
Preface

Teichmüller theory succeeds in describing and classifying geometric structures on
surfaces. It was born in the work of O. Teichmüller using techniques of complex
analysis [2], [65] and was transformed under W. Thurston’s influence [161], [42] using
techniques of hyperbolic geometry.

Decorated Teichmüller theory is an essentially combinatorial treatment of the Teich-
müller theory of surfaces using techniques of hyperbolic geometry, where the surface
is required to have punctures and/or boundary, and the punctures or boundaries often
come equipped with a further “decoration” typically given by a real or positive real
parameter which may be assigned to punctures, to boundary components, to distin-
guished points on boundary components, or to subsets of these sets. For example in
the case of punctured surfaces, the decoration may describe a tuple of “horocycles”,
one about each puncture.

One studies in each case an appropriate so-called “decorated Teichmüller space”,
which is typically a trivial bundle over the Teichmüller space with fiber RN or RN>0, for
some N � 1, and the “mapping class group” action on Teichmüller space extends by
permuting the parameters to an action on the decorated space itself. Thus, very little is
lost in passing to the decorated space, but one must study punctured and/or bordered
surfaces to get started.

A main point of passing to the decorated space is that decorated Teichmüller space
(more precisely, its quotient by the diagonal action of R>0 on decorations) admits a
mapping class group-invariant “ideal simplicial decomposition”, by which we mean a
decomposition into open simplices together with only certain of their boundary faces.
Moreover, the cells in the decomposition are described sufficiently succinctly by an
elaboration of graphs called “fatgraphs” so as to allow computations of invariants, for
instance, presentations of the mapping class groups and calculations of cocycles. Our
approach to the ideal simplicial decomposition assigns to each “decorated hyperbolic
structure” a decomposition into polygons of the underlying surface, and it depends
upon a convex hull construction in Minkowski space. The Poincaré dual of such a
polygonal decomposition of the surface is a fatgraph, and one assigns a real number to
each edge of the fatgraph called a “simplicial coordinate” using Minkowski geometry.

Rather than the hyperbolic version of this ideal simplicial decomposition treated
here, one may instead derive an analogous one in the setting of conformal (rather than
hyperbolic) geometry relying on the foundational work of K. Strebel [153]. An explicit
construction assigns to a fatgraph together with a tuple of positive real numbers, one
number for each edge of the fatgraph, a “Jenkins–Strebel differential”, i.e., a mero-
morphic quadratic differential q whose horizontal trajectories foliate the underlying
surface-minus-fatgraph by simple closed curves with residues of

p
q assigned at the

punctures. Deep work of Strebel plus further results of Hubbard–Masur [66] shows
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that this assignment of conformal structure to a fatgraph-with-numbers establishes an
isomorphism of Teichmüller space decorated by residues at the punctures with the nat-
ural space of all isotopy classes of fatgraphs-with-numbers embedded in the underlying
surface. This decomposition agrees combinatorially with the hyperbolic one, but the
two differ as point sets in decorated Teichmüller space.

It is a basic distinction that the explicit constructions in the two theories “go in
opposite directions” in the sense that the convex hull construction produces a fatgraph-
with-numbers from a decorated hyperbolic structure, and the Strebel theory produces
a conformal structure from a fatgraph-with-numbers1. In particular, the inverse of the
Strebel construction depends upon solving the “Beltrami equation” while the inverse of
our construction amounts to the solution of an explicit family of “arithmetic problems”,
one such system of integral algebraic equations for each trivalent graph. Whereas the
solution to the Beltrami equation is highly transcendental, the solutions to our arithmetic
problems are algebraic.

It was D. Mumford who first observed the application of Strebel’s work to the
combinatorics of Riemann’s moduli space as described in J. Harer’s landmark papers
[57], [58], which gave the first substantial applications of the conformal version of
the triangulation to the geometry of Riemann’s moduli space. At roughly the same
time, the decorated Teichmüller theory gave the hyperbolic version described here by
specializing to dimension two the general convex hull construction [41] of the author
with D. Epstein for complete but non-compact finite-volume hyperbolic manifolds of
any dimension. This is enough to describe the polygonal decomposition of the surface,
but more work is required to show that the “putative cells are cells” in decorated
Teichmüller theory. Subsequently, B. Bowditch and D. Epstein [22] gave a proof of
the existence of the ideal simplicial decomposition of decorated Teichmüller space
based on loci equidistant to specified horocycles, which coincides exactly with the
convex hull construction here (as we show when we re-interpret the arithmetic problem
geometrically).

Another singular and fundamental aspect of decorated Teichmüller theory is that
there are global affine coordinates on the decorated Teichmüller space called “lambda
lengths” with remarkable properties. These are the ambient coordinates in which
we formulate and solve the arithmetic problems and prove the existence of the ideal
simplicial decomposition, which amounts to proving the unique solvability for lambda
lengths from appropriate simplicial coordinates. These lambda length coordinates,
which are essentially inner products in Minkowski space, are absolutely central to our
treatment, and we unapologetically take a decidedly nineteenth century viewpoint and
perform essentially all basic calculations in suitably normalized lambda lengths. We
parenthetically mention that Wolpert [173] has recently shown that lambda lengths are
convex along earthquake paths.

1One may thus start with a decorated hyperbolic structure, apply our convex hull construction to produce
a fatgraph-with-numbers, where the numbers are given by simplicial coordinates, and then misinterpret these
numbers as Strebel coordinates so as to produce a map from decorated Teichmüller space to itself. This map
is not the identity, but we conjecture that this map has bounded distortion in an appropriate sense.
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These coordinates are not canonical in that they depend upon the choice of a suitable
fatgraph in the surface just as coordinates on a vector space depend upon a choice of
basis. However, the coordinate transformations corresponding to different choices of
fatgraph faithfully describe the action of the mapping class group of the surface in
coordinates and are calculable in terms of “Ptolemy transformations”, which play a
role by now in a number of fields of mathematics, for example, in the study of “cluster
algebras” [46], [45] and [47], and “quantum Teichmüller theory” [32], [78], [31],
and [33].

Not only that, the “Weil–Petersson Kähler two form” [172], [173] admits a simple
and compact expression2 in lambda lengths, which is also part-and-parcel of these other
studies. Here, we shall compute and extend the basic WP Kähler two form and perform
a few sample WP volume calculations partly as a paradigm for the general method of
integration over moduli space. We shall also compute the Poincaré dual of the WP two
form in Appendix B [133], which is primarily included because it illustrates further
important general aspects of integration over Riemann’s moduli space.

Another of the author’s papers [136], on the Gauss product of binary integral
quadratic forms, is included as Appendix A because just as this volume itself begins
essentially tabula rasa, so too this paper was intended to be a self-contained introduc-
tion to topics in algebraic number theory from first principles and hence may be useful
for a similar audience.

Furthermore, a joint paper [105] with Greg McShane is included as Appendix C
because of the basic computations it describes on the asymptotics of lambda lengths
during degeneration of the underlying surface.

We are grateful to each of International Press, Springer Science and Business Media,
and the Proceedings of Research Institute for Mathematical Sciences, Kyoto University,
as well as to Greg McShane, for kind permission to include the appendices here.

We have taken this opportunity to correct a few small calculational and other errors
(which are explicitly noted in the text) and to present sometimes simpler and sometimes
more detailed proofs than in the original papers. It is fair to say that results were not
necessarily discovered in “correct” order temporally, so here we try to give a more
systematic derivation of this theory from first principles. Variants and relative versions
of the foregoing theory are discussed for “partially decorated surfaces” (where only
certain of the punctures are decorated), for “bordered surfaces” (where the punctures
are in effect required to lie in the boundary of the surface and all of them are decorated),

2These two attributes of simple calculability, both for the action of the mapping class group and for the
underlying symplectic geometry of the WP metric, distinguish lambda lengths among all known parametriza-
tions of (decorated) Teichmüller spaces. So-called “Fricke coordinates” (i.e., entries of matrices in a Fuchsian
group) transform explicitly under the action of the mapping class group with the WP two form unknown, and
Fenchel–Nielsen coordinates, cf. Theorem 1.18 in Chapter 1, transform horribly under the mapping class
group with the WP two form simply and beautifully expressed by Wolpert, cf. [172], [173]. In fact, our treat-
ment of the WP two form is based on Wolpert’s formula Theorem 3.2 in Chapter 2, and if Fenchel–Nielsen
coordinates are “length/twist” coordinates, then lambda lengths provide “length/length” coordinates on dec-
orated Teichmüller space. Moreover, lambda lengths “tropicalize” to convenient coordinates on Thurston’s
boundary as discussed in Section 5.4 of Chapter 5.



xiv Preface

and the general case (where both interior and boundary punctures are allowed and only
certain of them are decorated).

Most of the sections beyond the first two in Chapter 2 and all of Chapter 3 are
independent, and all of them are optional. In fact after reading Chapter 1, a bee-line for
the lambda length parameterization for punctured surfaces is directly to read the second
section of Chapter 2, and a subsequent bee-line for the ideal simplicial decomposition of
the decorated Teichmüller space of a punctured surface is to read the first four sections
of Chapter 4.

It may be useful to comment further here on various sections. In Chapter 2, Sec-
tion 4 covers the parallel theory of undecorated “surfaces with holes” where boundary
components can be deformed to punctures. This is useful for quantization including
the Poisson structure inherited from the Weil–Petersson Kähler form, which is also
discussed. Chapter 3 extends lambda lengths and associated structures from the setting
of surfaces to the topological group of homeomorphisms of the circle suitably manifest
as the space of all “tesselations of the Poincaré disk” and studies an associated infinite-
dimensional Lie algebra in Section 4. Section 3 treats a universal profinite object in
Teichmüller theory, the “punctured hyperbolic solenoid”.

The main applications of the theory to mapping class groups and moduli spaces
are given in Chapter 5, and the final Chapter 6 covers further applications, where we
have sometimes included particularly interesting or illustrative excerpts from more
recent papers. There are clear extensions of aspects of the theory to possibly non-
orientable two-dimensional orbifolds (for example, lambda lengths extend immediately
to coordinates in the non-orientable case), but these have not yet been fully articulated.

We have not strived for completeness in the bibliography, rather, we have cited
papers and books whose bibliographies may be consulted for more complete refer-
ences. Let us apologize here and now if the concomitant omissions from our listed
references might cause offense. Let us also apologize for the quirk of notation that the
surface F.G/ associated to a fatgraph G is sometimes taken to be a “skinny” surface
with boundary and sometimes to be the punctured surface that arises by capping off
each boundary component with a punctured disk, where the distinction will always be
explicitly stated.
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