Introduction

The study of complex Monge—Ampere equations on compact Kihler manifolds is an
important part of the interface between complex analysis and differential geometry.
Prescribing the Ricci curvature, constructing Kdhler—Einstein metrics, or finding met-
rics of constant scalar curvature are problems that boil down to (or use in an essential
way) solving a complex Monge—Ampere equation. Consider for example

(0 + dd°p)* = eF @y,
where  is a Kéhler form, n = dim¢ X, u = e"w" is a smooth volume form,
and F' a smooth function: solving the Calabi conjecture boils down to solving this
equation when F = 0, while constructing Kéhler—Einstein metrics corresponds to
F(¢) = —A¢, where A is a real number whose sign is that of the first Chern class of
the underlying manifold.
In local coordinates, this equation for an unknown function ¢ can be written
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where the Kéhler form w is locally written as

n
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It has been realized a few decades ago that it is necessary to deal with mildly
singular complex algebraic varieties in order to study the birational classification of
smooth complex algebraic manifolds in dimension > 3. It is thus desirable to con-
struct canonical metrics on varieties with mild singularities.

If the singularities are sufficiently mild, one can still make sense of the key objects
of study (canonical bundle, Ricci curvature, etc). The search for canonical metrics
leads one to study degenerate complex Monge—Ampere equations where  is merely
semi-positive and yu = fdV is absolutely continuous with respect to Lebesgue mea-
sure, with density f € L?, p > 1, that might vanish or be unbounded.

The attempt to solve these degenerate complex Monge—Ampere equations runs
into severe analytic difficulties, as the solutions are no longer smooth. One needs
to introduce new tools, study weak solutions, and establish partial regularity of the
latter. This is the main purpose of this book.
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What you will find in this book

The book is divided in four parts and sixteen chapters. The first part deals with
pluripotential theory in domains of C”, giving a self-contained presentation of Bed-
ford—Taylor Theory initiated in [BT76, BT82]. This theory allows one to define gen-
eralized solutions of complex Monge—Ampere equations and has many applications
in complex analysis and dynamics. We haven’t tried to address all of these; rather,
we merely present in detail those results that we use in the sequel.

In the second part we transfer and adapt this theory to the context of compact
Kéhler manifolds. Since there are no plurisubharmonic functions, quasi-plurisub-
harmonic functions play the leading role. We also introduce and study finite-energy
classes, which play a crucial role in the sequel, following [GZ07] (with complements
from [BBEGZ11]). Similar notions were developed by Cegrell in the local setting
[Ceg98].

The third part is devoted to solving degenerate complex Monge—Ampere equa-
tions in various ways. We develop a variational technique in finite-energy classes
following [BBGZ13], we explore a viscosity approach [EGZ11], we present a de-
tailed proof of several deep a priori L™ estimates that extend Yau’s and Kolodziej’s
cornerstone results [Yau78, Kol98], and we eventually establish the smoothness of
solutions to some complex Monge—Ampere equations in Zariski open sets.

We give many applications of these results in the fourth part, obtaining Yau’s so-
lution to the Calabi conjecture [ Yau78] as well as its singular extensions, and showing
how to construct (singular) Kidhler—Einstein metrics on varieties with mild singulari-
ties [EGZ09].

There has been an enormous amount of work on pluripotential theory since Bed-
ford and Taylor laid down the foundations fourty years ago. There have also been
many important works on Kihler geometry since Yau’s resolution of the Calabi con-
jecture at about the same time. These fields are vast and developing very rapidly, so
it should be made clear that this book is not an attempt to survey these developments.
There are good surveys on these, including [Bed93, Kis00, Kol05, PS10, PSS12, G12,
Dem13, BEG13].

Our selection of material reflects our own taste and limitations. The heart of the
book is Part 3, where we solve various degenerate complex Monge—Ampere equations
by using pluripotential tools. We have tried to organize the first two parts in such a
way as to quickly reach the point where we can efficiently solve these equations.

There are many interesting subjects that we haven’t had the time to cover, notably
the recent resolution by Chen, Donaldson, and Sun of the Yau-Tian—Donaldson con-
jecture in the Kédhler—Einstein setting [CDS1, CDS2, CDS3]; it would require at least
another book to cover this single result!
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Prerequisites

This book is an extended version of lecture notes for a graduate course given by
the authors at Université Paul Sabatier (Toulouse, France) in 2011-12. There were
sixteen four-hour lectures roughly corresponding to the contents of the chapters.

Of course we could not cover all the material presented in this text. On the aver-
age, two thirds of each chapter were covered.

There are plenty of Exercises at the end of each chapter. But for a few exceptions,
their purpose is either to complete the proof of a result which is only sketched in
the text, or to add extra information to the material presented in the chapter. These
exercises are not easy and are mostly a pretext to encourage the reader to think further
and have complementary readings.

We have succeeded in presenting the major part of this material in a year-long
graduate course which corresponds to the fifth year of University studies in France
(M2R), but the book is so organized that it should be equally convenient for one (or
more) course(s) for PhD students having some interest in one of the following topics

e Complex analysis/geometry.
e Non-linear PDEs of geometric origin.
e Geometric analysis and/or differential geometry.

In the book we briefly recall some fundamental facts from complex analysis and
Kihler geometry, but it would certainly be preferable (although not absolutely nec-
essary) for the reader either to have some basic knowledge in, or complement with
lectures on

e Complex algebraic geometry [GH, Laz, V].

e Minimal Model Program [Deb01, Kollar].

e Riemannian and complex differential geometry [GHL, T].
e Several complex variables [Dem, Horm90].

We recall several notions from complex algebraic and Kéhler manifolds in Chap-
ter 7, together with the various definitions of curvatures and canonical metrics in
Kihler geometry. We are aware that this chapter is rather heavy for those who have
no background in these fields. Apart from a few striking facts like the d d°-lemma,
they are not used intensively in the sequel, which focuses instead mainly on the study
of (degenerate) complex Monge—Ampere equations.

Apart from these exceptions, the first three parts of the book are rather self-
contained. The only other tools that we take for granted are Hormander’s solution
of 9 with L2-estimates (which we use only on a few occasions) and Schauder’s the-
ory for linear elliptic equations of second order (as can be found in any standard PDE
textbook, e.g., [GT83]). The fourth part is of a more expository nature.
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How are complex Monge-Ampere equations solved?

To solve degenerate complex Monge—Ampere equations of the type, say (w+d d p)" =
W, one might first try to treat the case when p is a linear combination of Dirac masses,
and then proceed by approximation.

While this approach works quite well for the real Monge—Ampere equation [GutO1,
Theorem 1.6.2], it fails miserably in the complex case. In general, it’s not even clear
how to treat the case of a single Dirac mass [CG09]! The difficulty lies in the lack of
regularity of quasi-plurisubharmonic functions: while the real Monge—Ampere equa-
tion deals with convex functions which are locally Lipschitz, the complex Monge—
Ampere equation concerns (quasi-)plurisubharmonic functions, and these are not nec-
essarily continuous (or even bounded). In particular, the complex Monge—Ampere
operator is not well defined for all quasi-plurisubharmonic functions, and it is not
continuous for the weak topology.

We list below different methods that we develop in the book, starting with the
continuity method. It was advocated by Calabi [Cal57] as an approach to solve the
Calabi conjecture, and was successfully implemented by Yau [Yau78].

Continuity method The continuity method is a classical tool to try and solve
non-linear PDEs. It consists in deforming the PDE of interest into a simpler one for
which one already knows the existence of a solution. For the Calabi conjecture, one
can use the following path,

(CY), (@ + dd°g,)" = [zeh . z)] ",

where 0 < ¢ < 1 and ¢, is a Kéhler potential (i.e.,  + dd g, is a Kéhler form)
normalized so that || x %t @" = 0 (to guarantee uniqueness). The equation of interest
corresponds to ¢ = 1, while (CY)o admits the obvious (and unique) solution ¢g = 0.

The goal is then to show that the set S C [0, 1] of parameters for which there is
a (smooth) solution is both open and closed in [0, 1]: since [0, 1] is connected and
0 € §, it will then follow that S = [0, 1], hence 1 € S.

The openness follows by linearizing the equation (this involves the Laplace op-
erator associated to w; = w + dd°¢;) and using the inverse function theorem. One
then needs to establish various a priori estimates to show that § is closed. This step
constitutes the core of the proof. We establish these estimates in Chapters 12 and 14
and use them to construct Kihler—Einstein metrics in Chapter 15.

The situation is a bit more delicate when w is merely semi-positive and big (i.e.,
with positive volume |’ x @" > 0). The Laplace operator A, is for instance no longer
invertible. One can approximate w by w + ewy, where wy is Kiahler and ¢ N\ 0.
When the left-hand side u = fdV is moreover degenerate, one can regularize it,
use Yau’s solution to the Calabi conjecture, and try and pass to the limit. This is the
approach used in [EGZ09] to solve the singular Calabi conjecture on mildly singular
varieties, as we explain in Chapter 16.
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Variational approach For ¢ a Kihler potential we set
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where V = [} 0" = Vol,(X) and
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is a primitive of the complex Monge—Ampere operator. A function ¢ is a critical
point for F) if and only if it satisfies the Euler—Lagrange equation

e—k(p—h "
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Observe that Fy (¢ + C) = F,(¢), for all C € R, thus F can be thought of as a
functional acting on the metrics w, := @ + dd gp.

The variational approach consists in trying to extremize the functional ), in order
to solve the above complex Monge—Ampéere equation. This usually requires J to
be proper, i.e., F(p;j) — —oo whenever ¢; is a sequence of normalized Kihler
potentials with diverging energies E(¢;) — —oo.

It turns out that F} is always proper when A < 0, but might not be proper when
A > 0. This difference partially explains why it is more difficult to construct Kéhler—
Einstein metrics of positive curvature.

When X is a Fano manifold with no holomorphic vector fields and w € c;(X), a
theorem of Tian [Tian97] (with complements by Phong, Song, Sturm, and Weinkove
[PSSWO8]) states that there exists a Kédhler—Einstein metric if and only if the func-
tional JF; is proper.

We will explain a partial generalization of Tian’s theorem in Chapter 11 following
[BBGZ13]. This generalization has interesting applications in the study of the long-
term behavior of the Kéhler—Ricci flow.

Viscosity techniques A standard PDE approach to second-order degenerate el-
liptic equations is the method of viscosity solutions (see [CIL92] for a survey). This
method is local in nature, and solves existence and uniqueness problems for weak
solutions very efficiently.

Whereas the viscosity theory for real Monge—Ampere equations has been devel-
oped by PL. Lions and others (see e.g., [IL90]), the complex case was not studied
until very recently (see [HLO9] for a viscosity approach to the Dirichlet problem for
the complex Monge—Ampere equation on hyperconvex domains).

A viscosity approach for complex Monge—Ampere equations on compact com-
plex manifolds has been developed in [EGZ11]. Combining pluripotential and vis-



X Introduction

cosity techniques, this approach yields the existence and uniqueness of continuous
solutions to complex Monge—Ampere equations of the type

(w+dd@)" = v,

where X is a compact complex manifold in the Fujiki class, v is a semi-positive prob-
ability measure with L?-density, p > 1, and @ > 0 is a smooth closed semipositive
(1, 1)-form such that [}, " = 1.

This method gives an alternative proof of Kolodziej’s C°-theorem which does
not depend on [Yau78]. It also easily produces the unique negatively curved singular
Kéhler—Einstein metric in the canonical class of a projective manifold of general type,
a result obtained first in [EGZ09].

We explain this viscosity approach first in a local setting in Chapter 6, and then
on compact Kihler manifolds in Chapter 13.

Precise Contents

We now describe more precisely the contents of each chapter.

Chapter 1 We start by reviewing the basic properties of harmonic and subhar-
monic functions in the complex plane C (mean value, maximum principle, Dirichlet
problem in the unit disc, logarithmic potentials).

We then introduce and study the basic properties of plurisubharmonic functions
and give many examples and constructions (infinite series, gluing techniques).

We establish important (Montel type) compacity properties. They will play a
key role in the sequel, showing that properly normalized families of (quasi-)plurisub-
harmonic functions are relatively compact for any of the equivalent L?-topologies,
p>1

Chapter 2 We develop in this chapter the basic theory of positive closed currents,
as introduced by Lelong [Lel57, Lel67, Lel69].

We first recall a few facts of de Rham theory of currents. The latter can be seen
as differential forms with coefficient distributions.

We define positive forms and their duals, positive currents. Fundamental exam-
ples of closed positive currents are currents of integration along (the regular part of)
analytic subsets, as well as closed and positive differential forms (smooth currents).

We give several equivalent definitions of Lelong numbers of plurisubharmonic
functions and present Siu’s fundamental analyticity result. We also explain an im-
portant minimum principle due to Kiselman, and a (uniform) integrability result of
Skoda. We use these results on several occasions in the book.
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Chapter 3 1In this chapter we develop the first steps of the theory of weak complex
Monge—Ampere operators due to Bedford and Taylor [BT76, BT82].

We establish Chern—-Levine—Nirenberg type inequalities that allow to define vari-
ous currents of Monge—Ampere type. These inequalities eventually lead to the defi-
nition of the complex Monge—Ampere operator for bounded plurisubharmonic func-
tions.

We show that the complex Monge—Ampere operator is continuous along mono-
tonic sequences, but it is discontinuous for the L!-topology.

We establish various maximum (comparison and domination) principles. The ba-
sic reference here is [BT82], but we have freely used subsequent simplifications by
Demailly [Dem91], Cegrell [Ceg88, Ceg04], Blocki [Blo02] and Kolodziej [Kol05].
We propose a simplified approach to the continuity along increasing sequences.

Chapter 4 The main focus in this chapter is the Monge—Ampere capacity, an im-
portant concept again due to Bedford and Taylor.

We review the Choquet theory of generalized capacities, which are set functions
generalizing measures, in that they do not satisfy the additivity property.

We study relative extremal functions, i.e., Perron type envelopes, which facilitates
the (rarely explicit) computation of the Monge—Ampere capacity.

The Monge—Ampere capacity characterizes pluripolar sets: a set has zero outer
Monge—Ampere capacity if and only if it is pluripolar (i.e., contained in the —oo
locus of a plurisubharmonic function).

We then show that plurisubharmonic functions are quasi-continuous with respect
to the Monge—Ampere capacity (they are continuous outside a set of arbitrarily small
capacity).

The standard reference here is [BT82], but we have also benefited from various
lecture notes (e.g. [Kol05]).

Chapter 5 We study in Chapter 5 various Dirichlet problems. A landmark refer-
ence here is [BT76].

We start by solving the Dirichlet problem for the Laplace equation and use it to
obtain a useful characterization of subharmonic functions (the inspiration here comes
from viscosity theory, but the latter is only developed in Chapter 6).

We then study the Perron—Bremermann envelope, showing that it is continuous up
to the boundary (with a precise control on the modulus of continuity). This envelope
is the maximal subsolution to the Dirichlet problem. To show that it is actually a
solution, we first treat the case of the unit ball, and then use a classical balayage
technique, following [BT76].

We study several additional Dirichlet problems, allowing the right-hand side to
depend on the unknown function and treating more general densities. This study
depends heavily on stability estimates (works of Cegrell and Kolodziej).

Chapter 6 A standard PDE approach to second-order degenerate elliptic equations
is the method of viscosity solutions introduced in [Lio83] (see [CIL92] for a survey).
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This method is local in nature and efficiently solves existence and uniqueness prob-
lems for weak solutions.

We develop the viscosity approach for complex Monge—Ampere equations on
domains of C”. We first explain the general strategy and then develop the appropriate
notions in the complex case. An important difference with the real case is a lack of
symmetry between subsolutions and supersolutions.

The key step is to establish the (local) comparison principle for complex Monge—
Ampere equations.

Chapter 7 This chapter reviews, without proof, some of the most important con-
cepts and results from complex algebraic and Kéhler geometry. We give various
definitions and examples (of complex manifolds, tangent bundles, holomorphic vec-
tor bundles, sections and metrics, blow-ups, positive currents, Kidhler forms, ample
line bundle) and say just a few words about Hodge theory.

Among all these important notions, the canonical bundle and the 39-lemma will
be used over and over in the sequel. We only say a few words about Hermitian
geometry, normal coordinates, canonical connections and curvatures; the reader may
wish to complement this chapter with other readings.

The material surveyed here is classical. More information can be found in [GH,
Wells, Dem, T, V].

Chapter 8 We establish in Chapter 8 the first basic properties of quasi-plurisub-
harmonic functions (uniform integrability, compactness, approximation, regulariza-
tion, extension).

The material presented here uses the local properties of plurisubharmonic func-
tions and Skoda’s integrability theorem, which have been studied in the first part,
as well as the Ohsawa—Takegoshi L2-extension theorem, which is used to show that
one can weakly approximate a positive (singular) metric of an ample line bundle by
(logarithm of modulus of) holomorphic sections of powers of the latter.

This approximation result is not used in the rest of the book, but the Ohsawa—
Takegoshi theorem is one of the most important tools in complex analytic geometry.
We highly recommend [Bern10, Dem13] for a good survey and [GZhoul5] for the
most recent developments.

Chapter 9 We introduce in this chapter two families of global intrinsic capacities:
the Monge—Ampere and the Alexander—Taylor capacities. As in the local setting, they
both characterize pluripolar sets and can be understood through the use of extremal
functions, envelopes of special subfamilies of quasi-plurisubharmonic functions.

The only prerequisite here is the local theory of Bedford and Taylor. More pre-
cisely one needs the following facts studied in the first part of the book:

e continuity, along monotone sequences, of complex Monge—Ampere operators
acting on bounded plurisubharmonic functions,

o solution of the homogeneous Dirichlet problem in a ball,
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o the maximum principle 1, <,y MA(max(u, v)) = Ly<yMA(u),
e pluripolar sets are the zero sets of the Monge—Ampere capacity.
The material presented here essentially comes from [GZ05].

Chapter 10 We extend the definition of the complex Monge—Ampgre operator to
a class of unbounded quasi-plurisubharmonic functions, the class £(X, w) of w-psh
functions with finite energy.

We define and study various intermediate classes of finite weighted energy, which
interpolate between the class of bounded w-psh functions and those of finite (un-
weighted) energy.

We show that the class £(X, w) is the largest class of w-psh functions for which
the complex Monge—Ampere operator is well-defined and the maximum principle
holds.

The material here is taken from [GZ07], [CGZ08] and [BBGZ13]. An important
source of inspiration was the work of Cegrell [Ceg98, Ceg04], who has developed
similar objects in domains of C”.

Chapter 11 Here we start to solve degenerate complex Monge—Ampere equations.
We use a variational method, i.e., we try to extremize various functionals whose
Euler-Lagrange equations are the complex Monge—Ampere equations we want to
solve.

This requires the functionals to have semi-continuity properties (a delicate issue
in some cases) and to be proper, a property that is possibly lacking on Fano manifolds
and explains the non-existence of Kéhler—Einstein metrics, as was proved by Tian in
[Tian97].

As we build here weak solutions, another delicate issue is to verify that extremiz-
ers are critical points. This is done by using an important property of upper envelopes
(the projection theorem) whose idea goes back to the fundamental work of Alexan-
drov [Ale38].

The material of this chapter comes from [BBGZ13], except for the proof of the
projection theorem, which is one of the main results of [BeBol0] by Berman and
Boucksom. The uniqueness of solutions in its most general form is due to Dinew
[Din09].

Chapter 12 We study here when finite energy solutions of complex Monge—Am-
pere equations are actually locally bounded (or even continuous) off a divisor. We do
this by establishing a uniform a priori estimate due to Kolodziej, which generalizes
the celebrated a priori estimate of Yau [Yau78].

Refinements of the arguments (which rely on the maximum principle and the com-
parison of previously introduced capacities) allow one to show that the solutions are
continuous and stable: if the Monge—Ampere measures converge one to another (in a
reasonably strong sense), so do the (normalized) solutions.

The material here is essentially due to Kolodziej [Kol98], with complements from
[EGZ09, GZ12] and [DiNL14].
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The arguments to show (Holder) continuity require the reference cohomology
class to be Kihler. The generalized capacities introduced by Di Nezza and Lu pro-
vide a useful generalization of Kolodziej’s technique. It allows us to handle situations
where the potentials are not globally bounded and yields a simple proof of the domi-
nation principle.

Chapter 13 1In this chapter we develop the viscosity approach to the equation
(DMA?) (w +dd)" = e®*®v,

where o is a closed smooth real (1, 1)-form on a n-dimensional connected compact
complex manifold X, v is a volume form with non-negative continuous density, and
e e Ry.

The global comparison principle lies at the heart of the viscosity approach. Once
it is established, Perron’s method can be applied to produce viscosity solutions. We
establish the global comparison principle for (DMA?) and use it to solve the above
degenerate complex Monge—Ampere equation.

We eventually show that many solutions of degenerate complex Monge—Ampere
equations obtained in previous chapters are continuous on the ample locus of the
reference cohomology class. The material here is taken from [EGZ11].

Chapter 14 Here we establish higher-order a priori estimates for the solutions of
complex Monge—Ampere equations. We complete here the proof of the existence of
smooth solutions to non-degenerate complex Monge—Ampere equations, a celebrated
result due to Yau [Yau78].

We also explain a generalization of Yau’s result, due to Szekelyhidi and Tosatti
[SzTo11] and Di Nezza and Lu [DiNL14], using an elliptic method which requires a
refined C2-estimate due to Pdun [Pau08] (the approach of [SzTo11] uses the Kihler—
Ricci flow).

The presentation of the material follows closely the ones in [Blo13, BBEGZI11,
DiNL14].

Chapter 15 The purpose of this chapter is to introduce and study the canonical
metrics of Kidhler geometry: extremal, constant scalar curvature, and Kdhler—Einstein
metrics.

The problem of constructing the latter boils down to solving certain complex
Monge—Ampere equations that were studied in the previous chapters. We thus explain
how to solve the Calabi Conjecture (following Yau [Yau78]), and how to construct
Kihler-Einstein metrics.

We discuss a Riemannian structure on the infinite-dimensional space of Kdhler
metrics, as introduced by Mabuchi [Mab87] and revisited by Semmes and Donaldson
[Sem92, Don99]. We mention without proof the main results of Chen [Che00, CC02]
on weak geodesics and discuss how weak geodesics were used by Berndtsson and
Berman [Bernl5, BerBerl4] to show the uniqueness of constant scalar curvature
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Kihler metrics, generalizing works of several authors, notably Bando and Mabuchi
[BM87] and Donaldson [DonO1].

We state the Yau—Tian—Donaldson conjecture and (very) briefly discuss its reso-
lution by Chen, Donaldson, and Sun [CDS1, CDS2, CDS3] in the Kéhler—Einstein
Fano case.

Chapter 16 The classification of higher-dimensional complex algebraic manifolds
(the so called Mori program or MMP=Minimal Model Program) requires one to work
on varieties that are “mildly singular”. Fortunately, in the presence of such mild
singularities, one can still make sense of the canonical bundle, the Ricci curvature,
and the Kéhler-Einstein equation.

The latter again boils down to solving a complex Monge—Ampere equation which
is degenerate, due to the presence of singularities. One can use a log-resolution of
singularities, and so work on a smooth manifold, but a price is paid because the
reference cohomology class is then merely semi-positive.

In this chapter we present the various notions of positivity for cohomology classes,
and many notions of singularities (notably canonical and Kawamata log terminal sin-
gularities) that we are going to consider. We then apply the techniques developed in
previous chapters to show the existence of singular Kédhler—Einstein metrics.

Basic references for this section are [Deb01, Dem13, KM, Laz] and [EGZ09] for
the applications to singular Kéhler—Einstein metrics.
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