
1 Introduction and overview

1.1 The main result and its history

Formally speaking, wave maps are the analogue of harmonic maps where the
Minkowski metric is imposed on the independent variables. More precisely, for a
smooth u W RnC1 !M with .M; g/ Riemannian, define the Lagrangian

L.u/ WD
Z

RnC1

�
j@tuj2g � jruj2g

�
dtdx:

Then the critical points are defined as L0.u/ D 0 which means that �u ? TuM
in case M is embedded in some Euclidean space. This is called the extrinsic
formulation, which can also be written as

�uC A.u/.@˛u; @˛u/ D 0

where A.u/ is the second fundamental form. In view of this, it is clear that 
 ı� is
a wave map for any geodesic 
 in M and any free scalar wave �. Moreover, any
harmonic map is a stationary wave map. The intrinsic formulation isD˛@˛u D 0,
where

D˛X
j
WD @˛X

j
C �

j

ik
ı uX i@˛uk

is the covariant derivative induced by u on the pull-back bundle of TM un-
der u (with the summation convention in force). Thus, in local coordinates
u D .u1; : : : ; ud / one has

�uj C � j
ik
ı u @˛ui @˛uk D 0: (1.1)

The central problem for wave maps is to answer the following question:

For which M does the Cauchy problem for the wave map u W RnC1 ! M with
smooth data .u; Pu/jtD0 D .u0;u1/ have global smooth solutions?

In view of finite propagation speed, one may assume that the data .u0;u1/ are
trivial outside of some compact set (i.e., u0 is constant outside of some compact
set, whereas u1 vanishes outside of that set). Let us briefly describe what is known
about this problem.
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First, recall that the wave map equation is invariant under the scaling u 7!
u.��/ which is critical relative to PH

n
2 .Rn/, whereas the conserved energy

E.u/ D
1

2

nX
˛D0

Z
Rn
j@˛u.t; x/j2 dx

is critical relative to PH 1.Rn/. In the supercritical case n � 3 it was observed
by Shatah [41] that there are self-similar blow-up solutions of finite energy. In
the critical case n D 2, it is known that there can be no self-similar blow-up,
see [42]. Moreover, Struwe [50] observed that in the equivariant setting, blow-up
in this dimension has to result from a strictly slower than self-similar rescaling of
a harmonic sphere of finite energy. His arguments were based on the very detailed
well-posedness of equivariant wave maps by Christodoulou, Tavildar-Zadeh [4],
[5], and Shatah, Tahvildar-Zadeh [44], [45] in the energy class for equivariant
wave maps into manifolds that are invariant under the action of SO.2;R/. Finally,
Rodnianski, Sterbenz [38], as well as the authors together with Daniel Tataru [26]
exhibited finite energy wave maps from R2C1 ! S2 that blow up in finite time
by suitable rescaling of harmonic maps.

Let us now briefly recall some well-posedness results. The nonlinearity
in (1.1) displays a null-form structure, which was the essential feature in the
subcritical theory of Klainerman–Machedon [16]–[18], and Klainerman–Selberg
[20], [21]. These authors proved strong local well-posedness for data in H s.Rn/
when s > n

2
. The important critical theory s D n

2
was begun by Tataru [64], [63].

These seminal papers proved global well-posedness for smooth data satisfying a

smallness condition in PB
n
2

2;1.R
n/� PB

n
2
�1

2;1 .Rn/. In a breakthrough work, Tao [59],

[58] was able to prove well-posedness for data with small PH
n
2 � PH

n
2 norm and the

sphere as target. For this purpose, he introduced the important microlocal gauge
in order to remove some “bad” interaction terms from the nonlinearity. Later
results by Klainerman, Rodnianski [19], Nahmod, Stephanov, Uhlenbeck [36],
Tataru [61], [60], and Krieger [23], [24], [25] considered other cases of targets by
using similar methods as in Tao’s work.

Recently, Sterbenz and Tataru [47], [48] have given the following very satis-
factory answer1 to the above question: If the energy of the initial data is smaller
than the energy of any nontrivial harmonic map Rn ! M, then one has global
existence and regularity.

1 The conclusions of our work were reached before the appearance of [47], [53].
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Notice in particular that if there are no harmonic maps other than constants,
then one has global existence for all energies. A particular case of this are the
hyperbolic spaces Hn for which Tao [57]– [53] has achieved the same result (with
some a priori global norm control).

The purpose of this book is to apply the method of concentration compactness
as in Bahouri, Gérard [1] and Kenig, Merle [14], [15] to the large data wave
map problem with the hyperbolic plane H2 as target. We emphasize that this
gives more than global existence and regularity as already in the semilinear case
considered by the aforementioned authors. The fact that in the critical case the
large data problem should be decided by the geometry of the target is a conjecture
going back to Sergiu Klainerman.

Let us now describe our result in more detail. Let H2 be the upper half-plane

model of the hyperbolic plane equipped with the metric ds2 D dx2Cdy2

y2
. Let u W

R2 ! H2 be a smooth map. Expanding the derivatives f@˛ug˛D0;1;2 (with @0 WD
@t ) in the orthonormal frame fe1; e2g D fy@x; y@yg gives rise to smooth coordinate

functions �1˛; �
2
˛. In what follows, k@˛ukX will mean .

P2
jD1 k�

j
˛k
2
X /

1
2 for any

norm k � kX on scalar functions. For example, the energy of u is

E.u/ WD
2X
˛D0

k@˛uk22:

Next, suppose � W H2 ! M is a covering map with M some hyperbolic Rie-
mann surface with the metric that renders � a local isometry. In other words,
M D H2=� for some discrete subgroup � � PSL.2;R/ which operates to-
tally discontinuously on H2. Now suppose u W R2 ! M is a smooth map
which is constant outside of some compact set, say. It lifts to a smooth map
Qu W R2 ! H2 uniquely, up to composition with an element of � . We now define
k@˛ukX WD k@˛ QukX . In particular, the energy E.u/ WD E. Qu/. Note that due to
the fact that � is a group of isometries of H2, these definitions are unambiguous.
Our main result is as follows.

Theorem 1.1. There exists a function K W .0;1/ ! .0;1/ with the following
property: Let M be a hyperbolic Riemann surface. Suppose .u0;u1/ W R2 !
M �TM are smooth and u0 D const , u1 D 0 outside of some compact set. Then
the wave map evolution u of these data as a map R1C2 ! M exists globally
as a smooth function and, moreover, for any 1

p
C

1
2q
�

1
4

with 2 � q < 1,
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 D 1 � 1
p
�
2
q

,

2X
˛D0

k.��/�


2 @˛ukLpt Lqx � Cq K.E/: (1.2)

Moreover, in the case when M ,! RN is a compact Riemann surface, one has
scattering:

max
˛D0;1;2



@˛u.t/ � @˛S.t/.f; g/



L2x
! 0 as t !˙1

where S.t/.f; g/ D cos.t jrj/f C sin.t jrj/
jrj

g and suitable .f; g/ 2 . PH 1 �

L2/.R2IRN /. Alternatively, if M is non-compact, then lifting u to a map
R1C2 ! H2 with derivative components �j˛ as defined above, one has

max
˛D0;1;2



�j˛ .t/ � @˛S.t/.f j ; gj /

L2x ! 0 as t !˙1

where .f j ; gj / 2 . PH 1 � L2/.R2IR/.

We emphasize that (1.2) can be strengthened considerably in terms of the type
of norm applied to the Coulomb gauged derivative components of the wave map:

2X
˛D0

k ˛k
2
S � C K.E/

2 (1.3)

The meaning  ˛ as well as of the S norm will be explained below. We now turn
to describing this result and our methods in more detail. For more background on
wave maps see [13], [61], and [42].

1.2 Wave maps to H2

The manifold H2 is the upper half-plane equipped with the metric ds2 D
dx2Cdy2

y2
. Expanding the derivatives f@˛ug˛D0;1;2 (with @0 WD @t ) of a smooth

map u W R1C2 ! H2 in the orthonormal frame fe1; e2g D fy@x; y@yg yields

@˛u D .@˛x; @˛y/ D
2X

jD1

�j˛ ej ;
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whence
y D e

P
jD1;2�

�1@j�
2
j ; x D

X
jD1;2

��1@j .�
1
j y/; (1.4)

provided we assume the normalization limjxj!1 j ln yj D limjxj!1 jxj D 0.
Energy conservation takes the formZ

R2

2X
˛D0

2X
jD1

ˇ̌
�j˛ .t; x/

ˇ̌2
dx D

Z
R2

2X
˛D0

2X
jD1

ˇ̌
�j˛ .0; x/

ˇ̌2
dx (1.5)

where x D .x1; x2/ and @0 D @t . If u.t; x/ is a smooth wave map, then the
functions f�j˛g for 0 � ˛ � 2 and j D 1; 2 satisfy the div-curl system

@ˇ�
1
˛ � @˛�

1
ˇ D �

1
˛�

2
ˇ � �

1
ˇ�

2
˛ (1.6)

@ˇ�
2
˛ � @˛�

2
ˇ D 0 (1.7)

@˛�
1˛
D ��1˛�

2˛ (1.8)

@˛�
2˛
D �1˛�

1˛ (1.9)

for all ˛; ˇ D 0; 1; 2. As usual, repeated indices are being summed over, and
lowering or raising is done via the Minkowski metric. Clearly, (1.6) and (1.7) are
integrability conditions which are an expression of the curvature of H2. On the
other hand, (1.8) and (1.9) are the actual wave map system. Since the choice of
frame was arbitrary, one still has gauge freedom for the system (1.6)–(1.9). We
shall exclusively rely on the Coulomb gauge which is given in terms of complex
notation by the functions

 ˛ WD  
1
˛ C i 

2
˛ D .�

1
˛ C i�

2
˛/e
�i��1

P2
jD1 @j�

1
j : (1.10)

If �1j are Schwartz functions , then
P2
jD1 @j�

1
j has mean zero whence

�
��1

2X
jD1

@j�
1
j

�
.z/ D

1

2�

Z
R2

log jz � �j
2X

jD1

@j�
1
j .�/ d� ^ d

N� (1.11)

is well-defined and moreover decays like jzj�1 (but in general no faster). The
gauged components f ˛g˛D0;1;2 satisfy the new div-curl system

@˛ ˇ � @ˇ ˛ D i ˇ�
�1

X
jD1;2

@j . 
1
˛ 

2
j �  

2
˛ 

1
j /

� i ˛�
�1@j . 

1
ˇ 

2
j �  

2
ˇ 

1
j / (1.12)
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@� 
�
D i ���1

2X
jD1

@j . 
1
� 

2
j �  

2
� 

1
j /: (1.13)

In particular, one obtains the following system of wave equations for the  ˛:

� ˛ D i@ˇ
�
 ˛�

�1
X
jD1;2

@j . 
1
ˇ 

2
j �  

2
ˇ 

1
j /
�

� i@ˇ
�
 ˇ�

�1@j . 
1
˛ 

2
j �  

2
˛ 

1
j /
�

C i@˛
�
 ˇ��1

X
jD1;2

@j . 
1
ˇ 

2
j �  

2
ˇ 

1
j /
�

(1.14)

Throughout this book we shall only consider admissible wave maps u. These are
characterized as smooth wave maps u W I �R2 ! H2 on some time interval I so
that the derivative components �j˛ are Schwartz functions on fixed time slices.

By the method of Hodge decompositions from2 [23]– [25] one exhibits the
null-structure present in (1.12)–(1.14). Hodge decomposition here refers to writ-
ing

 ˇ D �Rˇ

2X
kD1

Rk k C �ˇ (1.15)

where Rˇ WD @ˇ jrj
�1 are the usual Riesz transform. Inserting the hyperbolic

terms Rˇ
P2
kD1Rk k into the right-hand sides of (1.12)–(1.14) leads to trilin-

ear nonlinearities with a null structure. As is well-known, such null structures
are amenable to better estimates since they annihilate “self-interactions”, or more
precisely, interactions of waves which propagate along the same characteristics,
cf. [18]– [17], as well as [20], [21], [11]. Furthermore, inserting at least one “el-
liptic term” �ˇ from (1.15) leads to a higher order nonlinearity, in fact quintic or
higher which are easier to estimate (essentially by means of Strichartz norms). To
see this, note that

2X
jD1

@j�j D 0

@j�ˇ � @ˇ�j D @j ˇ � @ˇ j ;

2 In these papers this decomposition is also referred to as “dynamic decomposition”.
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whence

�ˇ D i

2X
j;kD1

@j�
�1
�
 ˇ�

�1@k. 
1
j  

2
k � 

1
k 

2
j /� j�

�1@k. 
1
ˇ 

2
k � 

1
k 

2
ˇ /
�
:

(1.16)
Since we are only going to obtain a priori bounds on �j˛ , it will suffice to assume
throughout that the �j˛ are Schwartz functions, whence the same holds for  ˛.
In what follows, we shall never actually solve the system (1.12)–(1.14). To go
further, the wave-equation (1.14) by itself is meaningless without assuming the
 ˛ to satisfy the compatibility relations (1.12) and (1.13). In fact, it is not even
clear that (1.12) and (1.13) will hold for all t 2 .�T; T / if they hold at time t D 0
and (1.14) holds for all t 2 .�T; T /. Nonetheless, assuming that the  ˛ are
defined in terms of the derivative components �˛ of a ‘sufficiently nice’ wave
map, it is clear that all three of (1.12)–(1.14) will be satisfied. This being said,
we will only use the system (1.14) to derive a priori estimates for  ˛, which will
then be shown to lead to suitable bounds on the components �j˛ of derivatives
of a wave map u. This is done by means of Tao’s device of frequency envelope,
see [59] or [23]. This refers to a sequence fckgk2Z of positive reals such that

ck 2
�� jk�`j

� c` � ck 2
� jk�`j (1.17)

where � > 0 is a small number. The most relevant example is given by

ck WD
�X
`2Z

2�� jk�`jkP` .0/k
2
2

� 1
2

which controls the initial data. While it is of course clear that (1.6)–(1.9) im-
ply the system (1.12)–(1.14), the reverse implication is not such a simple matter
since it involves solving an elliptic system with large solutions. On the other
hand, transferring estimates on the  ˛ in H s.R2/ spaces to similar bounds on
the derivative components �j˛ does not require this full implication. Indeed, as-
sume the bound k kL1t ..�T0;T1/IHı1 .R2// < 1 for some small ı1 > 0 (we will
obtain such bounds via frequency envelopes with 0 < ı1 < � ). For any fixed
time t 2 .�T0; T1/ one now has with Pk being the usual Littlewood–Paley pro-
jections to frequency 2k ,

kP`�˛kHı2 D


P`ŒeiP2jD1��1@j�1j ˛�

Hı2

�


P`ŒP<`�10.eiP2jD1��1@j�1j /PŒ`�10;`C10� ˛�

Hı2

C


P`ŒPŒ`�10;`C10�.eiP2jD1��1@j�1j /P<`C15 ˛�

Hı2
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C

X
k>`C10



P`ŒPk.eiP2jD1��1@j�1j /PkCO.1/ ˛�

Hı2

. kPŒ`�10;`C10� ˛kHı2

C


PŒ`�10;`C10�.eiP2jD1��1@j�1j /

Hı2

kP<`C15 ˛k1

C

X
k>`C10



Pk.eiP2jD1��1@j�1j /

Hı2
kPkCO.1/ ˛k1

Next, one has the bounds

rx ei��1P2jD1 @j�1j 

L1t L2x . k�1j kL1t L2x ;
kP<`C15 ˛kL1x . 2

.1�ı1/`k ˛kHı1

where the first one is admissible due to energy conservation for the derived wave
map, see (1.5). In conclusion,

kP`�˛kHı2 . kP`CO.1/ ˛kHı2 C 2
.ı2�ı1/`k�kL2xk kHı1 :

Summing over ` � 0 yields

k�k
L1t

�
.�T0;T1/IH

ı2 .R2/
� <1: (1.18)

By the subcritical existence theory of Klainerman and Machedon, see [18]– [16]
as well as [20], [21], the solution can now be extended smoothly beyond this time
interval. More precisely, the device of frequency envelopes allows one to place
the Schwartz data in H s.R2/ for all s > 0 initially, and as it turns out, also for
all times provided s > 0 is sufficiently small. The latter claim is of course the
entire objective of this book. We should also remark that we bring (1.14) into play
only because it fits into the framework of the spaces from [59] and [63]. This will
allow us to obtain the crucial energy estimate for solutions of (1.14), whereas it is
not clear how to do this directly for the system (1.12), (1.13). As already noted
in [23], the price one pays for passing to (1.14) lies with the initial conditions, or
more precisely, the time derivative @t ˛.0; �/. While  ˛.0; �/ only involves one
derivative of the wave map u, this time derivative involves two. This will force us
to essentially “randomize” the initial time.

1.3 The small data theory

In this section we give a very brief introduction to the spaces which are needed
to control the  system (1.12), (1.13), and (1.14). A systematic development will
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be carried out in Chapter 2 below, largely following [58] (we do need to go be-
yond both [58] and [23] in some instances such as by adding the sharp Strichartz
spaces with the Klainerman–Tataru gain for small scales, and by eventually mod-
ifying k � kSŒk� to the stronger jjj � jjjSŒk� which allows for a high-high gain in the
S � S ! L2tx estimate). First note that it is not possible to bound the trilinear
nonlinearities in this system in Strichartz spaces due to slow dispersion in dimen-
sion two. Moreover, it is not possible to adapt the Xs;b-space of the subcritical
theory to the scaling invariant case as this runs into logarithmic divergences. For
this reason, Tataru [63] devised a class of spaces which resolve these logarith-
mic divergences. His idea was to allow characteristic frames of reference. More
precisely, fix ! 2 S1 and define

�˙! WD .1;˙!/=
p
2; t! WD .t; x/ � �

C
! ; x! WD .t; x/ � t!�

C
! ;

which are the coordinates defined by a generator on the light-cone. Now suppose
that  i are free waves such that  1 is Fourier supported on 1 � j�j � 2, and
both  2 and  3 are Fourier supported on j�j � 2k where k is large and negative.
Finally, we also assume that the three waves are in “generic position”, i.e., that
their Fourier supports make an angle of about size one. Clearly, 2�k 1 2 3 is
then a representative model for the nonlinearities arising in (1.14). With

 3.t; x/ D

Z
R2
eiŒt j�jCx���f .�/ d�

we perform the plane-wave decomposition  3.t; x/ D
R
�!.
p
2t!/ d! where

�!.s/ WD

Z
eirsf .r!/ rdr:

By inspection, Z
k�!kL2t!L

1
x!
d! . 2

k
2 k 3kL1t L

2
x
: (1.19)

Hence,

2�k
Z
k�!  1 2kL1t!L

2
x!
d! . 2�k

Z
k�!kL2t!L

1
x!
d!k 1 2kL2t!L

2
x!

. k 3kL1t L2x k 1kL1t L2xk 2kL1t L2x
which is an example3 of a trilinear estimate which will be studied systematically
in Chapter 5. Here we used both (1.19) and the standard bilinear L2tx bilinear

3 Note that one does not obtain a gain in this case. This fact will be of utmost importance
in this book, forcing us to use a “twisted” wave equation resulting from these high-low-low
interactions in the linearized trilinear expressions.
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L2-bound for waves with angular separation:

k 1 2kL2t!L
2
x!
D k 1 2kL2tL

2
x
. 2

k
2 k 2kL1t L

2
x
k 1kL1t L

2
x

This suggests introducing an atomic space with atoms ! of Fourier support j�j �
1 and satisfying

k !kL1t!L
2
x!
� 1

as part of the space NŒ0� which holds the nonlinearity (the zero here refers to the
Littlewood–Paley projection P0. Below, we refer to this space as NF). In addition,
the space defined by (1.19) is also an atomic space and should be incorporated in
the space SŒk� holding the solution at frequency 2k (we refer to this below as the
PW space). By duality to L1t!L

2
x!

in NŒ0�, we then expect to see L1t!L
2
x!

as part
of SŒ0�. The simple observation here (originating in [63]) is that one can indeed
bound the energy along a characteristic frame .t! ; x!/ of a free wave as long as
its Fourier support makes a positive angle with the direction !. Indeed, recall the
local energy conservation identity @te � div.@t r / D 0 for a free wave where

e D
1

2
.j@t j

2
C jr j2/

is the energy density, over a region of the form f�T � t � T g \ ft! > ag. From
the divergence theorem one obtains thatZ

t!Da

�Œ�T�t�T �j!
?
r j2 dL2 . k k2

L1t L
2
x

where L2 is the planar Lebesgue measure on ft! D ag. Sending T ! 1 and
letting � denote the distance between ! and the direction of the Fourier support
of  jtD0, one concludes that

k kL1t!L
2
x!
. ��1k kL1t L2x :

Hence, we should include a piece

sup
! 622�

d.!; �/k kL1! L2x!

in the norm SŒ0� holding P0 provided  is a wave packet oriented along the
cone of dimensions 1� 2k � 22k , projecting onto an angular sector in the �-plane
associated with the cap � � S1, where � is of size 2k (this is called NF� below).

Recall that we have made a genericity assumption which guaranteed that the
Fourier supports were well separated in the angle. In order to relax this condition,
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it is essential to invoke the usual device of null-forms which cancel out paral-
lel interactions. One of the discoveries of [23] is a genuinely trilinear null-form
expansion, see (5.44) and (5.45), which exploit the relative position of all three
waves simultaneously. It seems impossible to reduce the trilinear nonlinearities
of (1.14) exclusively to the easier bilinear ones.

It is shown in [63] (and then also in [58] which develops much of the func-
tional framework that we use, as well as [23]) that in low dimensions (especially
n D 2 but these spaces are also needed for n D 3), these null-frame spaces are
strong enough – in conjunction with more traditional scaling invariantXs;b spaces
– to bound the trilinear nonlinearities, as well as weak enough to allow for an en-
ergy estimate to hold. This then leads modulo passing to an appropriate gauge to
the small energy theory.

The norm k � kS in (1.3) is of the form k kS WD
�P

k2Z kPk k
2
SŒk�

� 1
2 where

SŒk� is built from L1t L
2
x , critical Xs;b , L4tL

1
x Strichartz norms, as well as the

null-frame spaces which we just described.

1.4 The Bahouri–Gérard concentration compactness method

We now come to the core of the argument, namely the Bahouri–Gérard type de-
composition and the associated perturbative argument. We remark that indepen-
dently of and simultaneously with Bahouri, Gérard, Merle and Vega [30] intro-
duced a similar concentration compactness method into the study of nonlinear
evolution equations (they considered the L2-critical nonlinear Schrödinger equa-
tion).

In [12] P. Gérard considered defocusing semilinear wave equations in R3C1
of the form �u C f .u/ D 0 with data given by a sequence .�n;  n/ of energy
data going weakly to zero. Denote the resulting solutions to the nonlinear problem
by un, and the free waves with the same data by vn. Gérard proved that provided
f .u/ is subcritical relative to energy then

kun � vnkL1.I IE/ ! 0; as n!1

where E is the energy space. In contrast, for this to hold for the energy critical
problem he found via the concentrated compactness method of P. L. Lions that
it is necessary and sufficient that kvnkL1.I IL6.R3// ! 0. In other words, the
critical problem experiences a loss of compactness.

The origin of this loss of compactness, as well as the meaning of the L6 con-
dition were later made completely explicit by Bahouri–Gérard [1]. Their result
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reads as follows: Let f.�n;  n/g1nD1 � PH 1 � L2.R3/ be a bounded sequence,
and define vn to be a free wave with these initial data. Then there exists a subse-
quence fv0ng of fvng, a finite energy free wave v, as well as free waves V .j / and

.".j /; x.j // 2 .RC;R3/ZC for every j � 1 with the property that for all ` � 1,

v0n.t; x/ D v.t; x/C
X̀
jD1

1q
"
.j /
n

V .j /

 
t � t

.j /
n

"
.j /
n

;
x � x

.j /
n

"
.j /
n

!
C w.`/n .t; x/ (1.20)

where
lim sup
n!1

kw.`/n kL5t .R;L10x .R3//
! 0 as `!1;

and for any j ¤ k,

"
.j /
n

"
.k/
n

C
"
.k/
n

"
.j /
n

C

ˇ̌
x
.j /
n � x

.k/
n

ˇ̌
C
ˇ̌
t
.j /
n � t

.k/
n

ˇ̌
"
.j /
n

!1; as n!1:

Furthermore, the free energy E0 satisfies the following orthogonality property:

E0.v
0
n/ D E0.v/C

X̀
jD1

E0.V
.j //CE0.w

.`/
n /C o.1/; as n!1:

Note that this result characterized the loss of compactness in terms of the
appearance of concentration profiles V .j /. Moreover, [1] contains an analogue
of this result for so-called Shatah–Struwe solutions of the semi-linear problem
�uCjuj4u D 0 which then leads to another proof of the main result in [12]. One
of the main applications of their work was to show the existence of a function
A W Œ0;1/! Œ0;1/ so that every Shatah–Struwe solution satisfies the bound

kuk
L5t

�
RIL10x .R3/

� � A�E.u/� (1.21)

where E.u/ is the energy associated with the semi-linear equation. This is
proved by contradiction; indeed, assuming (1.21) fails, one then obtains sequences
of bounded energy solutions with uncontrollable Strichartz norm which is then
shown to contradict the fact the nonlinear solutions themselves converge weakly
to another solution. The decomposition (1.20) compensates for the aforemen-
tioned loss of compactness by reducing it precisely to the effect of the symmetries,
i.e., dilation and scaling. This is completely analogous to the elliptic (in fact, vari-
ational) origins of the method of concentration compactness, see Lions [28] and
Struwe [49]. See [1] for more details and other applications.
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The importance of [1] in the context of wave maps is made clear by the ar-
gument of Kenig, Merle [14], [15]. This method, which will be described in
more detail later in this section, represents a general method for attacking global
well-posedness problems for energy critical equations such as the wave map prob-
lem. Returning to the Bahouri–Gérard decomposition, we note that any attempt
at implementing this technique for wave maps encounters numerous serious diffi-
culties. These are of course all rooted in the difficult nonlinear nature of the sys-
tem (1.6)–(1.9). Perhaps the most salient feature of our decomposition, performed
in detail in Section 9.2, as compared to [1] is that the free wave equation no longer
captures the correct asymptotic behavior for large times; rather, the atomic com-
ponents V .j / are defined as solutions of a covariant (or “twisted”) wave equation
of the form

�C 2iA˛@˛ (1.22)

where the magnetic potential A˛ arises from linearizing the wave map equation
in the Coulomb gauge. More precisely, the magnetic term here captures the high-
low-low interactions in the trilinear nonlinearities of the wave map system where
there is no a priori smallness gain. We shall then obtain the concentration pro-
files via an inductive procedure over increasing frequency scales; in particular, in
(1.22) the Coulomb potential A˛ (this is a slight misnomer, but the “Coulomb”
here and in all other instances where we use this phrase is a reference to the
gauge) is defined in terms of lower-frequency approximations which are already
controlled, see the next subsection for more details.

In keeping with the Kenig–Merle method, the Bahouri–Gérard decomposition is
used to show the following: assume that a uniform bound of the form

k kS � C.E/

for some function C.E/ fails for some finite energy levels E. In particular, the set

A WD
˚
E 2 RCj sup

k k
L2x
�E

k kS D1
	
¤ ;

where we loosely denote the energy by k kL2x D .
P2
˛D0 k ˛k

2
L2x
/
1
2 , and we can

then define a number, denoted throughout the rest of this book byEcrit, as follows:

Ecrit D inf
E2A

E (1.23)

Then there must exist a weak wave map ucritical W .�T0; T1/ ! S to a compact
Riemann surface uniformized by H2, which enjoys certain compactness proper-
ties. In the final part of the argument we then need to rule out the existence of
such an object, arriving at an eventual contradiction at the end of the book.
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Starting this grand contradiction argument here, we now assume as above that
A ¤ ;; this implies that there is a sequence of Schwartz class (on fixed time
slices) wave maps un W .�T n0 ; T

n
1 / � R2 ! H2 with the properties that

ı k nkL2x ! Ecrit,
ı limn!1 k nkS..�T n0 ;T n1 /�R2/ D1.
Thus all these wave maps have t D 0 in their domain of definition. We shall call
such a sequence of wave maps essentially singular. Roughly speaking, we shall
proceed along the following steps. First, recall that the Bahouri–Gérard theorem
is a genuine phase-space result in the sense that it identifies the main asymptotic
carriers of energy which are not pure radiation, which would then sit inw.`/n . This
refers to the free waves V .j / above, which are “localized” in frequency (namely at
scale .".j /n /�1 ) as well as in physical spaces (namely around the space-time points
.t
.j /
n ; x

.j /
n / ). The procedure of filtering out the scales ".j /n is due to Metivier–

Schochet, see [33].
(1) Bahouri–Gérard I: Filtering out frequency blocks.

If we apply the frequency localization procedure of Metivier–Schochet to the
derivative components �n˛ D .@˛xn

yn ;
@˛yn

yn / of an essentially singular se-
quence at time t D 0, we run into the problem that the resulting frequency
components are not necessarily related to an actual map from R2 ! H2. We
introduce a procedure to obtain a frequency decomposition which is “geomet-
ric”, i.e., the frequency localized pieces are themselves derivative components
of maps from R2 ! H2. More specifically, in Section 9.2, we start with de-
compositions

�n˛ D

AX
aD1

Q�na˛ C w
nA
˛ ; ˛ D 0; 1; 2

where the Q�na˛ are “frequency atoms” obtained from the first stage of the
standard Bahouri–Gérard process, see [1]. Here it may be assumed that the
frequency scales in the cases ˛ D 0; 1; 2 are identical. Since the Q�na˛ do
not necessarily form the derivative components of admissible maps into H2,
one replaces them by components �na˛ which are derivative components of
admissible maps, subject to the same frequency scales.

(2) Refining the considerations on frequency localization; frequency localized ap-
proximative maps. In order to deal with the non-atomic (in the frequency
sense) derivative components, which may still have large energy, we need to
be able to truncate the derivative components arbitrarily in frequency while
still retaining the geometric interpretation. Here we shall use arguments just
as in the first step to allow us to “build up” the components  n˛ from low fre-
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quency ones. In the end, we of course need to show that for some subsequence
of the  n˛ , the frequency support is essentially atomic. If this were to fail, we
deduce an a priori bound on k n˛kS..�T n0 ;T n1 /�R2/. Specifically, we show in
Section 9.3 that judicious choice of an interval J , depending on the position
of the Fourier support of the frequency atoms �na˛ allows us to truncate the
components �n˛ to PJ�n˛ while retaining their “geometric significance”, i.e.,
the components PJ�na˛ , ˛ D 0; 1; 2 are also derivative components of a map
up to arbitrarily small errors.

(3) Assuming the presence of a lowest energy non-atomic type component, es-
tablish an a priori estimate for its nonlinear evolution. More precisely, in

Section 9.4, we replace �n˛ by components ˚
nA

.0/
0

˛ , which arise by truncat-
ing the frequency support of �n˛ to sufficiently low frequencies such that all
frequency atoms with energy above a certain threshold are eliminated. In
order to obtain a priori bounds on the evolution of the associated Coulomb

components 	
nA

.0/
0

˛ D ˚
nA

.0/
0

˛ e�i
P
kD1;24

�1@k˚
nA
.0/
0

k , we use the previous

step to approximate the ˚
nA

.0/
0

˛ by frequency truncated PJj˚
nA

.0/
0

˛ for judi-
ciously chosen increasing intervals Jj , whose number only depends on the
energy Ecrit. A finite induction procedure then leads to a priori bounds on

the 	
nA

.0/
0

˛ , provided n is chosen large enough (only depending on Ecrit).
Here we already encounter the difficulty that the low frequency components
appear to interact strongly with the high-frequency components in the nonlin-
earity, a stark contrast to the defocussing nonlinear critical wave equation.
In particular, in order to “bootstrap” the bounds on the differences of the

Coulomb potentials associated with the PJj˚
nA

.0/
0

˛ , we have to invoke en-
ergy estimates for covariant wave equations of the form �u C 2i@�uA� D
0.

(4) Bahouri–Gérard II, applied to the first atomic frequency component. In Sec-
tion 9.6, assuming that we have constructed the first “low frequency ap-

proximation” ˚
nA

.0/
0

˛ in the previous step, we need to filter out the concen-
tration profiles (analogous to the V .j / at the beginning of this subsection)
corresponding to the frequency atoms above the minimum energy threshold
and at lowest possible frequency. This is where we have to deviate from
Bahouri–Gérard: instead of the free wave operator, we need to use the co-
variant wave operator �An D � C 2iAn�@

� to model the asymptotics as
t ! ˙1, where An� is the Coulomb potential associated with the low fre-

quency approximation ˚
nA

.0/
0

˛ . Thus we obtain the concentration profiles
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as weak limits of the data under the covariant wave evolution. Again a
lot of effort needs to be expended on showing that the components we ob-
tain are actually the Coulomb derivative components of Schwartz maps from
R2 ! H2, up to arbitrarily small errors in energy. Once we have this, we
can then use the result from the stability section in order to construct the
time evolution of these pieces and obtain their a priori dispersive behav-
ior.

(5) Bahouri–Gérard II; completion. Here we repeat Steps 3 and 4 for the ensu-
ing frequency pieces, to complete the estimate for the  n˛ . The conclusion
is that upon choosing n large enough, we arrive at a contradiction, unless
there is precisely one frequency component and precisely one atomic phys-
ical component forming that frequency component. These are the data that
then gives rise to the weak wave map with the desired compactness proper-
ties.

1.5 The Kenig–Merle agument

In [14], [15], Kenig and Merle developed an approach to the global wellposendess
for defocusing energy critical semilinear Schrödinger and wave equations; more-
over, their argument yields a blow-up/global existence dichotomy in the focusing
case as well, provided the energy of the wave lies beneath a certain threshold.
See [7] for an application of these ideas to wave maps.

Let us give a brief overview of their argument. Consider

�uC u5 D 0

in R1C3 with data in PH 1 � L2. It is standard that this equation is well-posed
for small data provided we place the solution in the energy space intersected with
suitable Strichartz spaces. Moreover, if I is the maximal interval of existence,
then necessarily kukL8t .I IL8x.R3// D1 and the energy E.u/ is conserved.

Now suppose Ecrit is the maximal energy with the property that all solutions
in the above sense with E.u/ < Ecrit exist globally and satisfy kukL8t .RIL8x.R3//
< 1. Then by means of the Bahouri–Gérard decomposition, as well as the per-
turbation theory for this equation one concludes that a critical solution uC exists
on some interval I� and that kuC kL8t .I�IL8x.R3// D 1. Moreover, by similar
arguments one obtains the crucial property that the set

K WD
n�
�
1
2 .t/u

�
�.t/

�
x � y.t/

�
; t
�
; �

3
2 .t/@tu

�
�.t/

�
x � y.t/

�
; t
��
W t 2 I

o
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is precompact in PH 1 � L2.R3/ for a suitable path �.t/; y.t/. To see this, one
applies the Bahouri–Gérard decomposition to a sequence un of solutions with
energy E.un/ ! Ecrit from above. The logic here is that due to the minimality
assumption on Ecrit only a single limiting profile can arise in (1.20) up to errors
that go to zero in energy as n ! 1. Indeed, if this were not the case then due
to fact that the profiles diverge from each other in physical space as n ! 1
one can then apply the perturbation theory to conclude that each of the individual
nonlinear evolutions of the limiting profiles (which exist due to the fact that their
energies are strictly below Ecrit) can be superimposed to form a global nonlinear
evolution, contradicting the choice of the sequence un. The fact that ` D 1 allows
one to rescale and re-translate the unique limiting profile to a fixed position in
phase space (meaning spatial position and spatial frequency) which then gives
the desired nonlinear evolution uC . The compactness follows by the same logic:
assuming that it does not hold, one then obtains a sequence uC .�; tn/ evaluated at
times tn 2 I� converging to an endpoint of I� such that for n ¤ n0, the rescaled
and translated versions of uC .�; tn/ and uC .�; tn0/ remain at a minimal positive
distance from each other in the energy norm. Again one applies Bahouri–Gérard
and finds that ` D 1 by the choice of Ecrit and perturbation theory. This gives the
desired contradiction. The compactness property is of course crucial; indeed, for
illustrative purposes suppose that uC is of the form

uC .t; x/ D �.t/
1
2U
�
�.t/

�
x � x.t/

��
where �.t/ ! 1 as t ! 1, say. Then uC blows up at time t D 1 (in the sense
that the energy concentrates at the tip of a cone) and

�.t/�
1
2uC

�
�.t/�1x C x.t/

�
D U.x/

is compact for 0 � t < 1. Returning to the Kenig–Merle argument, the logic is
now to show that uC acts in some sense like a blow-up solution, at least if I� is
finite in one direction.

The second half of the Kenig–Merle approach then consists of a rigidity ar-
gument which shows that a uC with the stated properties cannot exist. This is
done mainly by means of the conservation laws, such as the Morawetz and energy
identities. More precisely, the case where I� is finite at one end is reduced to the
self-similar blow-up scenario. This, however, is excluded by reducing to the sta-
tionary case and an elliptic analysis which proves that the solution would have to
vanish. If I� is infinite, one basically faces the possibility of stationary solutions
which are again shown not to exist.
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For the case of wave maps, we follow the same strategy. More precisely, our
adaptation of the Bahouri–Gérard decomposition to wave maps into H2 leads to
a critical wave map with the desired compactness properties. In the course of
our proof, it will be convenient to project the wave map onto a compact Riemann
surface S (so that we can avail ourselves of the extrinsic formulation of the wave
map equation). However, it will be important to work simultaneously with this
object as well as the lifted one which takes its values in H2 (since it is for the latter
that we have a meaningful well-posedness theory for maps with energy data).

The difference from [14] lies mainly with the rigidity part. In fact, in our
context the conservation laws are by themselves not sufficient to yield a contra-
diction. This is natural, since the geometry of the target will need to play a crucial
role. As indicated above, the two scenarios that are lead to a contradiction are
the self-similar blow-up supported inside of a light-cone and the stationary weak
wave map, which is of course a weakly harmonic map (which cannot exist since
the target S is compact with negative curvature). The former is handled as fol-
lows: in self-similar coordinates, one obtains a harmonic map defined on the disk
with the hyperbolic metric and with finite energy (the stationarity is derived as
in [14]). Moreover, there is the added twist that one controls the behavior of
this map at the boundary in the trace sense (in fact, one shows that this trace is
constant). Therefore, one can apply the boundary regularity version of Helein’s
theorem which was obtained by Qing [37]. Lemaire’s theorem [27] then yields the
constancy of the harmonic map, whence the contradiction (for a version of this ar-
gument under the a priori assumption of regularity all the way to the boundary see
Shatah–Struwe [42]).

1.6 An overview of the book

The book is essentially divided into two parts: The modified Bahouri–Gérard
method is carried out in its entirety starting with Chapter 2, and ending with Chap-
ter 9. Indeed, all that precedes Chapter 9 leads to this section, which constitutes
the core of this book. The Kenig–Merle method adapted to Wave Maps is then
performed in the much shorter Chapter 10. We commence by describing in detail
the contents of Chapter 2 to Chapter 9.
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1.6.1 Preparations for the Bahouri–Gérard process

As explained above, we describe admissible wave maps u W R2C1 ! H2 mostly
in terms of the associated Coulomb derivative components  ˛. Our goals then are
to
(1) Develop a suitable functional framework, in particular a space-time norm
k kS.R2C1/, together with time-localized versions k kS.ŒI�R2/ for closed
time intervals I , which have the property that

lim sup
I� QI

k kS.I�R2/ <1

for some open interval QI implies that the underlying wave map u can be ex-
tended smoothly and admissibly beyond any endpoint of QI , provided such
exists.

(2) Establish an a priori bound of the form

k kS.I�R2/ � C.E/

for some function C W RC ! RC of the energy E. This latter step will be
accomplished by the Bahouri–Gérard procedure, arguing by contradiction.

We first describe (1) above in more detail: in Chapter 2, we introduce the norms
k � kSŒk�, k � kNŒk�, k 2 Z, which are used to control the frequency localized
components of  and the nonlinear source terms, respectively. The norm k � kS is
then obtained by square summation over all frequency blocks. The basic paradigm
for establishing estimates on  then is to formulate a wave equation

� D F

or more accurately typically in frequency localized form

�P0 D P0F;

and to establish bounds for kP0F kNŒ0� which may then be fed into an energy in-
equality, see Section 2.3, which establishes the link between the S and N -spaces.
In order to be able to estimate the nonlinear source terms F , we need to manip-
ulate the right-hand side of (1.14), making extensive use of (1.15). The precise
description of the actual nonlinear source terms that we will use for F is actually
rather involved, and given in Chapter 3. In order to estimate the collection of tri-
linear as well as higher order terms, we carefully develop the necessary estimates
in Chapters 4, 5, as well as 6. We note that the estimates in [23], while similar,
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are not quite strong enough for our purposes, since we need to gain in the largest
frequency in case of high-high cascades. This requires us to subtly modify the
spaces by comparison to loc. cit. Moreover, the fact that we manage here to build
in sharp Strichartz estimates allows us to replace several arguments in [23] by
more natural ones, and we opted to make our present account as self-contained as
possible.

With the null-form estimates from Chapters 4, 5, 6 in hand, we establish the
role of k � kS as a “regularity controlling” device in the sense of (1) above in
Chapter 7, see Proposition 7.2. The proof of this reveals a somewhat unfortu-
nate feature of our present setup, namely the fact that working at the level of the
differentiated wave map system produces sometimes too many time derivatives,
which forces us to use somewhat delicate “randomization” of times arguments. In
particular, in the proof of all a priori estimates, we need to distinguish between a
“small time” case (typically called Case 1) and a “long time” Case 2, by reference
to a fixed frequency scale. In the short time case, one works exclusively in terms
of the div-curl system, while in the long-time case, the wave equations start to be
essential.

Chapter 7 furthermore explains the well-posedness theory at the level of the
 ˛, see the most crucial Proposition 7.11. We do not prove this proposition in
Chapter 7, as it follows as a byproduct of the core perturbative Proposition 9.12
in Chapter 9. Proposition 7.11 and the technically difficult but fundamental
Lemma 7.10 allow us to define the “Coulomb wave maps propagation” for a tuple
 ˛, ˛ D 0; 1; 2 which are only L2 functions at time t D 0, provided the latter
are the L2-limits of the Coulomb components of admissible maps. Indeed, this
concept of propagation is independent of the approximating sequence chosen and
satisfies the necessary continuity properties.

We also formulate the concept of a “wave map at infinity” at the level of
the Coulomb components, see Proposition 7.15 and the following Corollary 7.16.
Again the proofs of these results will follow as a byproduct of the fundamental
Proposition 9.12 and Proposition 9.30 in the core Chapter 9.

In Chapter 8, we develop some auxiliary technical tools from harmonic analy-
sis which will allow us to implement the first stage of the Bahouri–Gérard pro-
cess, namely crystallizing frequency atoms from an “essentially singular” se-
quence of admissible wave maps. These tools are derived from the embedding
PB12;1.R

2/ ! BMO as well as weighted (relative to Ap) Coifman–Rochberg–
Weiss commutator bounds.

As mentioned before, Chapter 9 represents the core of this book. In Sec-
tion 9.2, starting with an essentially singular sequence un of admissible wave
maps with deteriorating bounds, i.e., k n˛kS ! 1 as n ! 1 but with the
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crucial criticality condition limn!1E.un/ D Ecrit, we show that the derivative
components �n˛ may be decomposed as a sum

�n˛ D

AX
aD1

�na˛ C w
nA
˛

where the �na˛ are derivative components of admissible wave maps which have
frequency supports “drifting apart” as n!1, while the error wnA˛ satisfies

lim sup
n!1

kwnA˛ k PB02;1
< ı;

provided A � A0.ı/ is large enough.
In Section 9.3, we then select a number of “principal” frequency atoms �na,

a D 1; 2; : : : ; A0, as well as a (potentially very large) collection of “small atoms”
�na, a D A0 C 1; : : : ; A. We order these atoms by the frequency scale around
which they are supported starting with those of the lowest frequency. The idea
now is as follows: under the assumption that there are at least two frequency
atoms, or else in case of only one frequency atom that it has energy < Ecrit,
we want to obtain a contradiction to the essential criticality of the underlying
sequence un. To achieve this, we define in Section 9.3 sequences of approximating
wave maps, which are essentially obtained by carefully truncating the initial data
sequence �na in frequency space.

In Section 9.4, we establish an a priori bound for the lowest frequency approx-
imating map which comprises all the minimum frequency small atoms as well as
the component of the small Besov error of smallest frequency, see Proposition 9.9.
The proof of this follows again by truncating the data suitably in frequency space,
and applying an inductive procedure to a sequence of approximating wave maps.
This hinges crucially on the core perturbative result Proposition 9.12, which plays
a fundamental role in this book. The main technical difficulty encountered in the
proof of the latter comes from the issue of divisibility: let us be given a schemati-
cally written expression

@��A�

which is linear in the perturbation (so that we cannot perform a bootstrap argu-
ment based solely on the smallness on � itself), while A� denotes some null-form
depending on a priori controlled components . “Divisibility” means the property
that upon suitably truncating time into finitely many intervals Ij whose number
only depends on k kS , one may bound the expression by

k@��A�kN.Ij�R2/ � k�kS :
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In other words, by shrinking the time interval, we ensure that we can iterate the
term away. While this would be straightforward provided we had an estimate
for kA�kL1tL1x (which is possible in space dimensions n � 4), in our setting,
the spaces are much too weak and complicated. Our way out of this impasse
is to build those terms for which we have no obvious divisibility into the linear
operator, and thereby form a new operator

�A� WD �� C 2i@��A�

with a magnetic potential term. Fortunately, it turns out that if A� is supported
at much lower frequencies than � (which is precisely the case where divisibility
fails), one can establish an approximate energy conservation result, which in par-
ticular gives a priori control over a certain constituent of k � kS . With this in hand,
one can complete the bootstrap argument, and obtain full control over k�kS .

Having established control over the lowest-frequency “essentially non-atomic”
approximating wave map in Section 9.4, we face the task of “adding the first large
atomic component”, �n1. It is here that we have to depart crucially from the origi-
nal method of Bahouri–Gérard: instead of studying the free wave evolution of the
data, we extract concentration cores by applying the “twisted” covariant evolution
associated with

�Anu D 0;

which is essentially defined as above. The key property that makes everything
work is an almost exact energy conservation property associated with its wave
flow. This is a rather delicate point, and uses the Hamiltonian structure of the
covariant wave flow.

It then requires a fair amount of work to show that the profile decomposition
at time t D 0 in terms of covariant free waves is “geometric”, in the sense that the
concentration profiles can indeed by approximated by the Coulomb components
of admissible maps, up to a constant phase shift, see Proposition 9.24.

Finally, in Proposition 9.30 we show that we may evolve the data including the
first large frequency atom, provided all concentration cores have energy strictly
less than Ecrit.

As most of the work has been done at this point, adding on the remaining
frequency atoms in Section 9.9 does not provide any new difficulties, and can be
done by the methods of the preceding sections.

In conjunction with the results of Chapter 7, we can then infer that given
an essentially singular sequence of wave maps un, we may select a subsequence
of them whose Coulomb components  n˛ , up to re-scalings and translations, con-
verge to a limiting object 	1˛ .t; x/, which is well-defined on some interval I�R2
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where I is either a finite time interval or (semi)-infinite, and the limit of the
Coulomb components of admissible maps there. Moreover, most crucially for
the sequel, 	1˛ .t; x/ satisfies a remarkable compactness property, see Proposi-
tion 9.36. This sets the stage for the method of Kenig–Merle, which we adapt to
the context of wave maps in Chapter 10.


