
Introduction

Supersymmetry (SUSY) is the machinery mathematicians and physicists have devel-
oped to treat two types of elementary particles, bosons and fermions, on the same
footing. Supergeometry is the geometric basis for supersymmetry; it was first dis-
covered and studied by physicists, Wess and Zumino [80], Salam and Strathdee [65]
(among others), in the early 1970s. Today supergeometry plays an important role in
high energy physics. The objects in super geometry generalize the concept of smooth
manifolds and algebraic schemes to include anticommuting coordinates. As a result,
we employ the techniques from algebraic geometry to study such objects, namely
A. Grothendieck’s theory of schemes.

Fermions include all of the material world; they are the building blocks of atoms.
Fermions do not like each other. This is in essence the Pauli exclusion principle which
states that two electrons cannot occupy the same quantum mechanical state at the same
time. Bosons, on the other hand, can occupy the same state at the same time.

Instead of looking at equations that simply describe either bosons or fermions sep-
arately, supersymmetry seeks out a description of both simultaneously. Transitions
between fermions and bosons require that we allow transformations between the com-
muting and anticommuting coordinates. Such transitions are called supersymmetries.

In classical Minkowski space, physicists classify elementary particles by their mass
and spin. Einstein’s special theory of relativity requires that physical theories must be
invariant under the Poincaré group. Since observable operators (e.g. Hamiltonians)
must commute with this action, the classification corresponds to finding unitary repre-
sentations of the Poincaré group. In the SUSY world, this means that mathematicians
are interested in unitary representations of the super Poincaré group. A “super” rep-
resentation gives a “multiplet” of ordinary particles which include both fermions and
bosons.

Up to this point, there have been no colliders that can produce the energy required
to physically expose supersymmetry. However, the Large Hadron Collider (LHC)
in CERN (Geneva, Switzerland) became operational in 2007. Physicists are plan-
ning proton–proton and proton–antiproton collisions which will produce energies high
enough where it is believed supersymmetry can be seen. Such a discovery will solidify
supersymmetry as the most viable path to a unified theory of all known forces. Even
before the boson–fermion symmetry which SUSY presupposes is proved to be physical
fact, the mathematics behind the theory is quite remarkable. The concept that space is
an object built out of local pieces with specific local descriptions has evolved through
many centuries of mathematical thought. Euclidean and non-Euclidean geometry, Rie-
mann surfaces, differentiable manifolds, complex manifolds, algebraic varieties, and
so on represent various stages of this concept. In Alexander Grothendieck’s theory of
schemes, we find a single structure that encompasses all previous ideas of space. How-
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ever, the fact that conventional descriptions of space will fail at very small distances
(Planck length) has been the driving force behind the discoveries of unconventional
models of space that are rich enough to portray the quantum fluctuations of space at
these unimaginably small distances. Supergeometry is perhaps the most highly de-
veloped of these theories; it provides a surprising application and continuation of the
Grothendieck theory and opens up large vistas. One should not think of it as a mere
generalization of classical geometry, but as a deep continuation of the idea of space
and its geometric structure.

Out of the first supergeometric objects constructed by the pioneering physicists
came mathematical models of superanalysis and supermanifolds independently by
F.A. Berezin [10], B. Kostant [49], D.A. Leites [53], and De Witt [25]. The idea
to treat a supermanifold as a ringed space with a sheaf of Z=2Z-graded algebras was
introduced in these early works. Later, Bernstein [22] and Leites [53] used techniques
from algebraic geometry to deepen the study of supersymmetry. In particular, Bern-
stein and Leites accented the functor of points approach from Grothendieck’s theory
of schemes. Interest in SUSY has grown in the past decade, and most recently works
by V. S. Varadarajan [76] and others have continued exploration of this beautiful area
of physics and mathematics and have inspired this work. Given the interest and the
number of people who have contributed greatly to this field from various perspectives,
it is impossible to give a fair and accurate account of all the works related to ours. We
have nevertheless made an attempt and have provided bibliographical references at the
end of each chapter, pointing out the main papers that have inspired our work. We
apologize for any involuntary omissions.

In our exposition of mathematical SUSY, we use the language of T -points to build
supermanifolds up from their foundations in Z=2Z-graded linear algebra (superalge-
bra). The following is a brief description of our work.

In Chapter 1 we begin by studying Z=2Z-graded linear objects. We define super
vector spaces and superalgebras, then generalize some classical results and ideas from
linear algebra to the super setting. For example, we define a super Lie algebra, discuss
supermatrices, and formulate the super trace and determinant (the Berezinian). We
also discuss the Poincaré–Birkhoff–Witt theorem in full detail.

In Chapter 2 we provide a brief account of classical sheaf theory with a section
dedicated to schemes. This is meant to be an introductory chapter on this subject and
the advanced reader may very well skip it.

In Chapter 3 we introduce the most basic geometric structure: a superspace. We
present some general properties of superspaces which lead into two key examples of
superspaces, supermanifolds and superschemes. Here we also introduce the notion of
T -points which allows us to treat our geometric objects as functors; it is a fundamental
tool to gain geometric intuition in supergeometry.

Chapters 4–9 lay down the full foundations of C1-supermanifolds over R. In
Chapter 4, we give a complete proof of foundational results like the chart theorem
and the correspondence between morphisms of supermanifolds and morphisms of the
superalgebras of their global sections. In Chapter 5 we discuss the local structure
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of morphisms proving the analog of the inverse function, submersion and immersion
theorems. In Chapter 6 we prove the local and global Frobenius theorem on super-
manifolds. In Chapters 7 and 8 we give special attention to super Lie groups and their
associated Lie algebras, as well as look at how group actions translate infinitesimally.
We then use infinitesimal actions and their characterizations to build the super Lie sub-
group, subalgebra correspondence. Finally in Chapter 9 we discuss quotients of Lie
supergroups.

Chapters 10, 11 expand upon the notion of a superscheme which we introduce
in Chapter 3. We immediately adopt the language of T -points and give criteria for
representability: in supersymmetry it is often most convenient to describe an ob-
ject functorially, and then show that it is representable. We explicitly construct the
Grassmannian functorially, then use the representability criterion to show that it is a
superscheme. Chapter 10 concludes with an examination of the infinitesimal theory of
superschemes.

We continue this exploration in Chapter 11 from the point of view of algebraic
supergroups and their Lie algebras. We discuss the linear representations of affine
algebraic supergroups; in particular we show that all affine supergroups are realized as
subgroups of the general linear supergroup.

We have made an effort to make this work self-contained and suggest that the reader
begins with Chapters 1–3, but Chapters 4–9 and Chapters 10–11 are somewhat disjoint
and may be read independently.


