974 Brown and Higgins found a new construction, finally published in [BH78a],
which we called �2.X;A;X0/: it involves no such choices, and really does enable
multiple compositions as wished for in Diagram (multcomp). We considered homotopy
classes rel vertices of maps Œ0; 1�2 ! X which map edges to A and vertices to X0:
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��
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X

AX0 X0
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Part of the geometric structure held by this construction is shown in the diagram:

�2.X;A;X0/
����
��
�� �1.A;X0/

���� X0

where the arrows denote boundary maps.
A horizontal composition in �2.X;A;X0/ is given by

hh˛ii C2 hhˇii D hh˛ C2 hC2 ˇii
as shown in the following diagram, where h is a homotopy rel end points inA between
an edge of ˛ and an edge of ˇ, and thick lines show constant paths.

1

2

��

��

˛ h ˇ

The proof that this composition is well defined on homotopy classes is not entirely
trivial and is given in Chapter 6. With a similar vertical composition, we obtain the
structure of double groupoid, which enables multiple compositions as asked for in
Diagram (multcomp).

There is still more structure which can be given to �2, namely that of ‘connections’,
which we describe in the section on cubical sets with connections on p. xxviii.

Crossed modules

A surprise was that the investigation of double groupoids led back to a concept due
to Henry Whitehead when investigating the properties of second relative homotopy
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groups, that of crossed module. Analogous ideas were developed independently by
Peiffer and Reidemeister in [Pei49], [Rei49], the war having led to zero contact be-
tween mathematicians in Germany and the UK4. It is interesting that Peiffer’s paper
was submitted in June, 1944. Work by Brown with C. B. Spencer in 1971–73 led
to the discovery of a close relation between double groupoids and crossed modules.
This, with the construction in the previous section, led to a 2-dimensional Seifert–
van Kampen Theorem, making possible some new computations of nonabelian second
relative homotopy groups which we give in detail in Chapters 4, 5.

A crossed module is a morphism

� W M ! P

of groups together with an action of the group P on the right of the group M , written
.m; p/ 7! mp , satisfying the two rules:

CM1) �.mp/ D p�1.�m/p;

CM2) m�1nm D n�m,

for all p 2 P ,m; n 2M . Algebraic examples of crossed modules include normal sub-
groups M of P ; P -modules; the inner automorphism crossed module M ! AutM ;
and many others. There is the beginnings of a combinatorial, and also a related com-
putational, crossed module theory.

The standard geometric example of crossed module is the boundary morphism of
the second relative homotopy group

@ W �2.X;X1; x/! �1.X1; x/

where X1 is a subspace of the topological space X and x 2 X1.
Our 2-dimensional Seifert–van Kampen Theorem, Theorem 2.3.1, yields computa-

tions of this crossed module in many useful conditions whenX is a union of open sets,
with special cases dealt with in Chapters 4 and 5. These results deal with nonabelian
structures in dimension 2, and so are not available by the more standard methods of
homology and covering spaces.

The traditional focus in homotopy theory has been on the second homotopy group,
sometimes with its structure as a module over the fundamental group. However
Mac Lane and Whitehead showed in [MLW50] that crossed modules model weak
pointed homotopy 2-types; thus the 2-dimensional Seifert–van Kampen Theorem al-
lowed new computations of some homotopy 2-types. It is not always straightforward
to compute the second homotopy group from a description of the 2-type, but this can
be done in some cases.

An aim to compute a second homotopy group is thus reached by computing a larger
structure, the homotopy 2-type. This is not too surprising: a determination of the 2-
type of a union should require information on the 2-types of the pieces and on the way
these fit together. The 2-type also in principle determines the second homotopy group
as a module over the fundamental group.
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For all these reasons, crossed modules are commonly seen as good candidates
for 2-dimensional groups. The algebra of crossed modules and their homotopical
applications are the themes of Part I of this book.

In the proof of the 2-dimensional Seifert–van Kampen Theorem we use double
groupoid structures which are related to crossed modules of groupoids; the latter are
part of the structure of crossed complexes defined later.

Filtered spaces

Once the 2-dimensional theory had been developed it was easy to conjecture, par-
ticularly considering work of J. H. C. Whitehead in [Whi49b], that the theory in all
dimensions should involve filtered spaces, a concept central to this book. An approach
to algebraic topology via filtered spaces is unusual, so it is worth explaining here what
is a filtered space and how this notion fits into algebraic topology.

A filtered space X� is simply a topological space X and a sequence of subspaces:

X� W X0 � X1 � X2 � � � � � Xn � � � � � X1 D X:
A standard example is the filtration of a geometric simplicial complex by its skeleta:
Xn is the union of all the simplices in X of dimension 6 n. More generally, X would
be a CW-complex, the generalisation of the finite cell complexes in [Bro06], and Xn
is the union of all the cells of dimension 6 n. Here XnC1 is obtained from Xn by
attaching cells of dimension nC 1.

There are other simple examples, which are important for us. One is when .X;A; x/
is a pointed pair of spaces, i.e. x 2 A � X , and n > 2. Then we have a filtered space
X
Œn�� in which X Œn�i is fxg for i D 0, A for 0 < i < n and is X for i > n. It may be

asked: why go to this bother? Why not just stick to the pair .X;A; x/? The answer is
that for n > 3 we want to use conditions such as �i .X;A; x/ D 0; 1 < i < n, and to
this end we in some sense ‘climb up’ the above filtration X Œn�� .

Another geometric example of filtered space is when X is a smooth manifold and
f W X ! R is a smooth map. Morse theory shows that f may be deformed into a map
g which induces what is called a handlebody decomposition of X , which is a filtration
ofX in whichXnC1 is obtained fromXn by attaching ‘handles’of type nC1. This area
is explored by methods related to ours in ChapterVI of [Sha93]. A further refinement of
filtered space is the notion of topologically stratified space, which occurs in singularity
theory – see the entry in Wikipedia, for example, and also [Gro97], Section 5, which
is especially interesting for Grothendieck’s comments on the foundations of general
topology. But the methods of this book have not yet been applied in that area.

It is of course standard to consider the simplicial singular complex SX of a topolog-
ical spaceX , to obtain invariants from this, and then ifX has a filtration to make further
developments to get information on the filtered invariants. An example of this kind is
whenX is a CW-complex and we use the skeletal filtration. These ideas were developed
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by Blakers in [Bla48] for relating homology and homotopy groups, following work of
Eilenberg in [Eil44] and Eilenberg–Mac Lane in [EML45b], and are related to the use
of what are commonly called Eilenberg subcomplexes, see for example [Sch91].

In conclusion, we use filtered spaces because with them we can make this theory
work, for understanding and for calculation.

Crossed complexes

Central to our work is the association to any filtered spaceX� of its fundamental crossed
complex …X�. This is defined using the fundamental groupoid �1.X1; X0/ and the
family of relative homotopy groups �n.Xn; Xn�1; x/ for all x 2 X0 and n > 2, and
generalises the crossed module of a pointed pair of spaces.

A crossed complex C over C1, where C1 is a groupoid with object set C0, is a
sequence

: : : �� Cn
ın �� Cn�1

ın�1 �� : : : : : : ı3 �� C2
ı2 �� C1

of morphisms of groupoids over C0 such that for n > 2 Cn is just a family of groups,
abelian if n > 3; C1 operates onCn for n > 2; ın�1ın D 0 for n > 3; and other axioms
hold which we give in full in Section 7.1.iii. The axioms are in fact those universally
satisfied by …X�, as we prove in Corollary 14.5.4.

One crucial point is that ı2 W C2 ! C1 is a crossed module (over the groupoid C1).
The whole structure has analogies to a chain complex with a groupoid of operators; this
analogy is worked out in terms of a pair of adjoint functors in Section 7.4. However in
passing from a crossed complex to its associated chain complex with operators some
structure is lost. Crossed complexes have better realisation properties than these chain
complexes: the crossed module part in dimensions 1 and 2 in crossed complexes allows
the modelling of homotopy 2-types, unlike the chain complexes.

In the case X0 is a singleton, which we call the reduced case, the construction
of …X� is longstanding, but the general case was defined by Brown and Higgins in
[BH81], [BH81a].

Why crossed complexes?

• They generalise groupoids and crossed modules to all dimensions, and the functor…
is classical, involving relative homotopy groups.

• They are good for modelling CW-complexes.
• Free crossed resolutions enable calculations with small CW-models of K.G; 1/s

and their maps (Whitehead, Wall, Baues).
• Crossed complexes give a kind of ‘linear model’of homotopy types which includes

all 2-types. Thus although they are not the most general model by any means (they do no
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contain quadratic information such as Whitehead products), this simplicity makes them
easier to handle and to relate to classical tools. The new methods and results obtained
for crossed complexes can be used as a model for more complicated situations. This
is how a general n-adic Hurewicz Theorem was found in [BL87a], [Bro89].

• They are convenient for some calculations generalising methods of computational
group theory, e.g. trees in Cayley graphs. We explain some results of this kind in
Chapter 10.

• They are close to the traditional chain complexes with a group(oid) of operators,
as shown in MD6) on p. xxxii, and are related to some classical homological algebra
(e.g. identities among relations for groups). Further, if SX is the simplicial singular
complex of a space, with its skeletal filtration, then the crossed complex ….SX/ can
be considered as a slightly noncommutative version of the singular chains of a space.
However crossed complexes have better realisation properties than the related chain
complexes.

• The category of crossed complexes has a monoidal structure suggestive of further
developments (e.g. crossed differential algebras).

• They have a good homotopy theory, with a cylinder object, and homotopy colimits.
There are homotopy classification results (see Equation (MD9)) generalising a classical
theorem of Eilenberg–Mac Lane.

• They have an interesting relation with the Moore complex of simplicial groups
and of simplicial groupoids, [Ash88], [NT89a], [EP97].

• They are useful for calculations in situations where the operations of fundamental
groups are involved. As an example, in Example 12.3.13 we consider the spaces
K D RP 2 � RP 2 and Z, the space RP 3 with higher homotopy groups killed, and
give a part calculation of the based homotopy classes of maps from K ! Z which
induce the morphism .1; 1/ W C2 � C2 ! C2 on fundamental groups. This calculation
uses most of the techniques developed here for crossed complexes.

Higher Homotopy Seifert–van Kampen Theorem

The reason why we deal with the filtered spaces defined in the section on p. xxv of
this Introduction is the following. It is well known that many useful and geometrically
interesting topological spaces are built by processes of gluing, or what we call colimits,
from simpler spaces. Very often these simpler spaces have a natural, perhaps simple,
filtration so that we often get an induced filtration on the colimit. One of our central re-
sults is a Higher Homotopy Seifert–van Kampen Theorem (HHSvKT), which involves
the fundamental crossed complex functor … of previous sections. The theorem shows
that for a filtered space built as a ‘nice’ colimit of so called connected filtered spaces,
not only is the colimit also connected but we can compute the homotopical invariant
… of the colimit as a colimit of the … of the individual pieces from which the colimit
is built, and the morphisms between them.

From this result we deduce, for example:
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(i) the Brouwer Degree Theorem (the n-sphere Sn is .n � 1/-connected and the
homotopy classes of maps of Sn to itself are classified by an integer called the
degree of the map);

(ii) the Relative Hurewicz Theorem, which is seen here as describing the morphism

�n.X;A; x/! �n.X [ CA;CA; x/ ��!Š �n.X [ CA; x/

when .X;A/ is .n�1/-connected, and so does not require the usual involvement
of homology groups;

(iii) Whitehead’s theorem (1949) that �2.X [fe2�g; X; x/ is a free crossed �1.X; x/-
module;

(iv) a generalisation of that theorem to describe the crossed module

�2.X [f CA;X; x/! �1.X; x/

as induced by the morphism f� W �1.A; a/! �1.X; x/ from the identity crossed
module �1.A; a/! �1.A; a/; and

(v) a coproduct description of the crossed module �2.K [ L;M; x/ ! �1.M; x/

when M D K \ L is connected and .K;M/, .L;M/ are 1-connected and
cofibred.

Note that (iii)–(v) are about nonabelian structures in dimensions 1 and 2. Of course
proofs of the Brouwer Degree Theorem and Relative Hurewicz Theorem are standard
in algebraic topology texts, and the theorem of Whitehead on free crossed modules is
sometimes stated, but rarely proved. However it is not so well known that all of (i)–(v)
are applications of colimit results for relative homotopy groups published before 1985.
So one of our aims is to make such colimit arguments more familiar and accessible in
algebraic topology, and so perhaps lead to wider applications.

We explain later other applications of crossed complexes in algebraic topology.
However we are unable to prove our major results in the sole context of crossed comp-
lexes, and have to venture into new structures on cubical sets. The next section begins
the explanation of the background which leads to cubical higher homotopy groupoids.

Cubical sets with connections

An extra structure which we needed for �2.X;A;X0/ in order to express the notion of
cube with commutative boundary was what Chris Spencer and I called connections,
because of a relation with path-connections in differential geometry. The background
is as follows.

Even in ordinary category theory we need the 2-dimensional notion of commutative
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square:

��a

c��

d��

b
��

ab D cd .a D cdb�1 in the groupoid case/:

An easy result is that any composition of commutative squares is commutative. For
example, in ordinary equations:

ab D cd; ef D bg implies aef D abg D cdg:

The commutative squares in a category form a double category, and this fits with
Diagram (multcomp).

What is a commutative cube, or, more precisely, what is a cube with commutative
boundary? Here is a diagram of a 3-cube with labelled and directed edges:

� g ��

��
e

�

h

��

�
u

88::::::: c ��

a

��

�
v

88:::::::

d

��

� ��f �

�
b

��
z

88::::::: �
w

88:::::::

1

2

3

��

��

99;;;;;;

A prospective ‘commutativity formula’ involving just the edges is easy to write down.
However, we want a 2-dimensional notion of the ‘commutativity of the faces’. We
want to say what it means for the faces to commute! We might try to say ‘the top face
is the composite of the other faces’: so fold the other faces flat to give

which makes no sense as a composition! But notice that the two edges adjacent to a
corner ‘hole’ are the same, since we have cut the cube to fold it. So we need canonical
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fillers to express this as in the diagram:

These extra kind of degeneracies were called connections, because of a relation with
path connections in differential geometry, as explained in [BS76a]. They may also be
thought of as ‘turning left or right’. So we can obtain a formula which makes sense for
a particular kind of double groupoid with this extra structure. These connections also
need to satisfy enough axioms to ensure that composites of ‘commutative cubes’ in
any of three directions are also commutative. It turns out that the axioms are sufficient
for this and other purposes, including relating these kinds of double groupoids closely
to a concept well established in the literature, that of crossed module. This led to the
general concept of ‘cubical set with connections’, which is a key to the theory in all
dimensions.

We also need sufficient axioms to be able to prove that any well-defined composition
of commutative cubes is commutative. We give these axioms for this dimension in
Chapter 6. The idea has then to be carried through in all dimensions. This is part of the
work of Chapter 13, and clearly needs new ideas to avoid what might seem impossible
complications. While cubical sets have been used since 1955, the use of cubical sets
with connections and compositions is another departure from tradition.

Why cubical homotopy omega-groupoids with connections?

Standard algebraic topology uses a singular complex SX of a topological space, de-
velops homology, and then if X has a filtration, needs to relate the algebraic topology
ofX to that of the filtered structure. Our approach is to take a singular complex which
depends on the filtration; it is also necessary to work cubically.5

It was easy to conjecture that to generalise the construction �2.X;A;X0/ given
above, we should consider a filtered space X� and the family RnX� of sets of maps
I n ! X which map the r-skeleton of I n into Xr , i.e. the filtered maps I n� ! X�;
and then take homotopy classes of such maps relative to the vertices of I n, giving a
quotient mapp W RX� ! �X�. BothRX� and �X� have easily the structure of cubical
set, using well-known face and degeneracy maps. Cubical theory was initiated by
D. M. Kan in 1955, but was abandoned for the simplicial theory, on which there is now
an enormous literature. Nonetheless, multiple compositions are difficult simplicially,
while the natural context for them is cubical. Such a cubical approach does move away
from standard algebraic topology. Also it was necessary to introduce into the cubical
theory the notion of connections in all dimensions.
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It was not found easy to prove a central feature of our work that the easily defined
multiple compositions in RX� were inherited by �X�. A further difficulty was to
relate the structure held by �X� to the crossed complex …X� traditional in algebraic
topology. These proofs needed new ideas and are stated and proved in Chapter 14.

Here are the basic elements of the construction.
I n� : the n-cube with its skeletal filtration.
Set RnX� D FTop.I n� ; X�/. This is a cubical set with compositions, connections,

and inversions.
For i D 1; : : : ; n there are standard:

face maps @i̇ W RnX� ! Rn�1X�;

degeneracy maps "i W Rn�1X� ! RnX�;

connections �i̇ W Rn�1X� ! RnX�;

compositions a Bi b defined for a; b 2 RnX� such that @C
i a D @�

i b;

inversions �i W Rn ! Rn.

The connections are induced by �i̇ W I n ! I n�1 defined using the monoid struc-
tures max;min W I 2 ! I . They are essential for many reasons, e.g. to discuss the
notion of commutative cube.

These operations have certain algebraic properties which are easily derived from
the geometry and which we do not itemise here – see for example [AABS02]. These
were listed first in the Bangor thesis of Al-Agl [AA89]. (In the paper [BH81] the only
basic connections needed are the �C

i , from which the ��
i are derived using the inverses

of the groupoid structures.)
Here we explain why we need to introduce such new structures.
• The functor � gives a form of higher homotopy groupoid, thus confirming the

visions of topologists of the early 20th century of higher dimensional nonabelian forms
of the fundamental group.

• They are equivalent to crossed complexes, and this equivalence is a kind of cu-
bical and nonabelian form of the Dold–Kan Theorem, relating chain complexes with
simplicial abelian groups.

• They have a clear monoidal closed structure, and notion of homotopy, from which
one can deduce analogous structures on crossed complexes, with detailed formulae,
using the equivalence of categories.

• It is easy to relate the functor � to tensor products, but quite difficult to do this
for ….

• Cubical methods, unlike globular or simplicial methods, allow for a simple alge-
braic inverse to subdivision, involving multiple compositions in many directions, see
p. xxii, and Remarks 6.3.2 and 13.1.11, which are crucial for the proof of our HHSvKT
in Chapter 14; see also the arguments in the proof of say Theorem 6.4.10.

• The additional structure of ‘connections’, and the equivalence with crossed comp-
lexes, allows the notion of thin cube, Section 13.7, which subsumes the idea of comm-
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utative cube, and yields the proof that multiple compositions of thin cubes are thin. This
last fact is another key component of the proof of the HHSvKT, see Theorem 14.2.9.

• The cubical theory gives a construction of a (cubical) classifying space

BC D .BC/1
of a crossed complex C , which generalises (cubical) versions of Eilenberg–Mac Lane
spaces, including the local coefficient case.

• Many papers, including [BJT10], [BP02], [PRP09], [Mal09], [Gou03], [Koc10],
[FMP11], [Živ06], [HW08] show a resurgence of the use of cubes in for example alge-
braicK-theory, algebraic topology, concurrency, differential geometry, combinatorics,
and group theory.

Diagram of the relations between the main structures

The complete and intricate story has its main facts summarised in the following diagram
and comments:

filtered spaces

…

  <<<<<<<<<<<<<<<
�

::===============
C�DrB…

��

filtered
cubical sets

jj��

operator
chain

complexes ‚
�� crossed
complexes

r��

B

;;<<<<<<<<<<<<<<<
� �� cubical

!-groupoids
with connections�

��

j jBU�

<<===============
U�

--

Main Diagram

in which

MD 1) the categories FTop of filtered spaces, Crs of crossed complexes and !-Gpds
of !-groupoids, are monoidal closed, and have a notion of homotopy using˝
and unit interval objects;

MD 2) �, … are homotopical functors (that is they are defined in terms of homotopy
classes of certain maps), and preserve homotopies;

MD 3) �, � are inverse adjoint equivalences of monoidal closed categories, and � is
a kind of ‘nerve’ functor;

MD 4) there is a natural equivalence �� ' …, so that either � or … can be used as
appropriate;

MD 5) � preserves certain colimits and certain tensor products, and hence so also
does …;

MD 6) the category Chn of chain complexes with a groupoid of operators is monoidal
closed, and r is a monoidal functor which has a right adjoint ‚;
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MD 7) by definition, the cubical filtered classifying space is B D j j B U� B � where
U� is the forgetful functor to filtered cubical sets using the filtration of an
!-groupoid by skeleta, and j j is geometric realisation of a cubical set;

MD 8) there is a natural equivalence … BB ' 1;
MD 9) ifC is a crossed complex and its cubical classifying space is defined asBC D

.BC/1, then for a CW-complex X , and using homotopy as in MD1) for
crossed complexes, there is a natural bijection of sets of homotopy classes

ŒX;BC � Š Œ…X�; C �: (MD9)

Structure of the book

Because of the complications set out above in the Main Diagram, and in order to
communicate the basic intuitions, we divide our account into three parts, each with an
introduction giving the chapter structure of that part.

Part I is on the history and proofs of the 1- and 2-dimensional Seifert–van Kampen
Theorems, and the applications of the 2-dimensional theorem to crossed modules of
groups. This part covers the main nonabelian colimit results and is intended to convey
the context and intuitions in a case where one can easily draw pictures.

Part II is on the theory and applications of crossed complexes over groupoids,
using the fundamental crossed complex… of a filtered space, and giving a full account
of applications. The principal tools are: the Higher Homotopy Seifert–van Kampen
Theorem for …; the monoidal closed structure on the category of crossed complexes,
which gives a full context for homotopies and higher homotopies; and the cubical
classifying space of a crossed complex. A recurring theme is the relation of crossed
complexes with chain complexes with a groupoid of operators, which thus relates the
material to more classical considerations. An aim of the theory is Chapter 12, which
deals with cohomology and the homotopy classification of maps, and the relations of
crossed complexes with group and groupoid cohomology.

Part III justifies the theorems on crossed complexes by proving an equivalence
between crossed complexes and cubical!-groupoids, and then proving the main results
in the latter context. These main theorems were essentially, and maybe only have been,
conjectured in the latter context. Thus this part realises the intuitions behind the main
results.

Part III ends with a chapter on ‘Further directions?’ suggesting a number of open
areas and questions.

There are also three Appendices giving accounts of various aspects of category
theory which are helpful for understanding of the topics, and to give wider context.
This account of category theory does not claim to be complete but hopefully gives
a useful and somewhat different emphasis from other texts. There is an extended
account of fibrations and cofibrations of categories, to give background to the general
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use of pushouts and pullbacks, and as more examples of ‘categories for the working
mathematician’, in showing analogies between different areas of mathematics.

Notes

2 p. xxi The paper [Bro87], p. 124, suggested that “n-dimensional phenomena re-
quire for their description n-dimensional algebra”, and this led to the term ‘higher
dimensional algebra’, which widens the term ‘higher dimensional group theory’
used in [Bro82].

3 p. xxi Here we give some history on this theorem. The first result describing the
fundamental group of a union was that of Seifert in [Sei31], for the union of two
connected subcomplexes, with connected intersection, of a simplicial complex.
The next result was that of van Kampen in [Kam33]. He also gives a formula for
the case of nonconnected intersection. His proofs are difficult to follow. Some
further history of the subject is given in [Gra92].

The start of the modern approach is the paper of Crowell [Cro59], based on lectures
of R.H. Fox, which used the term colimit and the proof was by verification of the
universal property. The paper deals with arbitrary unions.

Olum in [Olu58] gave a proof for the case of a union of two sets with connected
intersection using nonabelian cohomology with coefficients in a group, and he also
carefully analyses Seifert–van Kampen’s local conditions. The Mayer–Vietoris
type sequence given by Olum was extended in [Bro65a], so that the fundamental
group of the circle, or a wedge of circles, could be computed.

It was then found that a more powerful result with simpler proof could be obtained
using groupoids, [Bro67]; this gave the fundamental groupoid on a set of base
points for the case of nonconnected intersection of two open sets. This result was
suggested by the use by Higgins in [Hig64] of free product with amalgamation
of groupoids. Thus an aim to compute a fundamental group was reached by first
computing a larger structure, a fundamental groupoid on a set of base points, and
then giving methods of a combinatorial character for computing the group from
the larger structure.

It was also noticed that this possibility ran contrary to the general scope of methods
in homological algebra and algebraic topology, which often used exact sequences
which did not give such complete results, since an invariant relating close dimen-
sions could often be described immediately only up to extension.

A generalisation to unions of families was given in [BRS84]. A general result for
the nonconnected case but still only for groups is in [Wei61], using the notion of
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the nerve of the cover to describe graph theoretic properties of the components of
the intersections of the open sets. A combination of the method of Olum with the
use of groupoids is given in [BHK83].

All these insights have been important for the generalisations to higher dimensions.
Thus we find it convenient to refer to theorems of these types as Seifert–van Kampen
Theorems.

We say more later on other extensions and analogues of the 1-dimensional theorem.

We note that the basic results here are referred to in the literature either as Seifert–
van Kampen Theorems or as van Kampen Theorems.

We feel it is important to recognise the great contribution of Seifert and the Ger-
man school of topology. The classic book, [ST80], first published in 1934, had
an influence well into the 1950s, and is still worth consulting for the geometric
background. It is also worth stating that Seifert was politically in opposition to the
Nazi regime in Germany, and was never officially nominated as a full Professor
at Heidelberg during the Nazi period. He was nominated after the war, and was
then the only scientist at Heidelberg University theAmerican administration would
accept to become the Dean of the newly introduced Faculty of Natural Sciences,
see [Pup99], [Pup97].

4 p. xxiv Reidemeister, like Seifert, was in opposition to the Nazi ideology and lost
his Professorship in Königsberg in 1933, but did, however, become Professor at
Marburg, [Art72], [Seg99]. By contrast, the British topologists M. H.A. Newman,
J. H. C. Whitehead, and S. Wylie were all working at Bletchley Park during the
war, along with many other mathematicians.

5 p. xxx This work progressed in the 1970s when we abandoned the attempt to define
a ‘higher homotopy groupoid’ for a space and instead worked with pairs of spaces
and for higher dimensions with filtered spaces. This enabled us to construct the
cubical homotopy!-groupoid �.X�/which is at the heart of this work. Nowadays
this would be called a ‘strict’!-groupoid. There is a tendency to call the simplicial
complex SX the ‘fundamental1-groupoid’ of the space X , and even to label it
…X , see for example [Lur09]. Our notation …X� is intended to reflect the close
relation to traditional concepts in homotopy theory, the relative homotopy groups.
In a similar manner, the notation…X is used in [BL87] to denote the strict structure
of what is there termed the fundamental catn-group of an n-cube of spaces X.


