1 Introduction

This research monograph is intended as an introduction to, and exposition of, some
of the phenomena that solutions of nonlinear dispersive focusing equations exhibit
at energy levels strictly above that of the ground state soliton. It grew out of lec-
tures that the authors have given on various aspects of their work on focusing wave
equations. In particular, it is a much expanded version of the second author’s post-
graduate course (Nachdiplomvorlesung), which he taught in the fall of 2010 at ETH
Ziirich, Switzerland.

The equations which we consider in these lectures are Hamiltonian, but not com-
pletely integrable, and they all exhibit soliton-like (i.e., stationary or periodic) solu-
tions which are unstable. Amongst those the ground state is singled out as the one
of smallest energy. The aforementioned phenomena concern the transition from a
region of phase space in which solutions exist globally in forward time and scatter
to a free wave, to one where they blow up in finite positive time. We can describe
this transition in some detail provided the energy is only slightly larger than that of
the ground state. In fact, the boundary along which these open regions meet can be
identified as a center-stable manifold associated with the ground state.

To be more specific, consider an energy subcritical Klein—-Gordon equation

i—Au+u= f(u) (1.1)

inIR; x ng with real-valued solutions. More generally, the mass term should be m?u
with m > 0, but we can set m = 1 without loss of generality. This equation should
be thought of as perhaps the simplest model equation which exhibits the phenomena
which we wish to describe here, but it should not be mistaken as the central object of
our investigations. We begin with a fairly general discussion of (1.1). It is invariant
under the full Poincaré group, i.e., under the group generated by spatial as well as
temporal translations, Euclidean rotations, and Lorentz transforms. The latter are
defined as the group that leave the quadratic form 2 — |£|2 in R+ invariant (the
Minkowski metric).

Moreover, (1.1) is both Lagrangian as well as Hamiltonian in the following
sense: at least formally, solutions to this equation are characterized as critical point
of the Lagrangian, with F' = f,

L(u, i) = / [— Loy Lvup s Lo F(u)](t,x) didx .
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This can be seen by integrating by parts in the integral representing £’(1) = 0. The
Lagrangian point of view is important with respect to conservation laws generated
by one-parameter subgroups of symmetries of £ (Noether’s theorem). For example,
time translation invariance leads to the conservation of the energy

Y S U IR
E(u,u)—/Rd [Eu +§|Vu| —I—Eu —F(u)](t,x)dx

invariance under spatial translations yields the conservation of the momentum
P(u) = (u|Vu). Euclidean rotations are associated with the conservation of the
angular momentum.

The aforementioned energy subcriticality assumption which we made on (1.1)
now means the following: the nonlinear term F (u (t)) is strictly weaker than the
H' part of the energy, as expressed by the Sobolev estimate. To be more specific,
consider f(u) = Alu|?~'u in R3. Then p < 5 is subcritical, whereas p = 5 is
critical and p > 5 is supercritical due to the Sobolev embedding H ! (R3) ¢ LO(R3).
We shall not touch the supercritical case here at all. Even though it may seem most
desirable to restrict one’s attention to classical, i.e., smooth, solutions of (1.1) this
is not the case; the best notion of solution for many different reasons turns out to
be that of an energy solution which is a solution which belongs to H' x L? for all
times.

To express (1.1) in Hamiltonian form, we write it as a first order system, with
dependent variable U := (%):

u

U=JHU + NU)

0 1 -A+1 0 0
=8 ) m=( ). N(U):(f(u))'

For simplicity, let / = 0. Then energy conservation simply means that % (HU|U)
= 0. The symplectic form associated with (1.1) can be now seen to be

where

mam:pmﬂ:éxmm—mmumm

There are two main classes dividing equations of the form (1.1): the defocusing
equations on the one hand, and the focusing ones on the other hand.

Loosely speaking, this division can be expressed along the lines of the global-
in-time existence problem for (1.1) for smooth, compactly supported data, say. De-
focusing equations admit smooth solutions for all data and all times, whereas the
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focusing ones may exhibit finite time blowup for certain data (such as those of nega-
tive energies). To be more specific, consider monic nonlinearities f(u) = A|u|?~'u
in arbitrary dimensions. Then A > 0 represents the focusing case, and A < 0 the
defocusing one. Note that this corresponds exactly to the distinction of the energy
E (1) being indefinite vs. positive definite, respectively.

Only the focusing case will be relevant to this monograph. Of central importance
to the theory of the focusing nonlinear Klein—Gordon (NLKG) equation (1.1) is the
fact that they admit nonzero time-independent solutions ¢. Any weak H! solution
of the semilinear elliptic PDE

—Ap +9 = f(p) (1.2)

is such a solution. Letting the Poincaré symmetries act on ¢ generates a manifold of
moving solutions of the following form: first, define for any (p, ¢) € R4

Q(p.9)(x) = Q(x —q + p((p) = DIp|?p - (x = q)).
where (p) := /1 + | p|?. The traveling waves generated from ¢ are defined as

P
(p)’

with fixed momentum p and velocity %. They are solutions of (1.1). Note that
|g(#)] < 1 in agreement with the fact that the speed of light which is normalized to
equal 1, acts as a barrier.

Amongst all solutions of (1.2) one singles out a positive decaying one, called
the ground state which we denote by Q. It is known to be unique up to translations
for many different nonlinearities f(u), and it is radial. Q is characterized as the
minimizer of the stationary energy (or action)

u(t) = £p(p.qt)), peR? 4(t)=

Iy i= [ [3196F + 30 - F@)]

subject to the constraint, with ¢ # 0,

Ko(@) = [ [V +¢* = flphp]dx =0 (13
R
It follows that the regions

Sy = {(u.u) | Eu,u) < J(Q). Ko(u) = 0},

. . (L.4)
S = {(u.u) | E(u.u1) < J(Q), Ko(u) <0}
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are invariant under the nonlinear flow in the phase space H' x L? where E (u, 1) is
the conserved energy for (1.1). It is a classical result of Payne and Sattinger [114]
that solutions in ®8 are global, whereas those in ®S_ blow up in finite time;
these results apply to both time directions, i.e., blowup occurs for both positive and
negative times simultaneously, and the same is true of global existence. In partic-
ular, the stationary solution Q is unstable, see also Shatah [125] and Berestycki,
Cazenave [11]. Scattering in ®S_ was only recently shown by Ibrahim, Masmoudi,
and the first author [77] using the concentration-compactness proof method of Kenig
and Merle [84]. We present these results below the energy threshold J(Q) in Chap-
ter 2.
Starting with Chapter 3 we study solutions whose energies satisfy

J(Q) < E(u,u) < J(Q) + &2 (1.5)

for some small ¢ > 0 and the special nonlinearity (1) = u> (although this is out of
convenience rather than necessity). It is here that one encounters the aforementioned
center-stable manifolds that appear as boundaries of open blowup/global existence
regions.

Center/stable/unstable manifolds are well-established objects which arise in
the study of the asymptotic behavior of ODEs in R”, see for example Carr [25],
Hirsch, Pugh, Shub [72], as well as Guckenheimer, Holmes [68], and Vander-
bauwhede [138].

Let us recall the meaning of these manifolds: given an ODE in R”, x = f(x)
with f(0) = 0, and f smooth, let A = Df(0). Then split R* = X,, + X; + X,
as a direct sum into A-invariant subspaces such that all eigenvalues of A | X,, lie in
the right half-plane, those of A | X; lie in the left half-plane, and the eigenvalues
of A | X, are all purely imaginary. An example of such a situation is given by the
7 x 7 matrix

(1.6)
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The eigenvalues are {0, 1, —1,i,—i}, and X,, is spanned by the first two coordinate
directions, X by the third, and the center subspace by the final four. Note that
X, splits into a rotation in the fourth and fifth variables, but has linear growth on
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the subspace spanned by variables six and seven. By the center-manifold theorem,
see [25], [68], [138], there exist smooth manifolds My, Mg, M, locally around zero
which are tangent to X,,, X, X,, respectively, at x = 0, and which are transverse to
each other. Moreover, M,,, Mg, M, are each locally invariant under the flow (mean-
ing that a trajectory starting on any of these, say M, remains on M, as long as the
trajectory itself remains in a small neighborhood of the equilibrium point). A man-
ifold M,s which is tangent to X + X, at x = 0, of the same dimension as this
tangent space, and is locally invariant under the flow is referred to as center-stable.
On Mg, M, the solution to X = f(x) decreases exponentially fast as ¢ — oo or
t — —oo, respectively (in fact, they are characterized by this property). But on
M., the behavior can be quite complicated and that manifold is not characterized by
growth conditions.

Such a decomposition is relevant for several reasons. On the one hand, it reduces
the dynamics in the state space to lower-dimensional subspaces which is often the
only way to obtain any understanding of the flow. On the other hand, it is most
relevant for bifurcation theory of ODEs which refers to situations where the vector
field f(x) depends on a parameter u, see Guckenheimer, Holmes [68].

In the context of (1.1) and related Hamiltonian PDEs such as the cubic focus-
ing nonlinear Schrodinger equation (NLS), a center-stable manifold arose in [122]
from the attempt of obtaining a conditional asymptotic stability result for an unsta-
ble equation. More precisely, the second author obtained — for the cubic focusing
NLS in R3, and in a small neighborhood of the ground state soliton — a codimension
one manifold with the property that any solution starting from that manifold exists
globally and scatters to a (modulated) ground state soliton. The drawback of [122]
lay with the topology which is not invariant under the NLS flow. But Beceanu [9]
later carried out the construction in the optimal topology introducing several novel
ideas, such as Strichartz estimates for linear evolution equations with small time-
dependent but space-independent lower order terms. This allowed him not only to
obtain a similar conditional asymptotic stability result as the one in [122] (but of
course without any pointwise control on the rate of convergence of various param-
eters, which requires a stronger topology), but also to verify the properties usually
associated with the center-stable manifold such as invariance locally in time (in fact,
globally in forward time, and locally in backward time).

The method of proof in [122], [9] is perturbative, and is restricted to a small
neighborhood of the ground states. This work left open the question as to what
happens near the ground state soliton, but off the center-stable manifold. This is
one of the problems we wish to address in this monograph. While there has been
some heuristic and numerical work in the physics literature, see Bizon et al. [15],
[16] and Choptuik [30], the first rigorous results on this problem were obtained in
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[871, [88], [109]-[111]. As an example, consider the one-dimensional Klein—Gordon
equation
Upr — Uy + 1 = [u|P 1 (1.7)

with p > 5. It is well-known that for this equation the solitons are given by the
explicit expressions

1\ =1 -1
O(x) = acosh_%(ﬁx), a = (i)p " B = Loy
2 2
In contrast to the nonlinear Schrédinger equation, one of the advantages of (1.7) lies
with the fact that under an even perturbation Q0 does not change; in other words, it
is not modulated. In fact, the following result was obtained in [88].

Theorem 1.1. Let p > 5. There exists € > 0 such that any even real-valued data
(uo,u1) € HY(R) x L2(R) with energy

E(u,1) < E(Q,0) + &2 (1.8)

have the property that the solutions u(t) of (1.7) associated with these data exhibit

exactly one scenario of the following trichotomy:

o u blows up in finite positive time

o u exists globally and scatters to zero as t — o0

o u exists globally and scatters to Q, i.e., there exists a free Klein—-Gordon wave
(v(t).9(t)) € H' x L? with the property that

(u(). () = (Q.0) + (v(2). 5(1)) + on(1). 1 — ox.

In addition, the set of even data as above splits into nine nonempty disjoint sets
corresponding to all possible combinations of this trichotomy in both forward and
negative times.

All solutions which fall under the third alternative form the center-stable man-
ifold. One can show that this is a C! (or better) manifold of codimension 1 which
passes through (Q, 0) and lies in the set described by (1.8). Figure 1.1 illustrates
Theorem 1.1 for data that start off near the ground-state solution (Q,0). The third
region is the center-stable manifold. The figure on the cover illustrates the nine sets
alluded to in the final statement of the theorem.

Moreover, we obtain the following characterization of the threshold solutions,
i.e., those with energies E(1i) = E(Q,0). Results of this type originate with the
seminal work of Duyckaerts and Merle [48].
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Figure 1.1. The forward trichotomy near (Q, 0)

Corollary 1.2. The even solutions to (1.7) with energy E(1) = E(Q,0) are char-
acterized by exactly one of the following scenarios, each of which can occur:

they blow up in both the positive and negative time directions

they exist globally on R and scatter ast — F00

they are constant and equal £ Q

they equal one of the following solutions, for some ty € R:

o

o O O

oW4(t +to,x), oW_(t +to,x), oWi(—t+1to,x), oW_(—t+ty,x)

where (Wx(t,-), 9; Wi(t,-)) approach (Q,0) exponentially fast in ¥ as t — oo,
and o = %1. In backward time, Wy scatters to zero, whereas W_ blows up in
finite time.

As usual, the images of W1 and Q form the one-dimensional stable manifold as-
sociated with (@, 0). The unstable manifold is obtained by time-reversal. The goal
of these lectures is to prove results such as Theorem 1.1 and Corollary 1.2. More
precisely, in Chapters 2—5 we restrict ourselves to the radial cubic NLKG equation
in R3 and systematically develop the machinery leading to results analogous to The-
orem 1.1 and Corollary 1.2 above.

Loosely speaking, the argument relies on an interplay between the hyperbolic
dynamics near the ground states on the one hand, and a variational analysis away
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from them on the other hand. While the former here means linearizing around the
ground states and then performing the necessary perturbative analysis locally around
the ground states, the latter refers to a type of global argument that is not at all based
on linearization. More precisely, we shall use the virial identity valid for any energy
solution of (1.1),

d 1
E<wu | E(x V+V. x)u> = —K5(u) + error (1.9)
where K>(u) = [|Vulj5 — %||u||i. The cut-off function w here is chosen in such

a way that the error remains small, cf. Figure 4.6 on page 165. From variational
considerations we shall be able to conclude that K, (u) has a definite sign away from
a neighborhood of +Q, and by integration of (1.9) we will obtain the important
no-return (or “one-pass”) theorem, see Chapter 4. This guarantees that solutions
which are not trapped by =0 can only make one pass near the ground states which
then implies that the signs of Ko(u), K»(u) stabilize. The latter then allows one
to conclude finite time blowup or global existence in the same way as Payne and
Sattinger [114], at least for those solutions which are not trapped by the ground
states. Those that are trapped are then shown to lie on the center-stable manifold
whence the third alternative in Theorem 1.1.

Since very little is known about solutions in the regime E (u,11) > J(Q) + &2, it
seems natural to turn to numerical investigations in order to obtain some idea of the
nature of the blowup/global existence dichotomy. Roland Donninger and the sec-
ond author have conducted such computer experiments at the University of Chicago,
see [45]. This work consists of numerical computations of radial solutions to (1.1)
with f(u) = u> whose data belong to a two-dimensional surface (such as a planar
rectangle) in the infinite dimensional phase space ¥ := H' x L? (of course the
data are chosen to belong to a fine rectangular grid on that surface). Each solution
is then evaluated with regard to blowup/global existence and a dot is placed on the
data rectangle if global existence is observed, whereas the dot is left blank otherwise.
Figure 1.2 below shows the outcome of such a computation for the data choice

((0),14(0))(r) = (Q(r) + Ae™"", Be™"”)

with the horizontal axis being A4, and the vertical being B. The central region, from
which thin spikes emanate, is the set of data leading to global existence. The drop-
shaped region contained inside of it is the set ® 8, see (1.4), whereas both the region
to the far right (which meets S at a cusp centered at (@, 0) which corresponds to
A = B = 0) as well as the region on the far left are ®S_. The region which appears
blank is the one giving finite time blowup (at least numerically), and it contains ®S_
as a subset.
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We refer the reader to [45] for a discussion of the numerical methods, as well as
more results and figures. The appearance of the two Payne—Sattinger regions near
the point (0, 0) is reminiscent of the set £2 — n?> < 0. This is due to the fact that
the energy near Q) takes the form of a saddle surface, which in turn follows from
the existence of negative spectrum of the linearized operator L1 = —A + 1 — 30?2,
see Section 3.1. In fact, there is a codimension-1 plane around (Q, 0) in ¥ such that
locally around that point the energy is positive definite on this plane, whereas it is
indefinite on the whole space. An important feature of the central global existence
region in Figure 1.2 is the appearance of the boundary: it seems to be a smooth curve.
In fact, we will prove in Chapter 3 that near (Q,0) in ¥ the boundary is indeed a
smooth codimension 1 manifold Tl with the property that solutions with data on that
manifold are global and scatter to Q as ¢ — 0o. In dynamical terms this manifold
is precisely the center-stable one, which contains the 1-dimensional stable manifold.
Furthermore, M is transverse to the 1-dimensional unstable manifold. The latter
manifold is characterized by the property that all solutions starting on it converge to
(Q,0) as t — —oo; in fact, this convergence is exponential. Moreover, in positive
times solutions on the unique unstable manifold grow exponentially up until the time
at which they leave a small neighborhood of the equilibrium (Q, 0).

Figure 1.2. Numerically computed planar section through (Q, 0)
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In their ongoing numerical investigations, Donninger and the second author have
found that the boundary of the forward scattering region, i.e., of

St = {(u (0), 12(0)) | u exists for all positive times and scatters to zero}

is more complicated than one might expect; more specifically, numerical experi-
ments suggest that the boundary can display features atypical of a smooth manifold,
such as many thin filaments which emerge from it, see [45] for a precise descrip-
tion of this phenomenon. However, the numerics in and of itself does not provide
any conclusive evidence at this point that could indicate that the boundary is not a
smooth manifold.

The results in this book are based on the following papers: in [109], [111] the
authors studied the radial as well as nonradial nonlinear cubic Klein—-Gordon equa-
tion in R3, and in [110] they treated the radial nonlinear focusing cubic Schrodinger
equation in R3. The so-called graph transform (also known as Hadamard’s method)
is adapted to the nonradial NLKG equation in [112] in order to construct invariant
manifolds. The point of [112] is to be able to separate the issue of the construction
of the invariant manifolds from that of establishing asymptotic properties of those
solutions which start on the center-stable manifold. While relatively “soft” spectral
information suffices for the former, the latter — at least with current technology —
depends on “hard” information such as determining the spectrum in the gap of the
linearized operator and understanding the resolvent at the threshold, i.e., the edge of
the continuous spectrum.

To be specific, the graph transform on which [112] is based requires no knowl-
edge of the spectrum of linearized operator in the gap, whereas the Lyapunov—Perron
method in the implementation of [109], [111] does demand such spectral informa-
tion. On the other hand, the graph transform does not allow any conclusions about
the asymptotic stability properties for solutions belonging to the center-stable man-
ifold. See Chapter 3 for a discussion of both methods. The energy critical wave
equation in R3 and R> was studied in [87] by J. Krieger and the authors, whereas
the one-dimensional nonlinear Klein—-Gordon equation was treated by these same
authors in [88].

The book is organized as follows. Chapters 2 through 5 are largely devoted to the
cubic focusing Klein—-Gordon equation in R3, mostly under a radial assumption (one
exception being the nonradial scattering result from [77] which applies to energies
below that of the ground state). The NLS equation appears in Chapter 3 where we
establish the existence of center-stable manifolds for the cubic equation in R3. The
cubic NLKG equation in three dimensions turns out to be particularly well-suited for
the development of the new results above the ground state energy, since it exhibits
both finite propagation speed as well as a lack of symmetries (due to the mass term),
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at least in the radial context. The latter is convenient as it implies that stationary
solutions remain static and unchanged under small perturbations (more technically
speaking, one does not need any modulation parameters).

In Chapter 2, we review the basics of the theory, including local and global
well-posedness of the equation, as well as the Payne—Sattinger results characteriz-
ing global existence/finite time blowup below the ground state energy. Most of the
effort goes into an exposition of the scattering results from [77], which rely on the
Kenig—Merle method [84] and the concentration-compactness decomposition as in
Bahouri, Gérard [4], and Merle, Vega [105]. The origins of this decomposition go
back to the ideas introduced by Lions [98] in the elliptic context, but the adaptation
to Hamiltonian evolution equations is highly nontrivial.

For pedagogical reasons, we split the scattering proof into the radial and non-
radial cases, respectively, with the former of course being simpler. Due to the sub-
criticality of the problem, the Kenig—Merle method is easier to implement for the
cubic NLKG equation than for the critical wave equation as considered in [84]. In
order to keep our presentation largely self-contained, Chapter 2 concludes with a
presentation of the Strichartz estimates for Klein-Gordon equations.

Chapter 3 initiates the discussion of the dynamics for energies which are slightly
larger than the ground state energy. More specifically, we first introduce the concept
of stable/unstable/center manifolds by means of the work of Bates and Jones [6],
followed by a discussion of the work by the second author [122], and Beceanu [9]
on the (cubic) NLKG and NLS equations. We also review some of the linear
dispersive theory needed in that context. Technically speaking, [6] adapts the
Hadamard method (of invariant cones) to the context of ODEs in Banach spaces,
which is then applied to the NLKG equation. On the other hand, [122], as well
as [9], [87], [90], [91], [109]-[111] use the Lyapunov—Perron method which allows
for a detailed description of the asymptotic dynamics of solutions starting from the
center-stable manifold. The “cost” of this lies with Strichartz estimates for the lin-
earized operator which in turn rely on a careful spectral analysis of that operator.
While the Hadamard method yields less information, it also requires much less in-
formation on the linearized evolution. We wish to emphasize, though, that any so-
phisticated spectral information such as the gap property studied in [41] is needed
only for the scattering property of solutions lying in the center-stable manifold but
not for the construction of the invariant manifolds themselves. See [112] for more
on this matter.

In Chapter 4 we present the core of the method developed in [109]. Loosely
speaking, one combines the unstable hyperbolic dynamics near the ground states
with the variational structure of the stationary energy functional J, as well as of
functionals derived from J via the action of symmetries on the equation (for exam-
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ple, the Payne—Sattinger functional Ky or the virial functional K,, see above). Of
particular importance in Chapter 4 is the one-pass theorem which says that there do
not exist almost homoclinic orbits connecting {(+ Q, 0)} with itself (more precisely,
connecting small balls around (£ Q, 0)).

The analysis of Chapters 3 and 4 then leads to a description of the global dynam-
ics analogous to Theorem 1.1 above. This is carried out in Chapter 5, which ends
with a summary of the methods developed here. In particular, we obtain the 9-set
theorem for the cubic NLKG equation in R®. We again use the Kenig—Merle method
to prove scattering to zero, but the execution of this method relies crucially on the
aforementioned one-pass theorem.

The final Chapter 6 presents other results which are accessible (but with con-
siderable additional work in most cases) to the ideas set forth in this book. More
specifically, we consider the nonradial form of (1.1), the one-dimensional NLKG
with even data, the cubic radial NLS equation in R3, and finally the energy criti-
cal wave equation in dimensions 3 and 5. In the critical case, our results are less
complete than they are in the subcritical case. In contrast to the previous chapters,
the final one is purely expository and presents only select details. It is meant as an
introduction to the original research presented in [87], [88], [110], [111].

There are several exercises throughout the text, most of which appear in Chap-
ters 2 and 3. The starred ones are somewhat more involved. Some exercises ask
the reader to supply technical details that were omitted from an argument. Those
exercises should be considered part of the main body of the text. Exercises marked
with a dagger 1 go beyond the core material, and are thus not needed in order to
follow the proofs. For the most part, those exercises tend to be quite involved as
well.

The questions and problems addressed in this monograph can be seen from sev-
eral perspectives: (i) On the one hand, we consider dispersive Hamiltonian equa-
tions which in and of themselves constitute a vast and rapidly developing field. As
far as the defocusing case is concerned, the energy subcritical as well as the en-
ergy critical equations have been studied extensively for both wave and Schrodinger
equations. The earliest treatment of the global existence problem for semilinear
wave equation with smooth solutions was conducted by Jorgens [80] for subcriti-
cal defocusing nonlinearities in R3, and the global problem for the critical case (>
nonlinearity in R3) was solved by Struwe [134] radially, and Grillakis [65] nonradi-
ally. The corresponding problem for the critical nonlinear Schrédinger equation in
R3 was settled by Bourgain [19] radially (see also Grillakis [66]), and Colliander,
Keel, Staffilani, Takaoka, Tao [37] nonradially. For more on defocusing equations,
see the monographs by Bourgain [18] and Tao [136]. An alternative as well as very
general approach to global existence problems was found recently by Kenig and
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Merle [84]. It applies to both defocusing (see [86]) as well as focusing equations,
but for the latter [84] only allows energies strictly below the ground state energy.
In fact, this entire monograph is devoted to the question of what happens at ener-
gies equal to or larger than the ground state energy. On the other hand, Duyck-
aerts and Merle [48] carried out a comprehensive analysis of the threshold behavior,
i.e., at energies equal to that of the ground states for both the energy critical NLS
and nonlinear wave equations. It turns out that the special threshold solutions Wy
which they found in this context are of a universal nature; for example, Duyck-
aerts and Roudenko [49] established their existence for the cubic (and thus energy
subcritical) NLS in R3. Furthermore, in this text we shall identify them as one-
dimensional stable and unstable manifolds, respectively, associated with the ground
states.

Even though the literature on focusing equations is generally speaking more
sparse than for the defocusing ones, certain classes of equations have been stud-
ied in great detail. Especially for the L2-critical focusing NLS equation substan-
tial progress has been made on the very delicate blowup phenomena exhibited at
and near the ground state. The L? critical equation is special due to its invari-
ance under the pseudo-conformal transformation, see for example [27]. Applying
this class of transformations to the ground state Q gives rise to a solution blowing
up in finite time, and it is unique with this property at exactly the mass of Q, see
Merle [101]. Very recently Merle, Raphaél, and Szeftel [104] proved that these solu-
tions are unstable. Prior to that, and more in the spirit of the present work, Bourgain
and Wang [20] studied the conditional stability of the pseudo-conformal blowup on
a submanifold of large codimension, and Krieger and the second author [89] estab-
lished the existence of a codimension 1 submanifold (albeit with no regularity and in
a strong topology) for which these solutions are preserved. The conjecture that the
pseudo-conformal should be stable under a codimension 1 condition is due to Galina
Perelman [116].

A sweeping analysis of the stable blowup regime near the ground state for the
L?-critical case was carried out by Merle and Raphaél [102] in a series of works,
preceded by [116] which established the existence of the so-called loglog blowup
regime. In [103] Merle, Raphaél and Szeftel were able to transfer some of the tech-
niques from the critical equation to the slightly L2-supercritical one and established
stable blowup dynamics near the ground state. The LZ2-critical instability of the
ground state is algebraic in nature rather than exponential, and thus very far from
the considerations in this paper. We emphasize that the hyperbolic dynamics is an
essential feature of the theory presented in this text. Moreover, in contrast to the
aforementioned works, we do not pursue the deep question of characterizing the
type of blowup when it occurs; rather, we only establish its existence via the usual
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convexity obstruction, see [62], [94], [114]. For a characterization of the nature of
the blowup, see Merle, Zaag [106], as well as Hamza, Zaag [70].

(i1) On the other hand, one can view this text also from the viewpoint of the vast
and diverse body of literature in PDEs which either construct or use (un)stable and
center manifolds. Let us merely point out some relevant literature (we caution the
reader, however, that the following list is by no means exhaustive). First, loss, Van-
derbauwhede [78], Gallay [56], and Chen, Hale, Tan [29] construct center(-stable)
manifolds in an “abstract” infinite-dimensional setting, as do Bates and Jones [6].
Ball [5] also has a construction which he then applies to the beam equation. The
most prevalent method used in the literature appears to be that of Lyapunov—Perron,
but [6] follows the so-called Hadamard approach which can sometimes be prefer-
able, cf. [112]. An “abstract” implementation of the Lyapunov—Perron method in
infinite dimensions can be found in the seminal papers by Chow, Lu [31] and Chow,
Lin, Lu [32] who constructed foliations by invariant manifolds. The reader will find
an exposition of both types of constructions in Chapter 3. Bates, Lu, and Zeng [7]
developed the theory of center manifolds associated with invariant manifolds which
are larger than isolated equilibria. See also Chow, Liu, Yi [33].

Applications of center manifolds to PDEs also abound, especially in the dissipa-
tive setting. For example, see Carr, Pego [26], Eckmann, Wayne [50], Wayne [139],
Collet, Eckmann [36], Bianchini, Bressan [14], and Beck, Wayne [10], just to name
a few. Less work seems to have been done on invariant manifolds for conservative
equations, perhaps due to the fact that the center manifold becomes dominant in
that case. Promislow [118] applies invariant manifold ideas to a dispersive equation,
as do Comech, Cuccagna, Pelinovsky [38], and Weder [142]. Tsai and Yau [137]
obtained conditional stability results for excited states of a nonlinear Schrodinger
equation with a potential. Soffer and Weinstein [129] obtain the following long-term
asymptotic result for the same type of equations studied by Tsai and Yau: either
the solution approaches the ground state (the generic case), or an excited state (non-
generically).

There have also been many applications of invariant manifolds to the equations
of fluid dynamics. For a recent review see Wayne [140], as well as Constantin,
Foias [39], Constantin, Foias, Nikolaenko, Temam [40], and Gallay, Wayne [57].

Li, McLaughlin, Shatah, and Wiggins [95] constructed homoclinic orbits for
a forced-dissipative perturbation of the completely integrable cubic NLS equation
on the one-dimensional torus. Their construction involved, amongst many other
elements, invariant manifolds. For more background, as well as a discussion of the
relevance of this work towards establishing chaotic motion for NLS, see the book by
Li, Wiggins [96]. For an expert summary of [95], and an illuminating overview of
much other work in this area see the introduction of the Memoirs article by Bates,
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Lu, and Zeng [7]. For further work on homoclinic orbits via invariant manifolds see
Zeng [146] and Shatah, Zeng [127].

However, we emphasize that all aforementioned references are somewhat differ-
ent from the subject matter of this monograph, as they do not exhibit the role of a
center-stable manifold as the locus of transition from data leading to blowup versus
data leading to global existence and scattering (in forward time, say).



