I ntroduction to Part |

Part | develops that aspect of nonabelian algebraic topology related to the Seifert—van
Kampen Theorem (SvKT) in dimensions 1 and 2. The surprising fact is that in this part
we are able in this way to obtain in homotopy theory many nonabelian calculations
in dimension 2 which seem unavailable without this theory, and without any of the
standard machinery of algebraic topology, such as simplicial complexes or simplicial
sets, simplicial approximation, chain complexes, or homology theory.

We start in Chapter 1 by giving a historical background, and outline the proof of the
Seifert—van Kampen Theorem in dimension 1. It was an analysis of this proof which
suggested the higher dimensional possibilities.

We then explain in Chapter 2 the functor

I, : (pointed pairs of spaces) — (crossed modules)

interms of second relative homotopy groups, state a 2-dimensional Seifert—-van Kampen
Theorem (2dSvKT) for this, and give applications.

Chapter 3 explains the basic algebra of crossed modules and their relations to other
topics. The more standard structures of abelian groups or modules over a group are
but pale shadows of the structure of a crossed module, as we see over the next two
chapters.

Two important constructions for calculations with crossed modules, are coproducts
of crossed modules on a fixed base group (Chapter 4) and induced crossed modules
(Chapter 5). Both of these chapters of Part | illustrate how some nonabelian calcula-
tions in homotopy theory may be carried out using crossed modules. Induced crossed
modules illustrate well the way in which low dimensional identifications in a space can
influence higher dimensional homotopical information; they also include free crossed
modules, which are important in applications to defining and determining identities
among relations for presentations of groups. This last concept has a relation to the
cohomology theory of groups, which will become clear in Chapters 10 and 12.

Finally in this part, Chapter 6 gives the proof of the Seifert—-van Kampen Theorem
for the functor I1,, a theorem which gives precise situations where I1, preserves
colimits. A major interest here is that this proof requires another structure, namely
that of double groupoid with connection, which we abbreviate to double groupoid. We
therefore construct in a simple way as suggested on p. xxii a functor

p2: (triples of spaces) — (double groupoids),
and show that this is equivalent in a clear sense to a functor

I, : (triples of spaces) — (crossed modules of groupoids),
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which is a natural generalisation of our earlier IT, functor. Here a triple of spaces is
of the form (X, X1, Xy), where Xo C X; € X, and the pointed case is when Xy is a
singleton. In Part | we do not make much use of the many pointed case, but it becomes
crucial in Part I1. This final substantial chapter of Part | thus develops the 2-dimensional
groupoid theory which is then used in the proof of Theorem 6.8.2.

Note that all the results contained in Chapters 2-5 are about crossed modules over
groups, while in Chapter 6 we generalise to crossed modules over groupoids to prove the
2-dimensional Seifert—van Kampen Theorem. The fact that pushouts, and coequalisers,
give the same results in these two contexts follows from the fact that these two types
of colimit are defined by connected diagrams, and then applying Theorem B.1.7 of
Appendix B.

All this theory generalises to higher dimensions, as we show in Parts 1l and IlI,
but the ideas and basic intuitions are more easily explained and pictures drawn in
dimension 2.



