I Introduction

The goal of this lecture is to give some results in the geometric numerical integration
theory of linear and semi-linear Hamiltonian partial differential equations (PDEs).
This means that we will study the ability of numerical schemes to reproduce qual-
itative properties of Hamiltonian PDEs over long time periods, properties such as
preservation of the Hamiltonian, or energy exchanges between the eigenmodes of
a solution. Rather than setting this study in a general abstract framework (as for in-
stance in [15]), we will focus on linear and nonlinear Schrodinger equations, typically
with polynomial nonlinearity. The results presented in these lecture notes follow the
lines of [12] for the linear case, and [15] for the nonlinear case. The final Chapter VII
gives a picture of the possible instabilities induced by numerical discretization — and
ways to prevent them.

Before tackling the infinite dimensional case, we recall that many works exist
in the finite dimensional case (ordinary differential equations): see [26] and [34]. We
will discuss them in Chapter II. Relevant results concerning PDEs were obtained more
recently, and using different techniques: see [9], [12], [13], [17], [18], [20], [21]. We
will discuss these references throughout the text.

In this first chapter, we would like to show by numerical examples some nice or
pathological behaviors observed in simulations obtained by using splitting schemes
naturally induced by decomposition between the kinetic and potential parts. Such
schemes are very easy to implement and for this reason, widely used in practical
simulations (see for instance [3], [4], [30], [31] and the references therein). They also
preserve the symplectic structure and the L? norm of the solution. For these reasons,
we will restrict our analysis to such splitting methods, but consider many different
situations: semi-discrete, implicit-explicit and fully discrete schemes.

1 Schrodinger equation
Let us consider the cubic nonlinear Schrédinger equation
P0u(t, x)=—Au(t,x) + V(x)u(t, x) + Aut, x)Put, x), u©,x)=u(x) (1)

where u(¢, x) is the wave function depending on the time ¢ € R. We assume here
periodic boundary conditions, which means that the space variable x belongs to the
d-dimensional torus T¢ = (R/27Z)%. The function V(x) is a real interaction poten-
tial function, and the operator A = Z?: 1 Bii is the Laplace operator. The constant A
is a real parameter. As initial condition, we impose that the function u(z, x) at time

t = 0is equal to a given function u°.
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Such equations arise in many applications such as quantum dynamics and non-
linear optics. We refer to [36] for modeling aspects, and to [8] for the mathematical
theory. The cubic nonlinearity arises in particular in the simulation of Bose—Einstein
condensates (see for instance [3], [4]) while the case where A = 0 constitutes the clas-
sical linear Schrodinger equation associated with a typical interaction potential V' (x).

Equation (I.1) is a Hamiltonian partial differential equation (PDE) possessing
strong conservation properties. In quantum mechanics, the quantity |u(z, x)|* rep-
resents the probability density of finding the system in state x at time ¢, which is
reflected by preservation of the L? norm: For any solution u(z, x) we have

2 1 2
It = sz [, 1P = .01,

Note that for concrete applications, many physical constants are present in equa-
tion (I.1) depending on the mass of the particle or the Planck constant. Here we con-
sider a normalized version of the Schrodinger equation and address the question of
its numerical approximation in relation with its Hamiltonian structure only. Specific
algorithms for the semi-classical regime can be found for instance in [14] and [30].
Results concerning the case of the Gross—Pitaevskii associated with the harmonic
oscillator, i.e. when V(x) = x? and x € R, can be also found in [3], [4], [19].

With the equation (I.1) is associated the Hamiltonian energy defined for any func-
tion u by the formula

H(u,u) =

[, (9 + v + Fucol ) ax.

Q2m)4 Jpa

where |Vu|?> = Z?Zl |0x, u|?. This energy is preserved throughout the solution: for
all times ¢ € R where the solution is defined and sufficiently smooth, we have

H(u(r), u(t)) = H(u(0),u(0)).
Note that this energy can be split into

H(u,u) =T(u,u)+ P(u,u), 1.2)
where

- o 1 2
T = o [ 19u0)

is the kinetic energy of the system and

_ 1 A
PaLT) = g /T VP + 5 (o)

is the potential energy.
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The goal of this lecture is to analyze the qualitative properties of numerical
schemes applied to (I.1) and to discuss their long time behavior. In particular, we will
try to show that in some situations, numerical method can or cannot reproduce phys-
ical properties of the Schrodinger equation, such as conservation of energy, stability
of solitary waves, energy exchanges between modes, and preservation of regularity
over long time periods.

2 Numerical schemes

One of the easiest ways to derive numerical schemes for (I.1) is to split the system ac-
cording to the decomposition (I.2). For ease of presentation, we will mainly consider
the case where d = 1.

2.1 Free Schrodinger equation. Let us consider the system
i0u(t,x) = —Au(t,x), u(0,x) = u’(x), 1.3)

set on the one-dimensional torus T. To solve this system, we consider the Fourier
transform (&, (¢))qez of u(z, x) defined by

S 1 [ .
(u(t,x))g = &E4(1) := 2—/ u(t,x)e'**dx, a€Z,
T Jo
and we plug the decomposition

u(t,x) =) Elt)e'™

ac’z

into (I.3). Owing to the fact that ma = ia&,, we see that (I.3) is equivalent to the
collection of ordinary differential equations

YaeZ, i%ga(t)=a2$a(t), £.(0) = .

where £ are the Fourier coefficients of the initial function u°. The solution of this
equation can be written explicitly &, () = e’ “252 . Hence in Fourier variables, the
solution of the free Schrédinger equation can be computed exactly. Note that we have
for all ¢, |£,(t)| = |£4(0)|. This means that the regularity of u°, measured by the
decay of the Fourier coefficients &, (¢) with respect to |a/, is preserved by the flow of
the kinetic part. We denote the solution of (I.3) by

u(t) = o7 (u°)

as the exact flow of the Hamiltonian PDE associated with the Hamiltonian 7.
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2.2 Potential part. Let us now consider the system
i0au(t, x) = V(x)u(t, x) + Au(t, x)Pu(t, x),  u(0,x) =u°, (1.4)

In this equation, we observe that x can be considered as a parameter (there is no
derivative in x). Moreover, as V' is real, the complex conjugate (¢, x) satisfies the
equation

—i01(t, x) = V(x)i(t, x) + Au(z, x) %z, x),
hence we see that for all 7, we have for all x,

O Ju(t, x)|? = u(t, x)0,4(t, x) + w(t, x)du(t, x)
= (V(x) + )L|u(t,x)|2) Gu(t, x)u(t,x) —iu(t, x)u(t, x))
= O7

which means that the solution of (1.4) preserves the modulus of u°(x) for all fixed
x € T: we have for all ¢, |u(t,x)| = [u°(x)|. As an immediate consequence, the
exact solution of (I.4) is given by

u(t,x) = exp (—itV(x) —itd|u’(x)[*) u’(x).
We denote this solution by

u(t) = ¢p (u’).

2.3 Splitting schemes. The previous paragraphs showed that we can solve exactly
the Hamiltonian equations associated with the kinetic energy 7T (u,u#) and with the
potential energy P (u, i) appearing in the decomposition (I.2). Splitting schemes are
based on this property: they consist in solving alternatively the free Schrodinger equa-
tion and the potential part. Denoting by ¢7. p the exact flow defining the solution of
the equation (I.1) (we will give a precise definition of this flow in Chapter III), then
for a small time step t > 0, this leads to building the approximation

$Tip 9T OQp, (L5)

known as the Lie splitting method. For a time t = nt, the solution is then approxi-
mated by

u(nt) ~u" = (pf o pp)" W°).

We will see later that this approximation is actually convergent in the following sense:
if the solution u(#, -) = u(¢) of (I.1) remains smooth in an interval [0, 7], then we
have

Vnr €[0,T], [u(nt)—u*|,, < C(T,u)t. (1.6)
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Here smooth means that the Fourier coefficients satisfy some decay properties uni-
formly in time and the constant C(7,u) depends on the final time 7" and on a pri-
ori bounds on derivatives of the exact solution u(¢). Such a result is related to the
Baker—Campbell-Hausdorff (BCH) formula which states that the error made in the
approximation (I.5) is small and depends on the commutator between the two Hamil-
tonians 7" and P. In Chapter II, we will present a proof of this BCH formula, while
convergence results are presented in Chapter IV.
Another approximation, known as the Strang splitting scheme, is given by

2 2
Prip ~ 0y 0k o, (L7)

and it can be proved that this approximation is of order 2, which means that the error
in (1.6) is O (z?) provided the solution u(¢) remains smooth enough. More generally,
high order splitting schemes can be constructed, but each time, their approximation
properties rely on the a priori assumption that the solution remains smooth over the
(finite) time interval considered (see for instance [27]).

Natural questions then arise: do these schemes preserve the energy over a long
time? Do they preserve the regularity of the initial value over a long time? Are they
stable? Do they correctly reproduce possible nonlinear exchanges between the modes
£,(t)? These questions constitute central questions of geometric numerical integra-
tion theory whose general aim is the study of the qualitative behavior of numerical
schemes over a long time (see the classical references [26] and [34]). Note that since
splitting schemes are built from exact solutions of Hamiltonian PDEs, they are natu-
rally symplectic, something that is known to be fundamental to ensure the good be-
havior of numerical schemes applied to Hamiltonian ordinary differential equations.

Indeed, in the finite dimensional situation, a fundamental result known as back-
ward error analysis shows that the numerical trajectory given by a symplectic inte-
grator applied to a Hamiltonian ODE (almost) coincides with the exact solution of
a modified Hamiltonian system over an extremely long time. This result implies in
particular the existence of a modified energy preserved throughout the numerical so-
lution, which turns out to be close to the original one. Before studying the case of
Hamiltonian PDEs, we will consider extensively the finite dimensional situation in
Chapter II, following the classical references in the field [5], [25], [26], [33], [34].

2.4 Practical implementation. To implement the previous splitting schemes, we
define the grid x, = 2mwa/K where K is an integer, and a € BX belongs to a finite
set BK C 7 depending on the parity of K:

k. | {=P.....P—1} if K=2P iseven,

B™ =1 —p.... Py if K=2P+1 isodd.

(1.8)

Note that in any case, fBX = K, and that the points x,, @ € BX are made of
K equidistant points in the interval [—, r]. The discrete Fourier transform is defined
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as the mapping Fx : BX — BX such that for all v = (v,) € BX witha € BX,

T 1 —2i
(Fxv), = T Z e Zmab/Kvb.
beBK

Its inverse is given by

(‘?’Vlglv)az Z ezinab/Kvb'
beBK

This Fourier transform entails many advantages. In particular, we can verify that
VK Fx is a unitary transformation, and moreover, it can be easily computed us-
ing the Fast Fourier Transform algorithm, requiring a number of operations of order
O(K log K) instead of @ (K?) as a naive approach would indicate.

The practical implementation of the (abstract) splitting method

u(nt) ~u" = (¢f o go},)n u®

then consists in the approximation of the function U X" (x) at each time step, evalu-
ated at the grid points by the collection of numbers vf’", b € BX such that

K’ ~ ~
vy " " (xp) > u(nT,xp) .

Hence we see that K and t represent the space and time discretization parameters
respectively.
The algorithm to compute the numbers v f "+ from the collection of numbers

vf’” then reads:

1. Calculate the approximation

K.,n+1/2 . . K.n
v, = exp (—er(xb) —ith |y,

o o),

2. Take the Fourier transform

gKnt1/2 _ (.’FKUK’"+1/2> . aeBK.
a

3. Compute the solution of the free Schrodinger equation in Fourier variables

K, 1 K, 1/2
sa n+ Sa n+1/ )

= exp (—ita?)
4. Take the inverse Fourier transform

K.n+1 _ —1eK,n+1 K
v, "= (F e, b e BE.
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We can also interpret this algorithm as a splitting method for a finite dimensional
system of the form

i%éf =a*X + 0% (¢%), a e B, (L.9)

where QX (£) is a nonlinear potential depending on K and on the Fourier coefficients
K a e BX, given roughly speaking by QX = Fx o P o Fi' where P is the
potential part in (I.1) evaluated at the grid points. In terms of Fourier coefficients,
ok can be viewed as a polynomial in the (large but) finite number of parameters SaK

and Sf, a € BX,
In Chapter IV, we will show that the previous scheme is convergent in the fol-

lowing sense: The trigonometric polynomial function UX"(x) = Y, . px Ef Telax

associated with the discrete Fourier coefficients Sf’" defined above, constitutes an
approximation of the exact solution u(¢, x) at time ¢, = nt < T, and we have the
estimate

Vi =nt <T. HUK’"(x) - u(zn,x)) g SCTw@+K™),  (L10)

where s is given by the a priori regularity of the exact solution u(z, x) over the time
interval [0, T'].

Note that in the previous formula, the error is measured in the £' functional space
associated with the norm

ull,, = > JEal. if u(x) =) £ €',

ac’Z a€’l

and called the Wiener algebra. This choice is driven by the simplicity of polyno-
mial manipulations when acting on £!. In these notes, £'-based function spaces will
constitute our main framework, though a similar analysis could be performed using
standard Sobolev spaces H® for s sufficiently large.

In the following, we will sometimes interpret the previous fully discretized algo-
rithm as an (abstract) splitting method applied to a Hamiltonian PDE of the form

idu = %ﬁ(—rA)u + 0K ), (L.11)

where § is a cut-off function such that 8(x) = x for |x| < cfl and B(x) = O for |x| >
cfl where the constant cfl corresponds to a Courant—Friedrich-Lewy (CFL) condition,
see [10]. In the practical implementation described above, we have cfl = tK?/4
corresponding to the time step T multiplied by the greatest eigenvalue of the discrete
Laplace operator. In this situation, the potential QX will be assumed to satisfy bounds
independent of K, and the analysis can then be made by only considering (I.11) with
a given CFL number and a fixed polynomial potential 9 = QX. This will be our
abstract framework.
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2.5 Semi-implicit schemes. As they are explicit schemes, splitting methods have
the big advantage of their simplicity of implementation and their relatively low nu-
merical cost. However, as we will see later, these schemes require often a strong CFL
condition to be efficient. Even in the linear case (A = 0 in (I.1)) they can lead to in-
stabilities due to numerical resonance problems. The use of implicit or semi-implicit
schemes often allows us to attenuate, if not avoid, these problems.

Let us consider a general semi-linear equation

i0iu = —Au + Q(u),

where Q is polynomial in u and u. The midpoint approximation scheme is defined as
the map u” — u"*! such that

un+1_un un+1+un un+1+un
— = A ——— —).
S (=) e (%)

It turns out that this map is symplectic, but its practical computation requires solving
a large nonlinear implicit problem at each time step.

An alternative consists in a combination of the splitting approach described above
with an approximation of the solution of the free-linear Schrodinger by the midpoint
method. Actually when Q = 0 in the previous equation, we can write down explicitly

1+itA/2
W = Rz apt = (LEEAZY (L12)
1—itA/2
where this last expression is well defined in Fourier variables by the formula
1 —ita?/2
n+1 n
=|——F——= , €, 1.13
a (1+ita2/2)é" ¢ (@13)

where £/ are the Fourier coefficients of #” on the torus T. Note that this expression is
explicit in the Fourier space. In a more general situation one has to rely on a linearly
implicit equation to determine u” ! in (I.14) at each step.

Instead of considering fully explicit splitting of the form (I.5), we can also con-
sider semi-implicit schemes of the form

¢r+p = R(itA) 0 gp. (1.14)

Such an algorithm can be viewed as the standard splitting scheme (I.5), where we
replace the exact flow @7 by its approximation by the midpoint rule. Note that as
the implicit midpoint is an order 2 scheme, such a numerical scheme will remain of
order 1, which means that such an approximation will remain convergent for smooth
solutions over finite time.

Before going on, let us mention that we can again interpret the previous implicit-
explicit splitting method as a classical splitting method applied to a modified Hamil-
tonian PDE of the form (I.11). Indeed, for real number x, we have

L4
7 tix = exp (2i arctan(x)) .
—ix
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Hence the relation (I.13) can be written
E't! = exp (—2i arctan (va®/2)) £

In an equivalent formulation, we can write R(itA) = exp(—2i arctan(t A/2)), which
means that the midpoint rule applied to the free Schrodinger equation is equivalent to
the exact solution at time 7 of the equation

T

idyu(t,x) = %a.rctan (—%)u(l,x). (1.15)

We thus see that an implicit-explicit scheme can be again viewed as a standard
splitting method applied to a modified equation of the form (I.11) where B(x) =
% arctan(x/2). Note the striking fact that the arctan function acts here as a regular-
ized CFL condition: the high frequencies in equation (I.15) are smoothed, and the
linear operator is now a (large but) bounded operator.

3 Examples

We now give various numerical examples of qualitative behavior of the previous
schemes applied to (I.1).

3.1 Solitary waves. Let us consider the equation

i0,u(t,x) = —0xxu(t, x) — [u(t, x)|Pu(t, x), u(t, x)=u’,

set on the real line, x € R, and for which there exists the particular family of solutions

u(t,x) = p(x —ct — xp) exp (i (%c(x —ct —Xxp) + 00)) exp (i (a + %cz) t) ,

where «, ¢, x( and 6 are real parameters, and where

V2a
cosh(/ax)

These solutions are called solitons or solitary waves, and they are stable in the sense
that if the initial data is close to such a solution, it will remain close to this family of
solutions over arbitrary long time periods. This is called the orbital stability (we refer
to [8] and the reference therein).

Here, we aim at approximating the very particular solution corresponding to @ =
1,c =0,xp =0and 6y = 0, i.e. the solution

ﬁeit
cosh(x)’

p(x) =

u(t,x) =
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We first consider the standard Strang splitting method (1.7). As space discretiza-
tion, we introduce a large window [—m/L, /L] where L is a small parameter, and
use the spectral discretization method described in the previous section. This is jus-
tified because the solution we aim at simulating is exponentially decreasing with re-
spect to |x| and the approximation on the large windows will be correct for a small
number L. In this scaled situation the CFL number is given by

2
cfl = zL? (g) . (1.16)

We take K = 256, L = 0.11 and 7 = 0.1 (cfl = 19.8), ¢ = 0.05 (cfl = 9.9) and
7 =0.01 (cfl = 1.9).
In Figure 1.1, we plot the evolution of the discrete approximation of the energy

Hu. i) = /R B 3 (o)

throughout the numerical solution, with respect to time. We see that in the two cases
cfl = 19.8 and cfl = 9.9, there is a serious drift, while in the case cfl = 1.9, we
observe a good preservation of energy.

In Figure 1.2, we plot the absolute value of the numerical solution |u"(x)|. In
the case where cfl = 19.8 we observe a deterioration at time ¢t = 300 where the
regularity of the initial solution seems to be lost. The bottom figure is obtained with
a CFL number cfl = 1.9 and we observe that the numerical solution is particularly
stable. The profile of solution is almost the same as for the initial solution. This picture
is drawn at time ¢ = 10000.

To have a better understanding of the phenomenon, we plot the evolution of the
actions associated with the numerical solution, i.e. the Fourier coefficients |&,(¢)|?
for a € Z. In Figure 1.3, we plot the evolution of these actions in logarithmic scale

in the case where cfl = 19.8. Since the function is regular, there is an exponential
3 : : : :
2+
>
(<]
g 1r .
c
L
0
- . . . .
0 200 400 600 800 1000
Time

Figure I.1. Evolution of energy for the Strang splitting with cfl = 19.8, 9.9 and 1.9.
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Figure 1.2. |u’(x)| for the Lie splitting with cfl = 19.8 at time = 300 (top) and cfl = 1.9 at
time ¢ = 10000 (bottom).

Log10 of the actions

0 50 100 150 200 250 300

Figure 1.3. Evolution of the actions for the Lie splitting with cfl = 19.8.



12 I Introduction

decay of the actions with respect to k, and the high modes are plotted at the bottom of
the figure while the low modes are up. We observe that there are unexpected energy
exchanges with the high modes: there is an energy leak from the low modes to the
high modes producing a loss in the regularity of the solution.

Log10 of the actions

-2

0 50 100 150 200 250 300
Time

Figure 1.4. Evolution of the actions for the Lie splitting with cfl = 1.9.
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Figure 1.5. Implicit-explicit integrator with cfl = 19.8. Profile at # = 1000 (top) and evolution
of the actions (bottom).
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This phenomenon does not appear in the case where cfl = 1.9, as shown in Fig-
ure [.4: the regularity of the solution expressed by the arithmetic decay of the actions
in logarithmic scale is preserved over a very long time.

Now we repeat the same computations but with the implicit-explicit integra-
tor (I.14). In Figure 1.5 we plot both the evolution of the actions and the absolute
value of the numerical solution at time ¢+ = 1000 by using a CFL condition of order
cfl = 19.8. Note that the results obtained are comparable to the classical splitting with
cfl = 1.9. In particular, we observe no deterioration of the regularity of the solution,
and no energy drift.

3.2 Linear equations. The previous section showed that preservation of energy and
long time behavior of the numerical solution are linked with the CFL number used in
the simulation. To understand this phenomenon, we now consider the linear equation

10au(t, x) = —0xxu(t,x) — V(X u(t,x), u(t,x)=u’,

with periodic boundary conditions (x € T) and where V' (x) and the initial solution
are analytic. More precisely, we take

2
— 0 _
V(x) = cos(x) + cos(6x) and u" = 7 cos()”

In Figure 1.6, we plot the maximal deviation of the energy

1
Hu i) = 5 /T 195 () — Vo) () P,

between t = 0 and ¢ = 30. For a fixed time step 7, we define a numerical solution u”
fromt = 0tot = 30 (and hence nt < T = 30). With this discrete solution in hand,
we compute the maximal energy deviation

E(r):= max |H®u")— Hu")|.
n, nt €(0,30)

We repeat this computation for time steps t running from 0.01 to 0.1. We take K =
128 in this situation, so that the CFL condition runs from cfl = 40 to 400. Note
that the final time + = 30 cannot be considered as a very long time (it is of order
t™!), however we are interested here in the behavior of the mapping t +— E(7) to
have a better understanding on the possible existence of a modified energy for the
numerical scheme, particularly for large CFL numbers.

In Figure 1.6, we plot the function t +— E(t) for the explicit splitting (I.5) (top)
and the same result for the implicit-explicit integrator (bottom).

What we observe is that the function E(t) is not regular in 7 in the case of the
Lie splitting while it seems to be smoother for the implicit-explicit integrator. More
precisely, in the case of the Strang splitting, for some specific values of the step size,
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Figure 1.6. Energy deviation as function of a time step for a Lie splitting (top) and the implicit-
explicit scheme (bottom).

there is a drift in energy, while outside these pathological situations, the energy seems
to be better preserved. Such particular time steps are called resonant step sizes.

To have a better view of the effect of these resonant step sizes, let us again plot
the evolution of the actions in the case where the potential is small:

3 0 2
V(ix) = 0.015 ~Zsin(o) and u (x) = T cos)’
This smallness assumption on the potential attenuates the effect of the non diagonal
(in Fourier variables) operator V: We thus expect for the exact solution a long time
preservation of the smoothness of the initial data.
In Figure 1.7, we plot the evolution of the actions |£,(¢)|? in logarithmic scale. We
use step sizes:

2
T = o ~0.1963... (top) and 7 =0.2 (bottom). L.17)
What we observe is that in the case of a resonant step size, the regularity of the initial
solution is lost, while it is preserved for a non resonant step size. Note that the non
resonant step size is very close to the resonant one. Later, we will explain that all step
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Figure 1.7. Evolution of the actions (linear case) for a Lie splitting with resonant step size (top)
and non resonant step size (bottom).

sizes of the form 27/ (a® —b?) for two integers a and b are resonant. Moreover, when
the time step is non resonant, we can actually show preservation of the regularity of
the solution over a very long time, which in turn ensures preservation of energy even
if the CFL number is large. We will however not prove this rigorously here, and refer
to [13].

For explicit schemes with CFL condition, or implicit explicit integrators, such
resonance effects do not appear. Let us explain this quickly: resonant step sizes can
be shown to be such that there exist integers @, b with a £ £b and £ # 0 such that

t(a? — b*) ~ 2nt.
We easily see that if a CFL condition is imposed with cfl < 27, then we will have

|t(a®* — b?)| < cfl < 27 and the previous relation can never be satisfied. In the
situation above, the CFL condition is large, so that resonant step sizes are indeed
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present. However the set of resonant step sizes can be proved to be very small, which
explains the top figure 1.6.

Now in the case of implicit-explicit integrators, the resonance condition reads
(see (I.15))

2 arctan(ra?/2) — 2 arctan(th?/2) ~ 27l

and as the arctan function is bounded by 7/2, such a relation can never be satisfied
for any step size t! As we will see in Chapter V, this property ensures the existence of
a modified energy associated with the implicit-explicit integrator, which is preserved
along the numerical flow. This explains the regularity of the function t +— E(7)
observed on the bottom in Figure I.6.

3.3 NLS in dimension 1: resonances and aliasing. We now consider the Schro-
dinger equation with a cubic nonlinearity and without potential (i.e. V' = 0 in (1.4)).
To measure the balanced effects between the linear and nonlinear parts, we introduce
a scaling factor, and consider initial data to (I.4) that are small, i.e. of order § where
8 — 0is a small parameter.

After a scaling of the solution, it is equivalent to study the family of nonlinear
Schrodinger equations

i00u(t, x) = —0xxu(t,x) + elu(t, x)Put,x), u(,x)=u’~1 (1.18)

where ¢ = 8% > 0 is a small parameter, and x € T the one-dimensional torus.

In dimension 1, this equation has the very nice property of being integrable,
see [37], which implies in particular that it possesses an infinite number of invari-
ants preserved throughout the exact solution. In particular, it can be shown that the
actions |£,(¢)|? of u(t, x) satisfy the preservation property

VaeZ, &0 —16(0)| < Ce, (1.19)

for all time ¢+ > 0. In Chapter VII, and without considering the integrable nature of
the equation, we will show this result for a long time of order t < ¢~! using a simple
averaging argument.

A natural question in geometric integration theory is this: Does the discrete nu-
merical approximation £ X" defined above satisfy the same preservation property? As
we will see now, there are two sources of possible instabilities: one coming from the
choice of the step size, and the other coming from the number K of grid points.

In a first simulation, we first consider the initial data

1

0y —
ui(x) = 2 — cos(x)

and take ¢ = 0.01 in (I.18), and K = 512 grid points.
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We make two simulations with this initial data, and the same number of grid
points: one with the step size T = 0.09, and the other with the step size

1

In Figure 1.8, we plot the evolution of the fully discrete actions |$§ (#)]? in log-
arithmic scale, as in the previous section. We observe that for t = 0.09, there is
preservation of the actions over a long time, as expected from (I.19). But this preser-
vation property is broken by the use of the resonant step size (1.20). As we will see in
Chapter VI, such a step size impedes the existence of a modified energy preserved by
the fully discrete solution. We will however show that if the CFL number (1.16) is suf-
ficiently but reasonably small (of order ~ 1), such a situation cannot occur, avoiding
the possible use of a resonant step size (as in the linear case described above).

Let us now consider instabilities coming from the number of grid points K. In the
next example, we perform a simulation with ¢ = 0.01, a step size 7 = 1072, and the

Log10 of the actions
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Figure 1.8. Evolution of the actions in dimension 1 for resonant and non resonant step sizes.
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Figure 1.9. Evolution of the actions in dimension 1 for K = 31 grid points.

initial value
u®(x) = 2sin(10x) — 0.5 ¢ 7*.

Note that this initial value involves only the frequencies =10 and 7. We make two
simulations: one with K = 31 grid points, and the other one with K = 34 points.
In Figure 1.9, we plot the evolution of the actions |$‘{< "2 both in standard and loga-
rithmic scale for K = 31. We observe a very good preservation of the actions, as ex-
pected from (I.19). In Figure .10, we use K = 34 and we observe exchanges between
the actions. However, in this specific situation, a more careful analysis of the evolu-
tion of the actions show that there are only exchanges between symmetric frequencies,
ie., |€4(1)> and |£_q(2)|? for a € BK, and the super actions |EX"
fact preserved.

As we will see in Chapter VII, the persistence of (I.19) after space discretization
holds only if K is a prime number (note that K = 31 is prime). In the situation where
K /2 is a prime number, we can only show the long time preservation of the super
actions defined above (this corresponds to Figure .10 with K = 34 = 2 x 17).
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Figure 1.10. Evolution of the actions in dimension 1 for K = 34 grid points.

In all other cases, nonlinear exchanges can always be observed. For example we
perform another simulation with 7 = 0.001, K = 30 = 2 x 3 x 5, ¢ = 0.05%, and

u%(x) = 0.9 cos(—=5x) + sin(14x) + 1.1 exp(—10ix) + 1.2 cos(—11x).  (L.21)

We plot the evolution of the actions in logarithmic norm in Figure I.11 both for K =
30 (top) and the prime number K = 31 (bottom). We observe that for K = 30 the
dynamics of the actions is very complicated, while the preservation of the actions
holds for K = 31 and the same step size and initial data.

In Chapter VII, we will show that the quadruplet of frequencies (—5,14, —10, —11)
are non trivial frequencies belonging to the numerical resonance modulus associated
with the modified energy of the numerical scheme. Note that in this situation, the step
size is small enough to ensure the existence of the modified energy (the CFL number
is of order 0.3), but the instability comes from the internal dynamics of this modified
system and in particular the problem of aliasing.

3.4 Energy cascades in dimension 2. As a final example, we consider the same
equation as before, but in dimension 2:

iu = —Au + elul*u, xeT?, (1.22)
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Figure I.11. Evolution of the actions for K = 30 (top) and K = 31 (bottom).

and we take as initial data
u(0,x) =1+ 2cos(xy) + 2cos(xy). (1.23)

As we will see in Chapter VII, the particular geometric configuration of the five modes
associated with the initial data (I.23) makes possible energy exchanges between the
Fourier modes of the exact solution. Following the methods used in [7] we will actu-
ally give some rigorous and explicit lower bounds for high modes, showing that some
energy is actually transferred from low to high modes, in a time depending on the size
of the high mode. Such a phenomenon is called an energy cascade and constitutes an
interesting nonlinear test case for numerical schemes applied to (1.22).
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Figure 1.13. Explicit scheme, T = 0.1, grid 128 x 128.

Such a phenomenon is linked with analysis of the (nonlinear) resonance relation
la|®> + |b|> = |c|* — |d|* = 0 appearing for some quadruplet (a,b,c,d) € T? sat-
isfyinga + b — ¢ —d = 0. Actually we will prove that such a relation is satisfied
when (a, b, ¢, d) forms an affine rectangle in Z?, allowing energy exchanges between
modes in such a configuration.

The reproduction of these energy exchanges by numerical simulation is not guar-
anteed in general. We give in Figure .12 a numerical example with ¢ = 0.0158.
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This simulation is made using an explicit splitting scheme with step size T =
0.001 and a 128 x 128 grid. We plot the evolution of the logarithms of the Fourier
modes log |£,(¢)| for a = (0,n), with n = 0,...,15. We observe the energy ex-
changes between the modes.
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Figure I.14. Implicit-explicit integrator, T = 0.1 and v = 0.05.
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Repeating the same experiment but with 7 = 0.1 and the explicit splitting scheme
defined above, we observe that the energy exchanges are correctly reproduced (see
Figure 1.13).

Now we do the same simulation, but with the implicit-explicit integrator defined
above, where the linear part is integrated using the midpoint rule. We observe in
Figure .14 that the energy exchanges are not correctly reproduced, even for a smaller
time step 7 = 0.05.

The reason is again that the frequencies of the underlying operator associated with
the implicit-explicit splitting scheme are slightly changed (see (I.12)), making the res-
onance relations |a |+ |b|?> —|c¢|>—|d |* = 0, appearing for some a, b, ¢ and d in Z¢,
destroyed by the numerical scheme. As these relations determine the energy trans-
fers, the implicit-explicit cannot reproduce the energy cascade unless a very small
time step is used.

4 Objectives

The main goal of this work is to give precise mathematical formulations of the nu-
merical phenomena observed in the previous sections. In particular we will prove the
existence of a modified energy for splitting schemes applied to very general linear
and nonlinear situations, under some restrictions on the CFL number used. Using
this modified energy, we will be able to make a resonance analysis in some specific
situations.

We will first analyze in detail the finite dimensional situation. In this case, the
results given by backward error analysis show that the numerical solution obtained
by a symplectic integrator applied to a Hamiltonian system (almost) coincides with
the exact solution of a modified Hamiltonian system, over an extremely long time.
As we will only consider splitting methods, we will prove this result in Chapter II in
this specific framework. This will be the occasion to introduce several tools that will
be used later in the infinite dimensional case, such as the Baker—Campbell-Hausdorff
formula and some Hamiltonian formalism.

We will then focus on Hamiltonian PDEs, first by defining symplectic flows in
infinite dimension (Chapter III) and by considering semi-discrete flows after space
discretization. We will also recall some global existence results for the nonlinear
Schrodinger equation with defocusing nonlinearity, or for small initial data.

In Chapter I'V, we will consider the approximation properties of splitting methods
over finite time. This will lead us to state and prove convergence results in the case of
semi-discrete and fully discrete numerical flows. In other words, we prove (1.10) for
approximations of smooth solutions over finite time.

In Chapter V and VI, we will then give some backward error analysis results in
the case of linear and cubic nonlinear Schrodinger equations. More precisely, we will
show that under some CFL condition, the numerical methods almost coincides at each
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time step with the exact solution of a modified Hamiltonian PDE of the form (I.11).
We show that there exists a modified Hamiltonian H such that the following holds:

l¢p 0 07 ) = of )|, < CnTVH, (1.24)

where the error is estimated in the Wiener algebra ¢!, and where Cy depends on
the size of the function u in £!. This result is valid for the explicit Lie splitting, as
well as for the implicit-explicit splitting scheme, and can be also derived for fully
discrete algorithms. The exponent N in the small error term @ (¥ *+') made at each
step depends in general on the CFL condition.

It is important to note that the error in (I.24) is measured in the same Banach
space used to bound the solution a priori. Using this result and a bootstrap argument,
we prove the almost global existence of the numerical solution in A for small fully
discrete initial data of the nonlinear Schrodinger equation in one dimension of space.
This is due to the fact that in dimension 1, the £! norm in estimate (1.24) can be
replaced by the Sobolev norm H'!, and that the modified Hamiltonian H, controls
the H' norm of (small) fully discrete solutions.

With this modified energy H; in hand, we will then give in Chapter VII an in-
troduction to long time analysis, and compare the one and two-dimensional cases.
We will analyze the resonances of the nonlinear equation, their consequences on the
long time behavior of the solution (preservation of the actions, energy cascade), and
discuss the persistence of these qualitative properties in numerical discretizations.



