Notation and conventions

Below we list the notation and conventions used in this book. Most of them are standard.

Sets

\mathbb{N}	the set of natural numbers $(0 \notin \mathbb{N})$
\mathbb{Z}	the set of integer numbers
\mathbb{R}	the set of real numbers
\mathbb{C}	the set of complex numbers
$(x_i)_{i \in I}$	a sequence indexed by I
$\coprod_{i\in I} X_i$	for a collection of sets $\{X_i \mid i \in I\}$, the disjoint sum of the sets X_i
$A \bigtriangleup B$	symmetric difference of A and B, i.e., $A \triangle B = (A \setminus B) \cup (B \setminus A)$
supp <i>f</i>	the support of a function $f: X \to \mathbb{R}$, i.e., the set of those $x \in X$ for which $f(x) \neq 0$
$nbhd_R(A)$	the <i>R</i> -neighborhood of a subset $A \subseteq X$ of a metric space X, $nbhd_R(A) = \{x \in X \mid d(x, A) \le R\}$
$\partial_r A$	the <i>r</i> -boundary of a subset $A \subseteq X$ of a metric space <i>X</i> , defined as $\{x \in X \setminus A \mid d(x, A) \le r\}$
$\partial^e A$	the edge boundary of a set $A \subseteq V$ in a graph $X = (V, E)$, defined as the set of those edges $e \in E$, which have exactly
	one vertex in A

Numbers

#A	the number of elements of a set A
<i>x</i>	the absolute value of $x \in \mathbb{R}$
g	in a group G, the length of an element $g \in G$
$\lfloor x \rfloor = \sup\{z \in \mathbb{Z} \mid x \ge z\}$	the floor function of $x \in \mathbb{R}$
$(x \mid y)_v$	the Gromov product of x and y with respect to p
$\langle v, w \rangle$	duality pairing of vectors

Groups

$e \in G$	the identity element in the group G
\mathbb{F}_n	the free group on <i>n</i> generators
$g \cdot f$	the translation action of $g \in G$ on a function $f: G \to X$, defined by $(g \cdot f)(h) = f(hg)$

Spaces

 $B_X(x,r) \text{ or } B(x,r)$ $S_X(x,r) \text{ or } S(x,R)$ f(X) $\ell_p(I) = \{(x_i)_{i \in I} \mid \sum_{i \in I} |x_i|^p < \infty\}$ $\ell_p(I)_{1,+}$ $(\bigoplus X_n)_{(p)}$

Functions

 1_A the characteristic function of a set A

 1_x the Dirac function at x

the closed ball of radius *r* centered at $x \in X$, $B_X(x, R) = \{y \in X \mid d(x, y) \le R\}$ the sphere of radius *r* centered at $x \in X$, $S_X(x, R) = \{y \in X \mid d(x, y) = R\}$ the image of the set *X* under a map *f* the ℓ_p -space on *I* the set $\{f : I \to \mathbb{R} \mid f(i) \ge 0 \text{ for all } i \in I \text{ and } \|f\|_p = 1\}$ the direct sum of Banach spaces X_n with the norm $\|(x_n)\|_p = (\sum_{i=1}^{\infty} \|x_n\|^p)^{1/p}$