
Introduction

This set of notes explores some of the links between occupation times and Gaussian
processes. Notably they bring into play certain isomorphism theorems going back to
Dynkin [4], [5] as well as certain Poisson point processes of Markovian loops, which
originated in physics through the work of Symanzik [26]. More recently such Poisson
gases of Markovian loops have reappeared in the context of the “Brownian loop soup”
of Lawler and Werner [16] and are related to the so-called “random interlacements”,
see Sznitman [27]. In particular they have been extensively investigated by Le Jan
[17], [18].

A convenient set-up to develop this circle of ideas consists in the consideration
of a finite connected graph E endowed with positive weights and a non-degenerate
killing measure. One can then associate to these data a continuous-time Markov chain
xXt , t � 0, on E, with variable jump rates, which dies after a finite time due to the

killing measure, as well as

the Green density g.x; y/, x; y 2 E, (0.1)

(which is positive and symmetric),

the local times xLx
t D

Z t

0

1f xXs D xg ds; t � 0, x 2 E. (0.2)

In fact g.�; �/ is a positive definite function on E � E, and one can define a centered
Gaussian process 'x , x 2 E, such that

cov.'x; 'y/.D EŒ'x'y �/ D g.x; y/; for x; y 2 E. (0.3)

This is the so-called Gaussian free field.

It turns out that 1
2
'2

z , z 2 E, and xLz1, z 2 E, have intricate relationships. For
instance Dynkin’s isomorphism theorem states in our context that for any x; y 2 E,

�xLz1 C 1

2
'2

z

�
z2E

under Px;y ˝ PG (0.4)

has the “same law” as

1

2
.'2

z /z2E under 'x'y P
G , (0.5)

where Px;y stands for the (non-normalized) h-transform of our basic Markov chain,
with the choice h. �/ D g. �; y/, starting from the point x, and PG for the law of the
Gaussian field 'z , z 2 E.
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Eisenbaum’s isomorphism theorem, which appeared in [7], does not involve h-
transforms and states in our context that for any x 2 E, s 6D 0,

�xLz1 C 1

2
.'z C s/2

�
z2E

under Px ˝ PG (0.6)

has the “same law” as
�

1

2
.'z C s/2

�
z2E

under
�
1C 'x

s

�
PG . (0.7)

The above isomorphism theorems are also closely linked to the topic of theorems of
Ray–Knight type, see Eisenbaum [6], and Chapters 2 and 8 of Marcus–Rosen [19].
Originally, see [13], [21], such theorems came as a description of the Markovian
character in the space variable of Brownian local times evaluated at certain random
times. More recently, the Gaussian aspects and the relation with the isomorphism
theorems have gained prominence, see [8], and [19].

Interestingly, Dynkin’s isomorphism theorem has its roots in mathematical physics.
It grew out of the investigation by Dynkin in [4] of a probabilistic representation for-
mula for the moments of certain random fields in terms of a Poissonian gas of loops
interacting with Markovian paths, which appeared in Brydges–Fröhlich–Spencer [2],
and was based on the work of Symanzik [26].

The Poisson point gas of loops in question is a Poisson point process on the state
space of loops onE modulo time-shift. Its intensity measure is a multiple ˛�� of the
image �� of a certain measure �rooted, under the canonical map for the equivalence
relation identifying rooted loops � that only differ by a time-shift. This measure
�rooted is the � -finite measure on rooted loops defined by

�rooted.d�/ D P
x2E

Z 1

0

Qt
x;x.d�/

dt

t
; (0.8)

where Qt
x;x is the image of 1fXt D xgPx under .Xs/0�s�t , if X: stands for the

Markov chain on E with jump rates equal to 1 attached to the weights and killing
measure we have chosen on E.

The random fields on E alluded to above, are motivated by models of Euclidean
quantum field theory, see [11], and are for instance of the following kind:

hF.'/i D
Z

RE

F.'/ e� 1
2 E.';'/

Q
x2E

h
�'2

x

2

�
d'x

. Z
RE

e� 1
2 E.';'/

Q
x2E

h
�'2

x

2

�
d'x

(0.9)
with

h.u/ D
Z 1

0

e�vud�.v/, u � 0, with � a probability distribution on RC;
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and E.'; '/ the energy of the function ' corresponding to the weights and killing
measure on E (the matrix E.1x; 1y/, x; y 2 E is the inverse of the matrix g.x; y/,
x; y 2 E in (0.3)).
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Figure 0.1. The paths w1; : : : ; wk in E interact with the gas of loops through the random
potentials.

The typical representation formula for the moments of the random field in (0.9) looks
like this: for k � 1, z1; : : : ; z2k 2 E,

h'z1
: : : 'z2k

i D
P

pairings
of z1; : : : ; z2k

Px1;y1
˝ � � � ˝ Pxk ;yk

˝Q
�
e� P

x2E vx.LxC xLx
1.w1/C���C xLx

1.wk//
�

Q
�
e� P

x2E vxLx
� ;

(0.10)
where the sum runs over the (non-ordered) pairings (i.e. partitions) of the symbols
z1; z2; : : : ; z2k into fx1; y1g; : : : ; fxk; ykg. Under Q the vx; x 2 E, are i.i.d. �-
distributed (random potentials), independent of the Lx , x 2 E, which are distributed
as the total occupation times (properly scaled to take account of the weights and
killing measure) of the gas of loops with intensity 1

2
�, and the Pxi ;yi

, 1 � i � k are
defined just as below (0.4), (0.5).

The Poisson point process of Markovian loops has many interesting properties.
We will for instance see that when ˛ D 1

2
(i.e. the intensity measure equals 1

2
�),

.Lx/x2E has the same distribution as 1
2
.'2

x/x2E , where

.'x/x2E stands for the Gaussian free field in (0.3).
(0.11)

The Poisson gas of Markovian loops is also related to the model of random interlace-
ments [27], which loosely speaking corresponds to “loops going through infinity”. It
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appears as well in the recent developments concerning conformally invariant scaling
limits, see Lawler–Werner [16], Sheffield–Werner [24]. As for random interlace-
ments, interestingly, in place of (0.11), they satisfy an isomorphism theorem in the
spirit of the generalized second Ray–Knight theorem, see [28].


