
Chapter 1

Introduction

1.A Discrete groups as metric spaces

Whenever a group � appears in geometry, which typically means that � acts on a
metric space of some sort (examples include universal covering spaces, Cayley graphs
and Rips complexes), the geometry of the space reflects some geometry of the group.

This phenomenon goes back at least to Felix Klein and Henri Poincaré, with tes-
sellations of the half-plane related to subgroups of the modular groups, around 1880.
It has then been a well-established tradition to study properties of groups which can
be viewed, at least in retrospect, as geometric properties. As a sample, we can men-
tion:

– “Dehn Gruppenbild” (also known as Cayley graphs), used to picture finitely gen-
erated groups and their word metrics, in particular knot groups, around 1910. Note
that Dehn introduced word metrics for groups in his articles on decision problems
(1910–1911).

– Amenability of groups (von Neumann, Tarski, late 20’s), and its interpretation in
terms of isoperimetric properties (Følner, mid 50’s).

– Properties “at infinity”, or ends of groups (Freudenthal, early 30’s), and struc-
ture theorems for groups with two or infinitely many ends (Stallings for finitely
generated groups, late 60’s, Abels’ generalization for totally disconnected locally
compact groups, 1974).

– Lattices in Lie groups, and later in algebraic groups over local fields; first a collec-
tion of examples, and from the 40’s a subject of growing importance, with founda-
tional work by Siegel, Mal’cev, Mostow, L. Auslander, Borel & Harish-Chandra,
Weil, Garland, H.C. Wang, Tamagawa, Kazhdan, Raghunathan, Margulis (to quote
only them); leading to:

– Rigidity of groups, and in particular of lattices in semisimple groups (Mostow,
Margulis, 60’s and 70’s).

– Growth of groups, introduced independently (!) by A.S. Schwarz (also written
Švarc) in 1955 and Milnor in 1968, popularized by the work of Milnor and Wolf,
and studied later by Grigorchuk, Gromov, and others, including Guivarc’h, Jenkins,
and Losert for locally compact groups.

– Structure of groups acting faithfully on trees (Tits, Bass–Serre theory, Dunwoody
decompositions and accessibility of groups, 70’s); tree lattices.

– Properties related to random walks (Kesten, late 50’s, Guivarc’h, 70’s, Varopoulos).
– And the tightly interwoven developments of combinatorial group theory and low

dimensional topology, from Dehn to Thurston, and so many others.

From 1980 onwards, for all these reasons and under the guidance of Gromov, in par-
ticular of his articles [Grom–81b, Grom–84, Grom–87, Grom–93], the group com-
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munity has been used to consider a group (with appropriate conditions) as a metric
space, and to concentrate on large-scale properties of such metric spaces.

Different classes of groups can be characterized by the existence of metrics with
additional properties. We often write discrete group for group, in view of later sec-
tions about topological groups, and especially locally compact groups. In the discrete
setting, we distinguish four classes, each class properly containing the next one:

(all) all discrete groups;
(ct) countable groups;
(fg) finitely generated groups;
(fp) finitely presented groups.

This will serve as a guideline below, in the more general setting of locally compact
groups.

Every group � has left-invariant metrics which induce the discrete topology, for
example that defined by d.�; � 0/ D 1 whenever �; � 0 are distinct. The three other
classes can be characterized as follows.

Proposition 1.A.1. Let � be a group.

(ct) � is countable if and only if it has a left-invariant metric with finite balls. More-
over, if d1; d2 are two such metrics, the identity map .�; d1/ �! .�; d2/ is a
metric coarse equivalence.

Assume from now on that � is countable.

(fg) � is finitely generated if and only if, for one .equivalently, for every/ met-
ric d as in .ct/, the metric space .�; d/ is coarsely connected. Moreover, a
finitely generated group has a left-invariant large-scale geodesic metric with
finite balls .e.g., a word metric/; if d1; d2 are two such metrics, the identity map
.�; d1/ �! .�; d2/ is a quasi-isometry.

(fp) � is finitely presented if and only if, for one .equivalently, for every/ metric d
as in .ct/, the metric space .�; d/ is coarsely simply connected.

The technical terms of the proposition can be defined as follows; we come back
to these notions in Sections 3.A, 3.B, and 6.A. A metric space .X; d/ is

– coarsely connected if there exists a constant c > 0 such that, for every pair .x; x0/
of points of X , there exists a sequence x0 D x; x1; : : : ; xn D x0 of points in X
such that d.xi�1; xi / � c for i D 1; : : : ; n,

– large-scale geodesic if there exist constants a > 0, b � 0 such that the previous
condition holds with, moreover, n � ad.x; x0/C b,

– coarsely simply connected if every “loop” x0; x1; : : : ; xn D x0 of points in X
with an appropriate bound on the distances d.xi�1; xi/, can be “deformed by small
steps” to a constant loop x0; x0; : : : ; x0; see 6.A.5 for a precise definition.

If X and Y are metric spaces, a map f W X �! Y is

– a metric coarse equivalence if,
� for every c > 0, there exists C > 0 such that,

for x; x0 2 X with dX .x; x
0/ � c, we have dY .f .x/; f .x

0// � C ,
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� there exists g W Y �! X with the same property, satisfying
supx2X dX .g.f .x//; x/ <1 and supy2Y dY .f .g.y//; y/ <1;

– a quasi-isometry if there exist a > 0, b � 0 such that
� dY .f .x/; f .x

0// � adX.x; x
0/C b for all x; x0 2 X ,

� there exists g W Y �! X with the same property, satisfying
supx2X dX .g.f .x//; x/ <1 and supy2Y dY .f .g.y//; y/ <1.

Two metrics d; d 0 on a set X are coarsely equivalent [resp. quasi-isometric] if the
identity map .X; d/ �! .X; d 0/ is a metric coarse equivalence [resp. a quasi-iso-
metry].

The characterizations of Proposition 1.A.1 provide conceptual proofs of some ba-
sic and well-known facts. Consider for example a countable group � , a subgroup of
finite index �, a finite normal subgroup N C � , and a left-invariant metric d on � ,
with finite balls. Coarse connectedness and coarse simple connectedness are prop-
erties invariant by metric coarse equivalence. A straightforward verification shows
that the inclusion � � � is a metric coarse equivalence; it follows that � is finitely
generated (or finitely presented) if and only if � has the same property.

It is desirable to have a similar argument for � and �=N ; for this, it is better to
rephrase the characterizations (ct), (fg), and (fp) in terms of pseudo-metrics rather
than in terms of metrics. “Pseudo” means that the pseudo-metric evaluated on two
distinct points can be 0.

It is straightforward to adapt to pseudo-metric spaces the technical terms defined
above and Proposition 1.A.1.

1.B Discrete groups and locally compact groups

It has long been known that the study of a group � can be eased when it sits as a
discrete subgroup of some kind in a locally compact group G.

For instance, a cocompact discrete subgroup in a connected locally compact group
is finitely generated (Propositions 2.C.3 and 2.C.8). The following two standard ex-
amples, beyond the scope of the present book, involve a lattice � in a locally compact
groupG: first, Kazhdan Property (T) is inherited from G to � [BeHV–08]; second, if
� is moreover cocompact in G, cohomological properties of � can be deduced from
information on G or on its homogeneous spaces [Brow–82, Serr–71].

Other examples of groups � that are usefully seen as discrete subgroups of G
include finitely generated torsion-free nilpotent groups, which are discrete cocom-
pact subgroups in simply connected nilpotent Lie groups [Ragh–72, Theorem 2.18],
and polycyclic groups, in which there are subgroups of finite index that are discrete
cocompact subgroups in simply connected solvable Lie groups [Ragh–72, Theorem
4.28]. For some classes of solvable groups, the appropriate ambient group G is not
Lie, but a group involving a product of linear groups over non-discrete locally com-
pact fields. For example, for a prime p, the group ZŒ1=p� of rational numbers of the
form a=pk (with a 2 Z and k � 0), and the p-adic field Qp , we have the diagonal
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embedding
ZŒ1=p� ,�! R �Qp;

the image of which is a discrete subgroup with compact quotient. We refer to Example
8.D.2 for other examples, of the kind

ZŒ1=6� Ì1=6 Z ,�! .R �Q2 �Q3/ Ì1=6 Z;

the image of which is again discrete with compact quotient.
It thus appears that the natural setting is that of locally compact groups. (This gen-

eralization from Lie groups to locally compact groups is more familiar in harmonic
analysis than in geometry.) More precisely, for the geometric study of groups, it is ap-
propriate to consider � -compact and compactly generated locally compact groups;
in the case of discrete groups, � -compact groups are countable groups, and compact
generation reduces to finite generation. Though it is not so well-known, there is a
stronger notion of compact presentation for locally compact groups, reducing to fi-
nite presentation in the case of discrete groups. One of our aims is to expose basic
facts involving these properties.

We use LC-group as a shorthand for “locally compact group”.

1.C Three conditions on LC-groups

Locally compact groups came to light in the first half of XXth century. The no-
tion of compactness slowly emerged from 19th century analysis, and the term was
coined by Fréchet in 1906; see [Enge–89, page 136]. Local compactness for spaces
was introduced by Pavel Alexandrov in 1923 [Enge–89, page 155]. The first ab-
stract definition of a topological group seems to be that of Schreier [Schr–25]; early
contributions to the general theory, from the period 1925–1940, include articles by
Leja, van Kampen, Markoff, Freudenthal, Weyl, von Neumann (these are quoted in
[Weil–40, chapitre 1]), as well as van Dantzig, Garrett Birkhoff, and Kakutani. Influ-
ential books were published by Pontryagin [Pont–39] and Weil [Weil–40], and later
by Montgomery & Zippin [MoZi–55].

(Lie groups could be mentioned, but with some care. Indeed, in the early theory of
XIXth century, “Lie groups” are local objects, not systematically distinguished from
Lie algebras before Weyl, even if some examples are “global”, i.e., are topological
groups in our sense. See the discussion in [Bore–01], in particular his � I.3.)

Among topological groups, LC-groups play a central role, both in most of what
follows and in other contexts, such as ergodic theory and representation theory. Recall
that these groups have left-invariant regular Borel measures, as shown by Haar (1933)
in the second-countable case, and by Kakutani and Weil (late 30’s) in the general case.
Conversely, a group with a “Haar measure” is locally compact; see La réciproque du
théorème de Haar, Appendice I in [Weil–40], and its sharpening in [Mack–57]; see
also Appendix B in [GlTW–05]. Gelfand and Raikov (1943) showed that LC-groups
have “sufficiently many” irreducible continuous unitary representations [Dixm–69,
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Corollary 13.6.6]; this does not carry over to topological groups (examples of topo-
logical groups that are abelian, locally homeomorphic to Banach spaces, and without
any non-trivial continuous unitary representations are given in [Bana–83, Bana–91]).

Let G be an LC-group. Denote by G0 its identity component, which is a normal
closed subgroup; G0 is connected and the quotient group G=G0 is totally discon-
nected. Our understanding of connected LC-groups, or more generally of LC-groups
G with G=G0 compact, has significantly increased with the solution of Hilbert Fifth
Problem in the early 1950’s (Gleason, Montgomery, Zippin, Yamabe, see [MoZi–55]).
The seminal work of Willis ([Will–94], see also [Will–01a, Will–01b]) on dynam-
ics of automorphisms of totally disconnected LC-groups allowed further progress.
Special attention has been given on normal subgroups and topologically simple to-
tally disconnected LC-groups [Will–07, CaMo–11, CaRW–I, CaRW–II].

The goal of this book is to revisit three finiteness conditions on LC-groups, three
natural generalizations of countability, finite generation, and finite presentation.

The first two, � -compactness and compact generation, are widely recognized as
fundamental conditions in various contexts. The third, compact presentation, was
introduced and studied by the German school in the 60’s (see Section 1.E below), but
mainly disappeared from the landscape until recently; we hope to convince the reader
of its interest. For an LC-group G, here are these three conditions:

(�C) G is � -compact if it has a countable cover by compact subsets. In analysis,
this condition ensures that a Haar measure on G is � -finite, so that the Fubini
theorem is available.

(CG) G is compactly generated if it has a compact generating set S .
(CP) G is compactly presented if it has a presentation hS j Ri with the generating

set S compact in G and the relators in R of bounded length.

Though it does not have the same relevance for the geometry of groups, it is some-
times useful to consider one more condition: G is second-countable if its topology
has a countable basis; the notion (for LC-spaces) goes back to Hausdorff’s 1914 book
[Enge–89, page 20].

There is an abundance of groups that satisfy these conditions:

(CP) Compactly presented LC-groups include connected-by-compact groups, abe-
lian and nilpotent compactly generated groups, and reductive algebraic groups
over local fields. (Local fields are p-adic fields Qp and their finite extensions,
and fields Fq..t// of formal Laurent series over finite fields.)

(CG) Examples of compactly generated groups that are not compactly presented
include
(a) K2 Ì SL2.K/, where K is a local field (Example 8.A.28),
(b) .R�Q2 �Q3/Ì2=3 Z, where the generator of Z acts by multiplication by

2=3 on each of R, Q2, and Q3 (Example 8.D.2).
(�C) GLn.K/ and its closed subgroups are second-countable� -compact LC-groups,

for every non-discrete locally compact field K and every positive integer n.

The condition of � -compactness rules out uncountable groups with the discrete
topology, and more generally LC-groups G with an open subgroup H such that
the homogeneous space G=H is uncountable; see Remark 2.A.2(3), Example 2.B.8,
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Corollaries 2.C.6 & 2.E.7(1), and Example 8.B.7(1). Among � -compact groups, sec-
ond countability rules out “very large” compact groups, such as uncountable direct
products of non-trivial finite groups.

It is remarkable that each of the above conditions is equivalent to a metric condi-
tion, as we now describe more precisely.

1.D Metric characterization of topological properties
of LC-groups

A metric on a topological space is compatible if it defines the given topology. It is
appropriate to relax the condition of compatibility for metrics on topological groups,
for at least two reasons.

On the one hand, a � -compact LC-group G need not be metrizable (as uncount-
able products of non-trivial finite groups show). However, the Kakutani–Kodaira
theorem (Theorem 2.B.6) establishes that there exists a compact normal subgroup
K such that G=K has a left-invariant compatible metric dG=K ; hence dG.g; g

0/ WD
dG=K.gK; g

0K/ defines a natural pseudo-metric dG onG, with respect to which balls
are compact. On the other hand, an LC-group G generated by a compact subset S
has a word metric dS defined by

dS.g; g
0/ D min

�
n 2 N

ˇ̌̌̌
there exist s1; : : : ; sn 2 S [ S�1

such that g�1g0 D s1 � � � sn
�
:

Note that dS need not be continuous as a function G �G �! RC. For example, on
the additive group of real numbers, we have dŒ0;1�.0; x/ D djxje WD minfn � 0 j n �
jxjg for all x 2 R; hence 1 D dŒ0;1�.0; 1/ ¤ lim"!0 dŒ0;1�.0; 1C "/ D 2 (with " > 0
in the limit).

As a consequence, we consider non-necessarily continuous pseudo-metrics,
rather than compatible metrics. In this context, it is convenient to introduce some
terminology.

A pseudo-metric d on a topological space X is proper if its balls are relatively
compact, and locally bounded if every point in X has a neighbourhood of finite
diameter with respect to d . A pseudo-metric on a topological group is adapted if it is
left-invariant, proper, and locally bounded; it is geodesically adapted if it is adapted
and large-scale geodesic. Basic examples of geodesically adapted metrics are the
word metrics with respect to compact generating sets. On an LC-group, a continuous
adapted metric is compatible, by Proposition 2.A.9.

Every LC-group has a left-invariant pseudo-metric with respect to which balls of
small enough radius are compact (Corollary 4.A.4). The classes (�C), (CG) and (CP)
can be characterized as follows.
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Proposition 1.D.1 (characterization of � -compact groups). An LC-group G is � -
compact if and only if it has an adapted metric, if and only if it has an adapted pseudo-
metric, if and only if it has an adapted continuous pseudo-metric .Proposition 4.A.2/.

If G has these properties, two adapted pseudo-metrics on G are coarsely equiva-
lent .Corollary 4.A.6/.

In particular, a � -compact group can be seen as a pseudo-metric space, well-
defined up to metric coarse equivalence. See also Corollary 3.E.6.

The main ingredients of the proof are standard results: the Birkhoff–Kakutani
theorem, which characterizes topological groups that are metrizable, the Struble theo-
rem, which characterizes locally compact groups whose topology can be defined by a
proper metric, and the Kakutani–Kodaira theorem, which establishes that � -compact
groups are compact-by-metrizable (Theorems 2.B.2, 2.B.4, and 2.B.6).

Proposition 1.D.2 (characterization of compactly generated groups). Let G be a � -
compact LC-group and d an adapted pseudo-metric on G.

G is compactly generated if and only if the pseudo-metric space .G; d/ is coarsely
connected. Moreover, if this is so, there exists a geodesically adapted continuous
pseudo-metric on G .Proposition 4.B.8/.

If G is compactly generated, any two geodesically adapted pseudo-metrics on G
are quasi-isometric .Corollary 4.B.11/.

In particular, word metrics associated to compact generating sets of G are bilip-
schitz equivalent to each other .Proposition 4.B.4/.

Alternatively, an LC-group is compactly generated if and only if it has a faithful
geometric action (as defined in 4.C.1) on a non-empty geodesic pseudo-metric space
(Corollary 4.C.6). In particular a compactly generated group can be seen as a pseudo-
metric space, well-defined up to quasi-isometry.

To obtain characterizations with metrics, rather than pseudo-metrics, second-
countability is needed:

An LC-group G is second-countable if and only if it has a left-invariant proper
compatible metric .Struble Theorem 2.B.4/.

An LC-groupG is second-countable and compactly generated if and only ifG has
a large-scale geodesic left-invariant proper compatible metric .Proposition 4.B.9/.

It is a crucial fact for our exposition that compact presentability can be character-
ized in terms of adapted pseudo-metrics:

Proposition 1.D.3 (characterization of compactly presented groups). LetG be a com-
pactly generated LC-group and d an adapted pseudo-metric on G.

G is compactly presented if and only if the pseudo-metric space .G; d/ is coarsely
simply connected .Proposition 8.A.3/.
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One of the motivations for introducing metric ideas as above appears in the fol-
lowing proposition (see Section 4.C), which extends the discussion at the end of Sec-
tion 1.A:

Proposition 1.D.4. LetG be a � -compact LC-group,H a closed subgroup ofG such
that the quotient space G=H is compact, and K a compact normal subgroup of G.
Then the inclusion map i W H ,�! G and the projection p W G �� G=K are metric
coarse equivalences with respect to adapted pseudo-metrics on the groups. Moreover,
if G is compactly generated and the pseudo-metrics are geodesically adapted, the
maps i and p are quasi-isometries.

In particular, if � is a discrete subgroup of G such that G=� is compact, G is
compactly generated Œrespectively compactly presented� if and only if � is finitely
generated Œresp. finitely presented�.

For other properties that hold (or not) simultaneously for G and � , see Remarks
4.A.9 and 4.B.14.

1.E On compact presentations

Despite its modest fame for non-discrete groups, compact presentability has been
used as a tool to establish finite presentability of S -arithmetic groups. Consider an
algebraic group G defined over Q. By results of Borel and Harish-Chandra, the group
G.Z/ is finitely presented [Bore–62]. Let S be a finite set of primes, and let ZS

denote the ring of rational numbers with denominators products of primes in S . It
is a natural question to ask whether G.ZS/ is finitely presented; for classical groups,
partial answers were given in [Behr–62].

The group G.ZS/ is naturally a discrete subgroup in G WD G.R/�Qp2S G.Qp/.
In [Knes–64], Martin Kneser has introduced the notion of compact presentability,
and has shown that G.ZS/ is finitely presented if and only if G.Qp/ is compactly
presented for all p 2 S ; an easy case, that for which G=G.ZS/ is compact, follows
from Corollary 8.A.5 below. Building on results of Bruhat and Tits, Behr has then
shown that, when G is reductive, G.K/ is compactly presented for every local field
K [Behr–67, Behr–69]. To sum up, using compact presentability, Kneser and Behr
have shown that G.ZS/ is finitely presented for every reductive group G defined over
Q and every finite set S of primes. (Further finiteness conditions for such groups are
discussed in several articles by Borel and Serre; we quote [BoSe–76].)

After these articles of Kneser and Behr from the 60’s, Abels discussed compact
presentation in great detail for solvable linear algebraic groups [Abel–87], show-
ing in particular that several properties of G.ZŒ1=p�/ are best understood together
with those of G.Qp/. Otherwise, compact presentations seem to have disappeared
from the literature. In his influential article on group cohomology and properties of
arithmetic and S -arithmetic groups, Serre does not cite Kneser, and he cites [Behr–62,
Behr–69] only very briefly [Serr–71, in particular page 127].
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1.F Outline of the book

Chapter 2 contains foundational facts on LC-spaces and groups, the theorems of
Birkhoff–Kakutani, Struble, and Kakutani–Kodaira, on metrizable groups, with proofs,
and generalities on compactly generated LC-groups. The last section describes re-
sults on the structure of LC-groups; they include a theorem from the 30’s on compact
open subgroups in totally disconnected LC-groups, due to van Dantzig, and (with-
out proofs) results from the early 50’s solving the Hilbert Fifth Problem, due among
others to Gleason, Montgomery and Zippin, and Yamabe.

Chapter 3 deals with two categories of pseudo-metric spaces that play a major
role in our setting: the metric coarse category, in which isomorphisms are closeness
classes of metric coarse equivalences (the category well-adapted to � -compact LC-
groups), and the large-scale category, in which isomorphisms are closeness classes
of quasi-isometries (the category well-adapted to compactly generated LC-groups).
Section 3.C shows how pseudo-metric spaces can be described in terms of their metric
lattices, i.e., of their subsets which are both uniformly discrete and cobounded. Sec-
tion 3.D illustrates these notions by a discussion of notions of growth and amenability
in appropriate spaces and groups. Section 3.E, on what we call the coarse category,
alludes to a possible variation, involving bornologies rather than pseudo-metrics.

Chapter 4 shows how the metric notions of Chapter 3 apply to LC-groups. In par-
ticular, every � -compact LC-group has an adapted metric (Proposition 1.D.1), and ev-
ery compactly generated LC-group has a geodesically adapted pseudo-metric (Propo-
sition 1.D.2). Moreover, � -compact LC-groups are precisely the LC-groups that can
act on metric spaces in a “geometric” way, namely by actions that are isometric,
cobounded, locally bounded, and metrically proper; and compactly generated LC-
groups are precisely the LC-groups that can act geometrically on coarsely connected
pseudo-metric spaces (Theorem 4.C.5, sometimes called the fundamental theorem of
geometric group theory). Section 4.D illustrates these notions by discussing locally
elliptic groups, namely LC-groups in which every compact subset is contained in a
compact open subgroup (equivalently LC-groups G with an adapted metric d such
that the metric space .G; d/ has asymptotic dimension 0).

Chapter 5 contains essentially examples of compactly generated LC-groups, in-
cluding isometry groups of various spaces.

Chapter 6 deals with the appropriate notion of simple connectedness for pseudo-
metric spaces, called coarse simple connectedness. In Section 6.C, we introduce the
(2-skeleton of the) Rips complex of a pseudo-metric space.

Chapter 7 introduces bounded presentation, i.e., presentations hS j Ri with ar-
bitrary generating set S and relators in R of bounded length. It is a technical inter-
lude before Chapter 8, on compactly presented groups, i.e., on bounded presentations
hS j Ri of topological groups G with S compact in G.

As explained in Chapter 8, an LC-group is compactly presented if and only if the
pseudo-metric space .G; d/ is coarsely simply connected, for d an adapted pseudo-
metric. Important examples of compactly presented LC-groups, include:
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(c) Connected-by-compact groups.
(d) Abelian and nilpotent compactly generated LC-groups.
(e) LC-groups of polynomial growth.
(f) Gromov-hyperbolic LC-groups.
(g) .R �Q2 �Q3/ Ì1=6 Z (compare with (b) in Section 1.C).
(h) SLn.K/, for every n � 2 and every local field K.
(i) Every reductive group over a non-discrete LC-field is compactly presented (this

last fact is not proven in this book).

(Items (a) and (b) of the list appear above, near the end of Section 1.C, and refer to
LC-groups which are not compactly presented.) A large part of Chapter 8 is devoted
to the Bieri–Strebel splitting theorem: letG be a compactly presented LC-group such
that there exists a continuous surjective homomorphism � W G �� Z; then G is
isomorphic to an HNN-extension HNN.H;K;L; '/ of which the base group H is a
compactly generated subgroup of ker.�/. Among the prerequisites, there is a section
exposing how to extend the elementary theory of HNN-extensions and free products
with amalgamation from the usual setting of abstract groups to our setting of LC-
groups (Section 8.B).

For another and much shorter presentation of the subject of the book, see [CoHa].
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